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Distributed Kalman Filtering under Model Uncertainty
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Proposition 4.5: Assume that for some t the distribution of xk,t given Yt−1 at node k is fixed and it is the same

for RKF diff, KF diff, that is fk,t(xt|Yt−1) and f̃k,t(xt|Yt−1) coincide. Then, for c sufficiently large we have that

DKL(p̃t, p̃
loc
t )� DKL(p̃t, p

loc
t ). (1)

Proof: Let f̃k,t ∼ N (x̂k,t, Vk,t) with Vk,t > 0 which is fixed and thus it does not depend on c. First, notice

that pt(zt|Yt−1) = p̄loct (zt|Yt−1) because the distribution of xk,t given Yt−1 is the same for RKF diff and KF diff.

Accordingly,

ploct (zt|Yt−1) ∼ N (µloct ,Kloc
t )

p̃loct (zt|Yt−1) ∼ N (µloct , K̃loc
t )

p̃t(zt|Yt−1) ∼ N (µt, K̃t) (2)

where

µloct =


A

Clock

0

 x̂k,t, µt =


A

Clock

C̆lock

 x̂k,t, (3)

Kloc
t =


A

Cloc
k

0

Vk,t

[
AT (Cloc

k )T 0
]

+


BBT 0 0

0 Rloc
k 0

0 0 Qloc
k,t

 ,

K̃loc
t = Kloc

t +


I

0

0

 (Vk,t+1 − Pk,t+1)
[
I 0 0

]
,

Kt =


A

Cloc
k

C̆loc
k

Vk,t

[
AT (Cloc

k )T (C̆loc
k )T

]
+


BBT 0 0

0 Rloc
k 0

0 0 R̆loc
k

 ,

K̃t = Kt +


I

0

0

 (Vt+1 − Pt+1)
[
I 0 0

]
;
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C̆lock and R̆lock are the matrices obtained by using Cl and Rl, respectively, with l /∈ Nk. It is worth noting that
the relation between K̃loc

t and Kloc
t is given by [2, Theorem 1]. The same observation holds between K̃t and Kt

where the latter represents the covariance matrix of zt given Yt−1 in the nominal model. Moreover,

Pk,t+1 = AVk,tA
T −AVk,t(C

loc
k )T

(
Cloc

k Vk,t(C
loc
k )T +Rloc

k

)−1

Cloc
k Vk,tA

T +BBT

Vk,t+1 = (P−1
k,t+1 − θk,tI)−1

Pt+1 = AVk,tA
T −AVk,t

[
(Cloc

k )T (C̆loc
k )T

]Cloc
k

C̆loc
k

Vk,t

[
(Cloc

k )T (C̆loc
k )T

]
+

Rloc
k 0

0 R̆loc
k

−1 Cloc
k

C̆loc
k

Vk,tA
T +BBT

Vt+1 = (P−1
t+1 − θtI)−1

and θk,t, θt are the solution to γ(Pk,t+1, θk,t) = c, γ(Pt+1, θt) = c, respectively. Recall that

γ(P, θ) := log det(I − θP ) + tr((I − θP )−1 − I). (4)

In view of (2), it is not difficult to see that

DKL(p̃t, p̃
loc
t ) = DKL(p̃t, p

loc
t ) +

1

2
d∆ (5)

where

d∆ = δT ((K̃loc
t )−1 − (Kloc

t )−1)δ + log det(K̃loc
t )

− tr(K̃t(K
loc
t )−1) + tr(K̃t(K̃

loc
t )−1)− log det(Kloc

t )

≤ log det(K̃loc
t ) + tr

[
K̃t

(
(K̃loc

t )−1 − (Kloc
t )−1

)]
− log det(Kloc

t ) (6)

where δ = µt − µloct and we have exploited the fact that (K̃loc
t )−1 − (Kloc

t )−1 ≤ 0 because Pk,t+1 < Vk,t+1 and

thus K̃loc
t ≥ Kloc

t . Moreover, after some algebraic manipulations we obtain

d∆ ≤ n log ‖Vk,t+1‖ − βk,t‖Vt+1‖+ νk,t (7)

where

βk,t = λmin(P−1
k,t+1[P−1

k,t+1 + (Vk,t+1 − Pk,t+1)−1]−1P−1
k,t+1)−1 tr(V̄t+1 − ‖Vt+1‖−1Pt+1)

νk,t = − log detKloc
t + (Np+ n) log λmax(Kloc

t ) + log det(‖Vk,t+1‖−1In + λmax(Kloc
t )−1V̄k,t+1)

λmax(Kloc
t ) denotes the maximum eigenvalue of Kloc

t , V̄k,t+1 := ‖Vk,t+1‖−1Vk,t+1 and V̄t+1 := ‖Vt+1‖−1Vt+1.

It [1] it has been shown that the mapping c 7→ ‖Vk+1,t‖ has singular value which is positive. Accordingly, if

we take a sequence c(m), m ∈ N, such that c(m) > 0 and c(m) → ∞ as m → ∞, then ‖V (m)
k,t+1‖ → ∞. The

same reasoning holds for the mapping c 7→ ‖Vt+1‖ and thus ‖V (m)
t+1 ‖ → ∞. Consider the sequences V̄ (m)

k,t+1 :=

‖V (m)
k,t+1‖−1V

(m)
k,t+1 and V̄

(m)
t+1 := ‖V (m)

t+1 ‖−1V
(m)
t+1 which belong to the compact set U := {V s.t. ‖V ‖ = 1 }.

Therefore, there exist the subsequences V̄ (ml)
k,t+1, l ∈ N and V̄ (ml)

t+1 , l ∈ N, converging to V̄ (∞)
k,t+1 and V̄ (∞)

t+1 , respectively.

It is worth noting that V̄ (∞)
k,t+1, V̄

(∞)
t+1 ≥ 0 and different from the null matrix because V̄ (∞)

k,t+1, V̄
(∞)
t+1 ∈ U . Accordingly,

if we consider the corresponding subsequences for βk,t and νk,t, we have: β(ml)
k,t → λmin(P−1

k,t+1)−1 tr(V̄t+1) > 0

and ν(ml)
k,t is bounded above.
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Next we show that ‖V (ml)
t+1 ‖/‖V

(ml)
k,t+1‖ → ζ > 0. First, we recall that V (ml)

k,t+1 and V (ml)
t+1 are given by θ(ml)

k,t and

θ
(ml)
t , respectively. In particular, we have γ(P

(ml)
t+1 , θ

(ml)
t ) = c(ml). Notice that we can rewrite the latter as

n∑
i=1

log(1− diθ(ml)
t ) + (1− θd(ml)

i )−1 − 1 = c(ml) (8)

where di ≥ di+1 denotes the eigenvalues of Pt+1 and 0 < θ
(ml)
t < d−1

1 . In what follows we assume that the

eigenvalue d1 has multiplicity equal to one, and thus d1 > di with i ≥ 2. This assumption is not restrictive, indeed

it generically holds. Then we can rewrite (8) as

f(d1θ
(ml)
t ) + c̆(ml) = c(ml)

where

f(x) = log(1− x) + (1− x)−1 − 1

c̆(ml) =

n∑
i=2

log(1− diθ(ml)
t ) + (1− θd(ml)

i )−1 − 1,

c̆(ml) → c̆ and c̆ is a bounded value. Therefore

f(d1θ
(ml)
t ) = c(ml) − c̆(ml).

Since c(ml) →∞, we have c̆(ml) = o(c(ml)), i.e. c̆(ml)/c(ml) → 0 as l tends to infinity. Accordingly,

f(d1θ
(ml)
t ) = c(ml) − o(c(ml)). (9)

The same reasoning applies for θ(ml)
k,t :

f(dk,1θ
(ml)
k,t ) = c(ml) − o(c(ml)) (10)

where dk,i ≥ dk,i+1 are the eigenvalues of Pk,t+1 and dk,1 has multiplicity equal to one. Notice that d1θ
(ml)
t and

dk,1θ
(ml)
k,t belong to the interval [0, 1). It is not difficult to see that f : [0, 1)→ [0,∞) is monotone increasing in

the interval [0, 1). Accordingly, it admits the continuous inverse function g : [0,∞)→ [0, 1) and

θ
(ml)
t = d−1

1 g
(
c(ml) − o(c(ml))

)
θ

(ml)
k,t = d−1

k,1g
(
c(ml) − o(c(ml))

)
.

Notice that

lim
l→∞

g
(
c(ml) − o(c(ml))

)
= g

(
lim
l→∞

c(ml) − o(c(ml))

)
= g

(
lim
l→∞

c(ml) lim
l→∞

(
1− o(c(ml))

c(ml)

))
= g

(
lim
l→∞

c(ml)

)
= lim
l→∞

g
(
c(ml)

)
(11)
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Finally, we have

lim
l→∞

‖V (ml)
t+1 ‖

‖V (ml)
k,t+1‖

= lim
l→∞

√√√√√
∑n
i=1

1

d−1
i −θ

(ml)
t∑n

i=1
1

d−1
k,i−θ

(ml)

k,t

= lim
l→∞

√√√√√ 1

d−1
1 −θ

(ml)
t

+
∑n
i=2

1

d−1
i −θ

(ml)
t

1

d−1
k,1−θ

(ml)

k,t

+
∑n
i=2

1

d−1
k,i−θ

(ml)

k,t

= lim
l→∞

√√√√√ d1
1−g(c(ml)−o(c(ml)))

+
∑n
i=2

1

d−1
i −θ

(ml)
t

dk,1

1−g(c(ml)−o(c(ml)))
+
∑n
i=2

1

d−1
k,i−θ

(ml)

k,t

= lim
l→∞

√√√√√ d1
1−g(c(ml))

+
∑n
i=2

1

d−1
i −θ

(ml)
t

dk,1

1−g(c(ml))
+
∑n
i=2

1

d−1
k,i−θ

(ml)

k,t

= lim
l→∞

√√√√√ d1
1−g(c(ml))

dk,1

1−g(c(ml))

(12)

where we exploited the fact that limx→∞ g(x) = 1 in the last equality. Then, we have

lim
l→∞

‖V (ml)
t+1 ‖

‖V (ml)
k,t+1‖

= lim
l→∞

√√√√√ d1
1−g(c(ml))

dk,1

1−g(c(ml))

=

√
d1

dk,1
> 0. (13)

Accordingly the corresponding subsequence d(ml)
∆ approaches −∞ because the term −β(ml)

k,t ‖V
(ml)
t+1 ‖ dominates

the logarithmic term n log ‖V (ml)
k,t+1‖. We conclude that for c sufficiently large (1) holds. �
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