Distributed Kalman Filtering under Model Uncertainty

Mattia Zorzi

Proposition 4.5: Assume that for some t the distribution of $x_{k, t}$ given Y_{t-1} at node k is fixed and it is the same for RKF diff, KF diff, that is $f_{k, t}\left(x_{t} \mid Y_{t-1}\right)$ and $\tilde{f}_{k, t}\left(x_{t} \mid Y_{t-1}\right)$ coincide. Then, for c sufficiently large we have that

$$
\begin{equation*}
\mathbb{D}_{K L}\left(\tilde{p}_{t}, \tilde{p}_{t}^{l o c}\right) \ll \mathbb{D}_{K L}\left(\tilde{p}_{t}, p_{t}^{l o c}\right) \tag{1}
\end{equation*}
$$

Proof: Let $\tilde{f}_{k, t} \sim \mathcal{N}\left(\hat{x}_{k, t}, V_{k, t}\right)$ with $V_{k, t}>0$ which is fixed and thus it does not depend on c. First, notice that $p_{t}\left(z_{t} \mid Y_{t-1}\right)=\bar{p}_{t}^{l o c}\left(z_{t} \mid Y_{t-1}\right)$ because the distribution of $x_{k, t}$ given Y_{t-1} is the same for RKF diff and KF diff. Accordingly,

$$
\begin{align*}
p_{t}^{l o c}\left(z_{t} \mid Y_{t-1}\right) & \sim \mathcal{N}\left(\mu_{t}^{l o c}, K_{t}^{l o c}\right) \\
\tilde{p}_{t}^{l o c}\left(z_{t} \mid Y_{t-1}\right) & \sim \mathcal{N}\left(\mu_{t}^{l o c}, \tilde{K}_{t}^{l o c}\right) \\
\tilde{p}_{t}\left(z_{t} \mid Y_{t-1}\right) & \sim \mathcal{N}\left(\mu_{t}, \tilde{K}_{t}\right) \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
& \mu_{t}^{l o c}=\left[\begin{array}{c}
A \\
C_{k}^{l o c} \\
0
\end{array}\right] \hat{x}_{k, t}, \mu_{t}=\left[\begin{array}{c}
A \\
C_{k}^{l o c} \\
C_{k}^{l o c}
\end{array}\right] \hat{x}_{k, t}, \tag{3}\\
& K_{t}^{l o c}=\left[\begin{array}{c}
A \\
C_{k}^{l o c} \\
0
\end{array}\right] V_{k, t}\left[A^{T}\left(C_{k}^{l o c}\right)^{T} 0\right]+\left[\begin{array}{ccc}
B B^{T} & 0 & 0 \\
0 & R_{k}^{l o c} & 0 \\
0 & 0 & Q_{k, t}^{l o c}
\end{array}\right], \\
& \tilde{K}_{t}^{l o c}=K_{t}^{l o c}+\left[\begin{array}{l}
I \\
0 \\
0
\end{array}\right]\left(V_{k, t+1}-P_{k, t+1}\right)\left[\begin{array}{lll}
I & 0 & 0
\end{array}\right], \\
& K_{t}=\left[\begin{array}{c}
A \\
C_{k}^{l o c} \\
\breve{C}_{k}^{l o c}
\end{array}\right] V_{k, t}\left[\begin{array}{lll}
A^{T} & \left(C_{k}^{l o c}\right)^{T} & \left(\breve{C}_{k}^{l o c}\right)^{T}
\end{array}\right]+\left[\begin{array}{ccc}
B B^{T} & 0 & 0 \\
0 & R_{k}^{l o c} & 0 \\
0 & 0 & \breve{R}_{k}^{l o c}
\end{array}\right], \\
& \tilde{K}_{t}=K_{t}+\left[\begin{array}{l}
I \\
0 \\
0
\end{array}\right]\left(V_{t+1}-P_{t+1}\right)\left[\begin{array}{lll}
I & 0 & 0
\end{array}\right]
\end{align*}
$$

M. Zorzi is with the Department of Information Engineering, University of Padova, Padova, Italy; e-mail: zorzimat@dei.unipd.it
$\breve{C}_{k}^{l o c}$ and $\breve{R}_{k}^{\text {loc }}$ are the matrices obtained by using C_{l} and R_{l}, respectively, with $l \notin \mathcal{N}_{k}$. It is worth noting that the relation between $\tilde{K}_{t}^{l o c}$ and $K_{t}^{l o c}$ is given by [2, Theorem 1]. The same observation holds between \tilde{K}_{t} and K_{t} where the latter represents the covariance matrix of z_{t} given Y_{t-1} in the nominal model. Moreover,

$$
\left.\left.\left.\begin{array}{rl}
P_{k, t+1} & =A V_{k, t} A^{T}-A V_{k, t}\left(C_{k}^{l o c}\right)^{T}\left(C_{k}^{l o c} V_{k, t}\left(C_{k}^{l o c}\right)^{T}+R_{k}^{l o c}\right)^{-1} C_{k}^{l o c} V_{k, t} A^{T}+B B^{T} \\
V_{k, t+1} & =\left(P_{k, t+1}^{-1}-\theta_{k, t} I\right)^{-1} \\
P_{t+1} & =A V_{k, t} A^{T}-A V_{k, t}\left[(\begin{array} { l l }
{ (C _ { k } ^ { l o c }) ^ { T } } & { (\breve { C } _ { k } ^ { l o c }) ^ { T } }
\end{array}] \left([\begin{array} { c }
{ C _ { k } ^ { l o c } } \\
{ \breve { C } _ { k } ^ { l o c } }
\end{array}] V _ { k , t } \left[\left(C_{k}^{l o c}\right)^{T}\right.\right.\right. \\
\left(\breve{C}_{k}^{l o c}\right)^{T}
\end{array}\right]+\left[\begin{array}{cc}
R_{k}^{l o c} & 0 \\
0 & \breve{R}_{k}^{l o c}
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
C_{k}^{l o c} \\
\breve{C}_{k}^{l o c}
\end{array}\right] V_{k, t} A^{T}+B B^{T}\right] \text { (} \begin{aligned}
& \left.P_{t+1}^{-1}-\theta_{t} I\right)^{-1}
\end{aligned}
$$

and $\theta_{k, t}, \theta_{t}$ are the solution to $\gamma\left(P_{k, t+1}, \theta_{k, t}\right)=c, \gamma\left(P_{t+1}, \theta_{t}\right)=c$, respectively. Recall that

$$
\begin{equation*}
\gamma(P, \theta):=\log \operatorname{det}(I-\theta P)+\operatorname{tr}\left((I-\theta P)^{-1}-I\right) \tag{4}
\end{equation*}
$$

In view of (2), it is not difficult to see that

$$
\begin{equation*}
\mathbb{D}_{K L}\left(\tilde{p}_{t}, \tilde{p}_{t}^{l o c}\right)=\mathbb{D}_{K L}\left(\tilde{p}_{t}, p_{t}^{l o c}\right)+\frac{1}{2} d_{\Delta} \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
d_{\Delta}= & \delta^{T}\left(\left(\tilde{K}_{t}^{l o c}\right)^{-1}-\left(K_{t}^{l o c}\right)^{-1}\right) \delta+\log \operatorname{det}\left(\tilde{K}_{t}^{l o c}\right) \\
& -\operatorname{tr}\left(\tilde{K}_{t}\left(K_{t}^{l o c}\right)^{-1}\right)+\operatorname{tr}\left(\tilde{K}_{t}\left(\tilde{K}_{t}^{l o c}\right)^{-1}\right)-\log \operatorname{det}\left(K_{t}^{l o c}\right) \\
\leq & \log \operatorname{det}\left(\tilde{K}_{t}^{l o c}\right)+\operatorname{tr}\left[\tilde{K}_{t}\left(\left(\tilde{K}_{t}^{l o c}\right)^{-1}-\left(K_{t}^{l o c}\right)^{-1}\right)\right]-\log \operatorname{det}\left(K_{t}^{l o c}\right) \tag{6}
\end{align*}
$$

where $\delta=\mu_{t}-\mu_{t}^{l o c}$ and we have exploited the fact that $\left(\tilde{K}_{t}^{l o c}\right)^{-1}-\left(K_{t}^{l o c}\right)^{-1} \leq 0$ because $P_{k, t+1}<V_{k, t+1}$ and thus $\tilde{K}_{t}^{\text {loc }} \geq K_{t}^{l o c}$. Moreover, after some algebraic manipulations we obtain

$$
\begin{equation*}
d_{\Delta} \leq n \log \left\|V_{k, t+1}\right\|-\beta_{k, t}\left\|V_{t+1}\right\|+\nu_{k, t} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \beta_{k, t}=\lambda_{\min }\left(P_{k, t+1}^{-1}\left[P_{k, t+1}^{-1}+\left(V_{k, t+1}-P_{k, t+1}\right)^{-1}\right]^{-1} P_{k, t+1}^{-1}\right)^{-1} \operatorname{tr}\left(\bar{V}_{t+1}-\left\|V_{t+1}\right\|^{-1} P_{t+1}\right) \\
& \nu_{k, t}=-\log \operatorname{det} K_{t}^{l o c}+(N p+n) \log \lambda_{\max }\left(K_{t}^{l o c}\right)+\log \operatorname{det}\left(\left\|V_{k, t+1}\right\|^{-1} I_{n}+\lambda_{\max }\left(K_{t}^{l o c}\right)^{-1} \bar{V}_{k, t+1}\right)
\end{aligned}
$$

$\lambda_{\max }\left(K_{t}^{l o c}\right)$ denotes the maximum eigenvalue of $K_{t}^{l o c}, \bar{V}_{k, t+1}:=\left\|V_{k, t+1}\right\|^{-1} V_{k, t+1}$ and $\bar{V}_{t+1}:=\left\|V_{t+1}\right\|^{-1} V_{t+1}$.
It [1] it has been shown that the mapping $c \mapsto\left\|V_{k+1, t}\right\|$ has singular value which is positive. Accordingly, if we take a sequence $c^{(m)}, m \in \mathbb{N}$, such that $c^{(m)}>0$ and $c^{(m)} \rightarrow \infty$ as $m \rightarrow \infty$, then $\left\|V_{k, t+1}^{(m)}\right\| \rightarrow \infty$. The same reasoning holds for the mapping $c \mapsto\left\|V_{t+1}\right\|$ and thus $\left\|V_{t+1}^{(m)}\right\| \rightarrow \infty$. Consider the sequences $\bar{V}_{k, t+1}^{(m)}:=$ $\left\|V_{k, t+1}^{(m)}\right\|^{-1} V_{k, t+1}^{(m)}$ and $\bar{V}_{t+1}^{(m)}:=\left\|V_{t+1}^{(m)}\right\|^{-1} V_{t+1}^{(m)}$ which belong to the compact set $\mathcal{U}:=\{V$ s.t. $\|V\|=1\}$. Therefore, there exist the subsequences $\bar{V}_{k, t+1}^{\left(m_{l}\right)}, l \in \mathbb{N}$ and $\bar{V}_{t+1}^{\left(m_{l}\right)}, l \in \mathbb{N}$, converging to $\bar{V}_{k, t+1}^{(\infty)}$ and $\bar{V}_{t+1}^{(\infty)}$, respectively. It is worth noting that $\bar{V}_{k, t+1}^{(\infty)}, \bar{V}_{t+1}^{(\infty)} \geq 0$ and different from the null matrix because $\bar{V}_{k, t+1}^{(\infty)}, \bar{V}_{t+1}^{(\infty)} \in \mathcal{U}$. Accordingly, if we consider the corresponding subsequences for $\beta_{k, t}$ and $\nu_{k, t}$, we have: $\beta_{k, t}^{\left(m_{l}\right)} \rightarrow \lambda_{\text {min }}\left(P_{k, t+1}^{-1}\right)^{-1} \operatorname{tr}\left(\bar{V}_{t+1}\right)>0$ and $\nu_{k, t}^{\left(m_{l}\right)}$ is bounded above.

Next we show that $\left\|V_{t+1}^{\left(m_{l}\right)}\right\| /\left\|V_{k, t+1}^{\left(m_{l}\right)}\right\| \rightarrow \zeta>0$. First, we recall that $V_{k, t+1}^{\left(m_{l}\right)}$ and $V_{t+1}^{\left(m_{l}\right)}$ are given by $\theta_{k, t}^{\left(m_{l}\right)}$ and $\theta_{t}^{\left(m_{l}\right)}$, respectively. In particular, we have $\gamma\left(P_{t+1}^{\left(m_{l}\right)}, \theta_{t}^{\left(m_{l}\right)}\right)=c^{\left(m_{l}\right)}$. Notice that we can rewrite the latter as

$$
\begin{equation*}
\sum_{i=1}^{n} \log \left(1-d_{i} \theta_{t}^{\left(m_{l}\right)}\right)+\left(1-\theta d_{i}^{\left(m_{l}\right)}\right)^{-1}-1=c^{\left(m_{l}\right)} \tag{8}
\end{equation*}
$$

where $d_{i} \geq d_{i+1}$ denotes the eigenvalues of P_{t+1} and $0<\theta_{t}^{\left(m_{l}\right)}<d_{1}^{-1}$. In what follows we assume that the eigenvalue d_{1} has multiplicity equal to one, and thus $d_{1}>d_{i}$ with $i \geq 2$. This assumption is not restrictive, indeed it generically holds. Then we can rewrite (8) as

$$
f\left(d_{1} \theta_{t}^{\left(m_{l}\right)}\right)+\breve{c}^{\left(m_{l}\right)}=c^{\left(m_{l}\right)}
$$

where

$$
\begin{aligned}
f(x) & =\log (1-x)+(1-x)^{-1}-1 \\
\breve{c}^{\left(m_{l}\right)} & =\sum_{i=2}^{n} \log \left(1-d_{i} \theta_{t}^{\left(m_{l}\right)}\right)+\left(1-\theta d_{i}^{\left(m_{l}\right)}\right)^{-1}-1
\end{aligned}
$$

$\breve{c}\left(m_{l}\right) \rightarrow \breve{c}$ and \breve{c} is a bounded value. Therefore

$$
f\left(d_{1} \theta_{t}^{\left(m_{l}\right)}\right)=c^{\left(m_{l}\right)}-\breve{c}^{\left(m_{l}\right)}
$$

Since $c^{\left(m_{l}\right)} \rightarrow \infty$, we have $\breve{c}^{\left(m_{l}\right)}=o\left(c^{\left(m_{l}\right)}\right)$, i.e. $\breve{c}^{\left(m_{l}\right)} / c^{\left(m_{l}\right)} \rightarrow 0$ as l tends to infinity. Accordingly,

$$
\begin{equation*}
f\left(d_{1} \theta_{t}^{\left(m_{l}\right)}\right)=c^{\left(m_{l}\right)}-o\left(c^{\left(m_{l}\right)}\right) \tag{9}
\end{equation*}
$$

The same reasoning applies for $\theta_{k, t}^{\left(m_{l}\right)}$:

$$
\begin{equation*}
f\left(d_{k, 1} \theta_{k, t}^{\left(m_{l}\right)}\right)=c^{\left(m_{l}\right)}-o\left(c^{\left(m_{l}\right)}\right) \tag{10}
\end{equation*}
$$

where $d_{k, i} \geq d_{k, i+1}$ are the eigenvalues of $P_{k, t+1}$ and $d_{k, 1}$ has multiplicity equal to one. Notice that $d_{1} \theta_{t}^{\left(m_{l}\right)}$ and $d_{k, 1} \theta_{k, t}^{\left(m_{l}\right)}$ belong to the interval $[0,1)$. It is not difficult to see that $f:[0,1) \rightarrow[0, \infty)$ is monotone increasing in the interval $[0,1)$. Accordingly, it admits the continuous inverse function $g:[0, \infty) \rightarrow[0,1)$ and

$$
\begin{aligned}
& \theta_{t}^{\left(m_{l}\right)}=d_{1}^{-1} g\left(c^{\left(m_{l}\right)}-o\left(c^{\left(m_{l}\right)}\right)\right) \\
& \theta_{k, t}^{\left(m_{l}\right)}=d_{k, 1}^{-1} g\left(c^{\left(m_{l}\right)}-o\left(c^{\left(m_{l}\right)}\right)\right)
\end{aligned}
$$

Notice that

$$
\begin{align*}
& \lim _{l \rightarrow \infty} g\left(c^{\left(m_{l}\right)}-o\left(c^{\left(m_{l}\right)}\right)\right)=g\left(\lim _{l \rightarrow \infty} c^{\left(m_{l}\right)}-o\left(c^{\left(m_{l}\right)}\right)\right) \\
& \quad=g\left(\lim _{l \rightarrow \infty} c^{\left(m_{l}\right)} \lim _{l \rightarrow \infty}\left(1-\frac{o\left(c^{\left(m_{l}\right)}\right)}{c^{\left(m_{l}\right)}}\right)\right)=g\left(\lim _{l \rightarrow \infty} c^{\left(m_{l}\right)}\right)=\lim _{l \rightarrow \infty} g\left(c^{\left(m_{l}\right)}\right) \tag{11}
\end{align*}
$$

Finally, we have

$$
\begin{align*}
& \lim _{l \rightarrow \infty} \frac{\left\|V_{t+1}^{\left(m_{l}\right)}\right\|}{\left\|V_{k, t+1}^{\left(m_{l}\right)}\right\|}=\lim _{l \rightarrow \infty} \sqrt{\frac{\sum_{i=1}^{n} \frac{1}{d_{i}^{-1}-\theta_{t}^{\left(m_{l}\right)}}}{\sum_{i=1}^{n} \frac{1}{d_{k, i}^{-1}-\theta_{k, t}^{\left(m_{l}\right)}}}}=\lim _{l \rightarrow \infty} \sqrt{\frac{\frac{1}{d_{1}^{-1}-\theta_{t}^{\left(m_{l}\right)}}+\sum_{i=2}^{n} \frac{1}{d_{i}^{-1}-\theta_{t}^{\left(m_{l}\right)}}}{\frac{1}{d_{k, 1}^{-1}-\theta_{k, t}^{\left(m_{l}\right)}}+\sum_{i=2}^{n} \frac{1}{d_{k, i}^{-1}-\theta_{k, t}^{\left(m_{l}\right)}}}} \\
& =\lim _{l \rightarrow \infty} \sqrt{\frac{\frac{d_{1}}{1-g\left(c^{\left(m_{l}\right)}-o\left(c^{\left(m_{l}\right)}\right)\right)}+\sum_{i=2}^{n} \frac{1}{d_{i}^{-1}-\theta_{t}^{\left(m_{l}\right)}}}{\frac{d_{k, 1}}{1-g\left(c^{\left(m_{l}\right)}-o\left(c^{\left(m_{l}\right)}\right)\right)}+\sum_{i=2}^{n} \frac{1}{d_{k, i}^{-1}-\theta_{k, t}^{\left(m_{l}\right)}}}}=\lim _{l \rightarrow \infty} \sqrt{\frac{\frac{d_{1}}{\frac{1-g\left(c^{\left(m_{l}\right)}\right)}{}+\sum_{i=2}^{n} \frac{1}{d_{i, 1}^{-1}-\theta_{t}^{\left(m_{l}\right)}}} 1-g\left(c^{\left(m_{l}\right)}\right)}{}+\sum_{i=2}^{n} \frac{1}{d_{k, i}^{-1}-\theta_{k, t}^{\left(m_{l}\right)}}} \\
& =\lim _{l \rightarrow \infty} \sqrt{\frac{\frac{d_{1}}{1-g\left(c^{\left(m_{l}\right)}\right)}}{\frac{d_{k, 1}}{1-g\left(c^{\left(m_{l}\right)}\right)}}} \tag{12}
\end{align*}
$$

where we exploited the fact that $\lim _{x \rightarrow \infty} g(x)=1$ in the last equality. Then, we have

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \frac{\left\|V_{t+1}^{\left(m_{l}\right)}\right\|}{\left\|V_{k, t+1}^{\left(m_{l}\right)}\right\|}=\lim _{l \rightarrow \infty} \sqrt{\frac{\frac{d_{1}}{1-g\left(c^{\left(m_{l}\right)}\right)}}{\frac{d_{k, 1}}{1-g\left(c^{\left(m_{l}\right)}\right)}}}=\sqrt{\frac{d_{1}}{d_{k, 1}}}>0 \tag{13}
\end{equation*}
$$

Accordingly the corresponding subsequence $d_{\Delta}^{\left(m_{l}\right)}$ approaches $-\infty$ because the term $-\beta_{k, t}^{\left(m_{l}\right)}\left\|V_{t+1}^{\left(m_{l}\right)}\right\|$ dominates the logarithmic term $n \log \left\|V_{k, t+1}^{\left(m_{l}\right)}\right\|$. We conclude that for c sufficiently large (1) holds.

REFERENCES

[1] B. Levy and R. Nikoukhah, "Robust least-squares estimation with a relative entropy constraint," Information Theory, IEEE Transactions on, vol. 50, no. 1, pp. 89-104, Jan. 2004.
[2] __, "Robust state-space filtering under incremental model perturbations subject to a relative entropy tolerance," IEEE Trans. Automat. Control, vol. 58, pp. 682-695, Mar. 2013.

