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Mattia Zorzi

Proposition 4.5: Assume that for some ¢ the distribution of zj ; given Y;_; at node k is fixed and it is the same

for RKF diff, KF diff, that is f (z,|Y;—1) and fk7t(mt\}ﬁg,1) coincide. Then, for ¢ sufficiently large we have that
Drer (Be, ) < Dicr (Br, pi°°)- (1)

Proof: Let fk,t ~N (Zk,t, Vi,e) with Vi > 0 which is fixed and thus it does not depend on c. First, notice

that p;(2¢|Y;_1) = p/°¢(2¢|Y;_1) because the distribution of x¢ given Y;_; is the same for RKF diff and KF diff.

Accordingly,
P (i) ~ N (e, K1)
P l¥ima) ~ NG, L)
Prl(ze]Yio1) ~ N (e, Ky) )
where
A A
Méocz C',lc"C Tpyt, M= Cllfc Tkt 3)
0 u]lcoc
A BBT 0 0
Ktloc — Cllcoc Vk,t [AT (C}COC)T O] + 0 Rkoc 0 ,
0 0 0 QFf
I
K =K+ |0 (Vie,t41 — Prjt+1) [I 0 O] ,
0
A BBT 0 o0
K, = Cllcoc Vk,t [AT (CIZCOC)T (éllcoc)T] + 0 RLOC 0 ,
Chee 0 0 Rl
I
Ki=K:+ |0 (Vi1 — Piy1) [I 0 0] ;
0
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C’l"C and ]:Zéﬂoc are the matrices obtained by using C; and Ry, respectively, with [ ¢ M. It is worth noting that
the relation between f(tl"c and K!°¢ is given by [2, Theorem 1]. The same observation holds between K, and K,

where the latter represents the covariance matrix of z; given Y;_; in the nominal model. Moreover,
—1
Pri1 = AVi AT — AV, (CF9)T (c,iocvk,t(cLOC)T + Rﬁfc> Vi, AT + BB”

Vitrr = (Poiyy — Oked)

Priy = AVil AT — AV [(01)" ()] ( c,; bt [(Cl)T ()] + Ré“oc RZ] ) g; Vi AT + BBT
Vipr = (P3h —6:.1)7"
and 6y ¢, 0, are the solution to y(Pg t41,0k,t) = ¢, Y(Pit1,0:) = ¢, respectively. Recall that
v(P,0) :=logdet(I — OP) + tr((I — OP)~' —1I). 4)
In view of (2), it is not difficult to see that
Dier (5o 7% = D (e i) + 3 )
where
da = 6T ((K;*) ™" = (K;°) 1) + log det(K;”)
— (K (K;%) ™) + tr(K (K7°) 1) — log det (%)
< log det (K{**) + tr | Ky (K1)~ = (K{*) ") | - logdet(K{) ©)

where § = p; — pl°° and we have exploited the fact that (K/°¢)~! — (K1)~ < 0 because Py 11 < Vi¢41 and

thus K!°¢ > K¢, Moreover, after some algebraic manipulations we obtain

da < nlog||Vi sl = BeallVesrll + vie 9
where
Br,t = Amin (P, 3+1[P;;tl+1 + (Vi1 — Peye1) 7P tl+1)71 tr(Vig1 — [Viga =  Pig1)
vk,e = —logdet K{°° + (Np + 1) log Amax (K{*°) + log det(|| Vit 1111 Tn + Amaz (K1) ™ Vi 141)
Amaz (K1°¢) denotes the maximum eigenvalue of K[°¢, Vi ;11 := |[Vi 1l Vi1 and Vg := |[Viga |7 Vs

It [1] it has been if

we take a sequence ¢(™), m € N, such that ¢™ > 0 and ¢™ — oo as m — oo, then ||Vk( t+1|| — oo. The

same reasoning holds for the mapping ¢ — ||V;41|| and thus HVt || — oo. Consider the sequences Vk( ! le =
HVk(T_ng 1V,€(T_21 and Vt(ﬁ) = HV+1 I~ 1Vt(m) which belong to the compact set U := {V s.t. [|[V| = 1}.

Therefore, there exist the subsequences Vk ¢ +1’ l € Nand V;(ff), l € N, converging to Vk(ii)l and \7t(j:i)), respectively.

It is worth noting that Vk( . +)1, Vt(+1) > 0 and different from the null matrix because Vk( ; Jr)l, Vt(frx{) € U. Accordingly,
if we consider the corresponding subsequences for 3y, and vy ;, we have: ﬁ(m‘ — )\min(Pk_ . +1) Yer(Vigq) >0

and 1/,(c t’) is bounded above.
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Next we show that ||V;(ﬂl)||/ ||Vk(7t"_f_)1 | = ¢ > 0. First, we recall that Vk(:::l_)l nd Vt(ﬂl) are given by 9( ™) and

Ht(ml), respectively. In particular, we have ~( Pt(j:’ll ,e(ml ) = ¢™) Notice that we can rewrite the latter as
S log(1 — di6{™) + (1 — 6d™)) T 1 = ™) )

where d; > d;y; denotes the eigenvalues of P;; and 0 < 075"”) < d;'. In what follows we assume that the
eigenvalue d; has multiplicity equal to one, and thus d; > d; with ¢ > 2. This assumption is not restrictive, indeed

it generically holds. Then we can rewrite (8) as
F(d160™) + ) = c(m)
where
fl@)=log(l—z)+(1—2)"' =1

gmi) _ Zlog(l . di9§m1)> +(1— le(-m"))_l _1,

=2

&m) 5 ¢ and ¢ is a bounded value. Therefore
Fdi6™) = em) — g,
Since (™) — 0o, we have &™) = o(c(™)), ie. &™) /(™) — 0 as [ tends to infinity. Accordingly,
;™)) = ™) — o(cm). ©)
The same reasoning applies for 0,(;7’;’):
Fldiea0)3)) = ) — o(clm) (10)
where d;“v > d,i+1 are the eigenvalues of Py ;41 and dj,; has multiplicity equal to one. Notice that d; Ht(ml) and

dg, 19 belong to the interval [0,1). It is not difficult to see that f : [0,1) — [0, 00) is monotone increasing in

the 1nterval [0,1). Accordingly, it admits the continuous inverse function g : [0,00) — [0,1) and
o) — g1 ( (ma) _ O(C<ml>)>
0,(:;[) = d,:jg (c(ml) - o(c(m’))) .

Notice that

hmg ( (my) _ o(c(ml))) <hm clmi) O(C(ml)))

l—o0 l—o0

(m1)
=g <lim ™) lim (1 - O(C(m ) ))> =g (hm c("”)) = hm g( (ml)) (11)
l—o0 l—o0 c\"mu l— o0 l— 00
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Finally, we have

no_ 1 1 no_ 1
I t(+77;l)|| ) Diet FRETIC - FrESpIC) + D io I
n 1 - 1 n 1
SRR SRR T e R
d n 1
oy kg(c“nz)io(c(’"l’)) 2 at-elm . 179( <’"l)) + 2 ;! 9”””
o liglo dr.1 4 Z" 1 - liglo di.1 4 Z
1_g(c(ml)_o(c(ml))) 1=2 dlzi_gl(c':rttl) 1— g(c(ml)) Z—Qd 1 e(ml)
dq
I e i)
Y\ 2
1—g(cmD)

where we exploited the fact that lim, ., g(x) = 1 in the last equality. Then, we have

IV, (mz)” ‘1_g(dcl(ml)) d
s B A N A e > 0. (13)
=00 ||V, (ml) I I et dis 1 dj1
,t41 1—g(c(mD) ’

Accordingly the corresponding subsequence d(Aml approaches —oo because the term ﬁk tl) 1Visa (ma) || dominates

the logarithmic term n log || k(:fn_f_)lﬂ We conclude that for ¢ sufficiently large (1) holds. O
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