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Outline 

¨  Part 2: Signal processing at PHY/MAC layers 
¤ The challenge of massive M2M access 

n RFtag counting and identification 

¤  Interference models & system capacity 
n Multi-packet reception and Successive Interference 

Cancellation 
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R1: today’s systems 
R2: high-speed versions of 
today’s systems 
R3: massive access for 
sensors and machines 
R4: ultra-reliable 
connectivity at minimal rate 
R5: physically impossible 

The shape of wireless to come 

5G=R1+R2+R3+R4 
[Ref] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G”,  
IEEE Communications Magazine, February 2014. 
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M2M reference architecture 
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Machine Network Traffic  

¨  M2M devices generate traffics of the following 
types  
¤ Periodic: smart metering application 
¤ Event-driven: emergency event report 
¤ Continuous: surveillance camera 

¨  Large volume of different types of traffic at core 
network  
¤ Guarantee of diverse QoS traffic requirements 
¤ Reliability of both human-to-human and M2M traffic  
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high-speed wireless vs. M2M 

¨  high-speed systems built from information-theoretic 
principles with small control info  and  large data 

  
¨  M2M require short data packets  

from massive number of devices  
each transmitting sporadically 
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enormous  M2M growth expected 

¨  24-fold traffic growth  
from 2012 to 2017  

¨  4.6-fold growth of M2M 
#subscriptions  
¤  from 369 million in 2012  

to 1,7 billion in 2017 

¨  M2M traffic will account for 
approximately 5 % of  
overall mobile traffic in 
2017  
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The batch resolution problem 
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Problem statement 

¨  What’s a “batch”? 
¤  Set of mutually interfering nodes simultaneously solicited to send a 

packet 
n  RF tags illuminated by a reader 
n  Wireless nodes that reply to neighbour-discovery request 
n  Mobile terminals that compete to reserve a channel slot 

¨  What’s the “Batch resolution problem”? 
¤  Simultaneous transmissions by multiple nodes result into collision è all 

packets are lost!  
¤  Nodes need to arbitrate the channel access in order to transmit their 

packet avoiding collisions  
n  A node that successfully transmits is said to be resolved 

¨  What’s a “Batch Resolution Algorithm” (BRA)? 
¤  The BRA arbitrates the channel access in order to minimizing the batch 

resolution interval, ie, the mean time required to resolve all the nodes in 
the batch 

Broadcast inquiry message 

Solicited nodes form the “batch” 

Inquirer 

Unicast reply messages 
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Batch resolution problem vs MAC 

¨  The batch resolution problem resembles the MAC 
problem but…  
¤ MAC protocols generally look at the channel contention as a 

steady-state phenomenon 

¤  BRAs address scenarios where contention has a bursty nature 
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Performance measures 

¨  Batch resolution interval (BRI) 
¤ T(n) = E[time required to resolve a batch of size n] 

¨  Batch Throughput 

¨  Asymptotic throughput 
¤ Maximal sustainable arrival rate when BRA is used as 

obvious MAC:  
n  solve a batch and queue packets arriving in the meanwhile, 

the form the next batch (gate policy) 

€ 

λ n( ) =
n

T n( )

€ 

Λ = lim
n→∞

λ n( )
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Splitting-tree BRAs 

¨  Time is slotted 
¤  Slots may have unequal duration in CSMA networks 

¨  In each slot, some nodes are activated, i.e., transmit 
¨  Immediate feedback: returned after each slot 

¤  Idle slot: no nodes transmit 
¤  Successful slot: a single node transmit 
¤ Collided slot: two or more nodes transmit 

¨  BRA works recursively, driven by feedback 
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Divided batch in “m” subgroups 

Initial batch 
(expected size mn) 

Subgroup 1 Subgroup 2 Subgroup m 

(expected size g=mn/m optimal) 
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Slot1: collided 

Initial batch: {1,2,3,4,5} 
L= {1,2} R= {3,4,5} 
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Slot2: collided 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 
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Slot3: collided 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 
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Slot4: successful 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 
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Slot5: successful 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 
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Slot6: idle 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 
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Slot7: collided 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 

RL= {} RR= {3,4,5} 
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Slot8: idle 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 

RL= {} RR= {3,4,5} 
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Slot9: collided 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 

RL= {} RR= {3,4,5} 

RRL= {3} RRR= {4,5} 
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Slot10: successful 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 

RL= {} RR= {3,4,5} 

RRL= {3} RRR= {4,5} 

3 is resolved 
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Slot11: collided 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 

RL= {} RR= {3,4,5} 

RRL= {3} RRR= {4,5} 

RRRL= {4} RRRR= {5} 

3 is resolved 
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Slot12: successful 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 

RL= {} RR= {3,4,5} 

RRL= {3} RRR= {4,5} 

RRRL= {4} RRRR= {5} 

3 is resolved 

4 is resolved 
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Slot13: successful 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 

RL= {} RR= {3,4,5} 

RRL= {3} RRR= {4,5} 

RRRL= {4} RRRR= {5} 

3 is resolved 

4 is resolved 5 is resolved 
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Modified Binary Tree 

¨  Avoid predictable collision 
¤ A “collidedàidle” sequence is always followed by a 

collided slot! 

collided 

idle collided 
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Modified Binary Tree 

¨  Solution: virtualize predictable collisions 

¨  Any time a collided slot is followed by an idle slot, 
do not activate the right subset, but rather, split it in 
two subsets as if a collision had occurred (but without 
wasting a slot) 

29 



Slot7: collided 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 

RL= {} RR= {3,4,5} 
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Slot8: idle à split immediately!!! 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 

RL= {} RR= {3,4,5} 

RRL= {3} RRR= {4,5} 
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Slot9: successful 

Initial batch: {1,2,3,4,5} 
L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 

RL= {} RR= {3,4,5} 

RRL= {3} RRR= {4,5} 

3 is resolved 
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Clipping mechanism 

¨  Valid for batches with Poisson distributed size 
¨  When a collided slot is followed by another collided 

slot, the right branches of the tree can be clipped 
¤ The second collision “erase” the prior information on the 

cardinality of the nodes in the right subsets 
¤  It is more convenient to return these nodes to the 

original set and divide again in optimal subsets 
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Rationale 

¨  Let X be the size of the activated interval  
¤ X is a Poisson rv with parameter m 

¨  Imagine to split BEFORE observing the outcome 
¤ L and R are independent Poisson rvs with parameters mp 

and m(1-p) 

¨  Now, you observe a collisionà X>1 à R is not Poisson! 
Pr[R=k | L+R >1] 

¨  If another collision à L>1 à R is again Poisson! 
Pr[R=k | L+R >1, L>1] = Pr[R=k | L>1] = Pr[R=k] 
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Slot1: collided 

subgroup: {1,2,3,4,5} 
L= {1,2} R= {3,4,5} 

Residual batch 
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Slot2: collided 

L= {1,2} 

LL= {1,2} LR= { } 

R= {3,4,5} 

Residual batch 
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Slot3: collided 

L= {1,2} 

LL= {1,2} 
LR= { } 

LLL= {1} LLR= {2} 

Residual batch 
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Slot4: successful 

L= {1,2} 

LL= {1,2} 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 

Residual batch 
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Slot5: successful 

L= {1,2} 

LL= {1,2} 

R= {3,4,5} 

LLL= {1} LLR= {2} 

1 is resolved 2 is resolved 

Residual batch 
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Interval Estimate Collision Resolution 
algorithm (IECR) 

¨  CMBT is optimal if mean batch size mn is known 
¨  If the batch size is unknown, it must be estimated 

before applying CMBT 
¨  IECR couple CMBT with a batch size estimate 

phase 
¤ Apply CMBT to whole batch until the first successful 

transmission 
¤ Estimate the residual batch size n on the basis of the 

number of consecutive collisions undergone so far  
¤ Repeat by assuming n as estimated above 
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Timing 

activated 
backlogged 

resolved 

I/S/C 

Idle slot 

Feedback packet 

Collided slot Successful slot 

C I C S S S 

τc βp τi τs 

Event Slot 
duration   

Feedback duration 

Classical  Practical (CSMA) 

Successful Tdata=1 φs negligible significant 

Idle βi<<1 φi negligible negligible 

Collision βc~1 φc negligible small 
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The cost of neglecting feedback cost… 

The larger the ACK tx time (φs) 
the lower the asymptotic throughput 

of immediate-feedback BRAs 
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A different approach: deferred feedback 
strategies 
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Classical Dynamic Framed Slotted Aloha 

¨  Framed Slotted ALOHA (FSA) 
¤  Slots are organized in frames of W slots 
¤  In each frame, nodes transmit in random slots 
¤  Feedback is returned only at the end of the frame by using 

a probe packet 

¨  Dynamic FSA 
¤  Frame size is adjusted dynamically to maximize the 

expected per-frame throughput 

¨  Drawback: probing cost is neglected! 
¤  Maximizing per-frame throughput does not necessarily minimize the 

overall batch resolution interval 
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Our proposal 

¨  ABRADE: Adaptive Batch Resolution Algorithm with 
Deferred Feedback 
¤ Basically a dynamic framed slotted ALOHA with a novel 

frame-adaptation strategy that keeps into account all 
costs! 

¤ Batch size n is assumed to be known beforehand! 

¨  ABRADE+: couple ABRADE with a batch size 
estimate algorithm 
¤ No prior knowledge about the batch size 
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ABRADE in a nutshell 

¨  Assumption: the (residual) batch size “n” is known 
¨  The frame size wn of the next round is selected in order to 

minimize the overall Batch Resolution Interval (BRI) for that 
batch 

Frame 
duration 

Residual batch 
resolution interval 

w*n: optimal frame length for a batch of size n 
pw,n(s) = Pr[s|w,n] 

Dynamic 
programming 
optimization 

BRI for batch  
of size n 

€ 

T n( ) = E s+ c + iτ + bp +T n − s( )w,n[ ]
number of successful collided  idle slots in the frame 

Frame 
Size 

Batch 
Size 

€ 

wn
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w

βp + wβc + n 1− βc( ) 1− 1w
$ 

% 
& 
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& 
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Optimal frame length 

--- βp=2 
___ βp=1  
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λ(n) 

€ 

Λ = limn→∞ λ n( ) = exp −µ∞( )

ABRADE’s throughput 

Optimal number of 
transmissions per slot 
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ABRADE+: batch size estimate 

¨  ABRADE needs prior knowledge of the batch size n 
¨  In most cases, n is unknown and needs to be 

estimated 
¨  Estimate can be refined as the batch resolution 

proceeds 
¨  ABRADE+ is as ABRADE with two add-ons 

1.  Batch Size Estimate Function (BSEF) 
2.  Start up phase 
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Quick survey of most-known BSEFs 

¨  V=<s,c,i> à      estimate of n 

¤  [Schoute83]: 

¤  [Cha&Kim05]:  

¤  [Vogt02]: 

¤  [Khandelwat06]:  

¤  [Kodialam06]: 

  

¤  [Zanella12]:  

€ 

ˆ n = s +2c

€ 

ˆ n = s +2.39c€ 

ˆ n 

€ 

ˆ n = arg min
n
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Start up phase 

¨  What frame size w0 shall be used at the very fist 
cycle? 
¤ w0 shall be small, to have a first estimate of n as soon 

as possible 
¤ w0 shall be large to avoid many collisions 

¨  Solution: Probabilistic Framed Slotted Aloha 
¤ Nodes transmit with probability p 

¨  Issue: p, w0 shall be set to strike a balance between 
estimate accuracy & performance loss 
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Setting p and w0 

¨  Let mn be the mean batch size n 
¤  if unknown, arbitrarily assumed equal to Nmax/2 

¨  Set p such that w0 is optimal for a batch size equal 
to pmn: 

¨  Set w0 such that the mean square estimate error, 
MSE(p) is lower than Δmn, where Δ is a design 
parameter 

€ 

pmn

w0

= µ∞ → p =
w0

mn

µ∞

€ 

w0 = min w : E n −
ˆ n 
p

# 

$ 
% 
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2

w
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+ 
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. 
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Initial frame size vs Δ	


White marker: β=0.0654 
Black marker: β=0.0225 

shorter frame sizes 
yield much worse MSE 

lower MSE requires  
much larger frame sizes 
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Case study 

¨  Parameters set according to WiFi (WF) & ZigBee (ZB) 
specifications 

1.  Batch size n with Poisson distribution of known mean N 

2.  Batch size totally unknown to the algorithm 
¤  mn arbitrarily set to 100 
¤  Δ=0.6 

Tdata [ms] b	
 bs bc bp=w/Lmax 

0.399 0.0225 0.1319 0.1319 w/18496 

4.896 0.0654 0.1111 0.0458 w/944 
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ABRADE+
FCFS

1. Poisson: Throughput 

¨  Asymptotic throughput gain 
of ~9% for WF and ~6% 
for ZB  

¨  Performance crossing for 
batches of small size 

¨  Slightly worse for extremly 
small batches 
¤  Pay the cost of long probe 

message 

ABRADE+ 

ABRADE+ 

FCFS 

FCFS 
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ABRADE+
SiftIECR
IECR
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2. Unknown: Throughput 

¨  Throughput gain is maintained also in 
the case of unknown batch size, as 
long as the batch is larger than few 
units 

¨  Gain is more evident for WF than ZB 

ABRADE 

ABRADE 

Perfomance contraction due to initial 
parameter setting (mn=50) 

57 



Summarizing 

¨  The batch resolution problem is still challenging 
¤ Count and identify RFtags 
¤ Bunch of sensors replying to probes 

¨  Analysis shall carefully consider all protocol layer 
aspects 
¤  Initialization & feedback may have dramatic impact 

¨  Large literature, but still much to be done! 
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Exploiting multipacket reception capabilities and 
SIC 

Improving M2M cell capacity 
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The problem 

¨  Reference scenario:  
¤ one base station, 

multiple transmitters, 
uplink channel 

¨  The problem: 
¤ How many transmitters 

can be served? 
¤ What’s the maximum 

cell capacity? 
¤ How can we get it?  
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The literature 

¨  Classic Aloha model [Kleinrock75]:  
¤ Destructive interference: one single transmission at a 

time 
¤ Max throughput: S = 1/(2e) 
¤ Slotted version: S = 1/e 
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Capture 

¨  Capture phenomenon [LauLeung, TCOM92] 
¤ When the various signals are received with 

significantly different powers à capture effect may 
take place 

¤  the strongest signals may survive the collision and be 
correctly decoded  

¨  Generalization: “Capture” occurs when one or more 
of the overlapping signals are successfully decoded 
by the receiver despite the interference 
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Capture models  

¨  Statistical geometry model [Roberts, ComRev75] 
¤  Intended signal is captured when the strongest interferer is 

sufficiently far apart from the receiver 
¤ Doesn’t account for actual signal propagation phenomena 

nor does it consider cumulative effect of multiple “weak” 
interferers 

¨  Arrival Time model [Davis&Gronemeyer, TCOM80] 
¤  Intended signal is captured when arrival instants of the first 

and second signals are sufficiently apart 
¤ Doesn’t account for signal strengths, nor for simultaneous 

transmissions 
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Other capture models 

¨  Counting model  [Wieselthier et al, TCOM89] 
¤ Capture occurs with probability that depends on the 

number of overlapping signals 
¤ Doesn’t account for actual signal powers 
¤ At most one capture per transmission attempt 

¨  Power model [Ephremides&Luo, TIT02] 
¤ Capture if no other signal with higher power overlaps 

in time 
¤ Doesn’t account for cumulative effect of multiple “weak” 

interferers 
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MPR and Stability 

¨  MPR & Stability [Ghez, Verdu, Schwartz, ITAC88] 
¤ They assume a given pmd for the number r of captured 

signals out of a collision of n overlapping signals 
¤ Show that MPR can stabilize ALOHA and that max 

throughput is Smax = E[r] 
¤ Don’t give an expression for the pmd of r given n 
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Physical capture model  

•  Use of strong coding to achieve 
Shannon capacity 

•  Pj : power of the j-th signal at the 
receiver 

•  N0: noise power (neglected)  

•  γj   : SINR of the j-th signal 

•  b   : capture threshold 

TX1 

TX2 

TX3 

TXj 

TXn 

Pj 

Pn P1 P2 

P3 

RX 

€ 

γ j =
Pj

I + N0

γj   > b èj-th signal is correctly decoded (capture)	


γj   < b è j-th signal is collided (missed) 

Aggregate  
interference 



Multi Packet Reception 

¨  MPR can be enabled by means of 
¤ Signal spreading (DSSS) 

n b<1è multiple signals (up to 1/b) can be captured at a time 

¤ Successive interference cancellation (SIC) 
1.  Capture signal j with SINR γj>b 

2.  Reconstruct and cancel signal j from the overall received 
signal 
n  Cancellation leaves a fraction z of residual interference power  

3.  Repeat iteratively 
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Open questions 

¨  Number of simultaneous 
transmissions (n) 

¨  Statistical distribution of 
the receiver signal 
powers (Pi) 

¨  Capture threshold (b) 
¨  Max number of SIC 

iterations (K) 
¨  Interference cancellation 

ratio (z) 

System parameters 
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The answer 

¨  Capture probability  

¤ Cn(r;K)=Pr[r signals out of n are captured within at most K SIC 
cycles] 

¨  Computing Cn(r;K) is difficult because the SINRs are all coupled!!! 

¤  E.g. 

¤ Computation of Cn(r;k) becomes more and more complex as the 
number n of signals increases 

¨  SIC makes things even worse € 

γ1 =
P1
P2

> b⇒ γ 2 =
P2
P1

<
1
b
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State of the art 

¨  Narrowband (b>1), No SIC (K=0) 
¤  [Zorzi&Rao,JSAC1994,TVT1997] derive the probability Cn(1;0) that one signal is 

captured 
n  MPR and SIC are not considered 

¨  Wideband (b<1), No SIC (K=0) 
¤  Can capture multiple signals in one reception cycle 
¤  [Nguyen&Ephremides&Wieselthier,ISIT06, ISIT07] derive the probability 1-Cn(0;0) that 

at least one signal is captured 
n  Expression involves n folded integrals, does not scale with n 

¨  Wideband (b<1)+SIC (K>0) 
¤  [ViterbiJSAC90] shows that SIC can achieve Shannon capacity in AWGN channels 

n  Requires suitable received signals power allocation   
¤  [Narasimhan, ISIT07] studies outage rate regions in presence of Rayleigh fading 

n  Eqs can be computed only for few users 
¤  [Weber et al, TIT07] study SIC in ad hoc wireless networks  

n  Derive bounds on the transmission capacity based on stochastic geometry arguments 
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State of the art 

¨  Wideband (b<1) + SIC (K>0) (cont) 
¤  [ZanellaZorzi, TCOM2012] provide a scalable method 

for the numerical evaluation of the capture probability 
distribution Cn(r;K) 
n  Investigate capture distribution & system throughput when 

varying system parameters {n,b,K,z} 

¤ Provide approximate expressions for the capture 
probability and the MPR throughput 
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CAPTURE PROBABILITY FOR 
PURE MPR CASE 

No SIC (K=0) 
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Problem statement 

¨  The capture condition can be expressed as 

¤ b’ is termed modified capture threshold 
¤ b’Λ is named absolute capture threshold 

¨  We aim at determining the expression of   

       Cn(r)=Pr[r signals out of n are captured] 

γ j =
Pj

Λ−Pj
> b⇒ Pj > b(Λ−Pj )⇒ Pj > Λ

b
b+1

= Λb '
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¨  Because of the problem symmetry we have 

 

€ 

Cn r( ) =
n
r
" 

# 
$ 
% 

& 
' Pr P1:r > Λb',Pr+1:n ≤ Λb'( )

Capture distribution 

r captured signals n-r missed signals 

and applying  Bayes’ rule: P[A|B]P[B] = P[B|A]P[A] 

Conditioning on Λ=x we get… 

cn r( ) = f Λ = x P1:r > xb ',Pr+1:n ≤ xb '( )Pr P1:r > xb ',Pr+1:n ≤ xb '( )
0

∞

∫ dx
€ 

cn r( ) = Pr P1:r > xb',Pr+1:n ≤ xb' Λ = x( ) fΛ x( )
0

∞

∫ dx
€ 

cn r( )

€ 

1− FP xb'( )( )r FP xb'( )n−r
iid 
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Conditioned aggregate received 
power Λr  

¨  The issue is now to compute the PDF 

¨  We introduce the auxiliary r.v. 

¨              gives the aggregate power given that r signals are above u, and n−r are 
below u! setting u=xb’ we get 

 

 

€ 

fΛ r
x( ) = Pr Λ ≅ x P1:r > xb',Pr+1:n ≤ xb'( )

€ 

˜ Λ r u( ) = αh u( )
h=1

r

∑ + βk u( )
k=1

n−r

∑
iid rvs with PDF  
fα(u)(x)=fP(x|P>u) 
 

iid rvs with PDF  
fβ(u)(x)=fP(x|P≤u) 
 Λr u( )
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¨  Since αh(u) and βh(u) are independent, we get 

¨  Putting all the pieces together we get the final expression 

Auxiliary random variable 

Inverse Fourier Transform 

  

€ 

f ˜ Λ r u( ) x( ) = fα u( ) ⊗ fα u( ) ⊗⊗ fα u( ) ⊗ fβ u( ) ⊗ fβ u( ) ⊗⊗ fβ u( )( ) x( )
Fourier Transform 

€ 

f ˜ Λ r u( ) x( ) = Ψa u( ) ξ( )[ ]
r

−∞

+∞

∫ Ψβ u( ) ξ( )[ ]
n−r
e j2πxξ dξ

€ 

Cn r( ) =
n
r
" 

# 
$ 
% 

& 
' 1− FP xb'( )( )r FP xb'( )n−r ×

0

∞

∫

Ψa xb '( ) ξ( )[ ]
r

−∞

+∞

∫ Ψβ xb '( ) ξ( )[ ]
n−r
e j2πxξ dξ" 

# 
$ % 

& 
' dx
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Capture distribution: 
approximate expression 

¨  If n›› & r=0 or r=n or r≈n/2 the central limit theorem applies 

¨  from which we get the following approximate expression of Cn(r): 
€ 

˜ Λ r u( ) = αh u( )
h=1

r

∑ + βk u( )
k=1

n−r

∑

€ 

N rmα u( ),rσα u( )
2( )

€ 

N n − r( )mβ u( ), n − r( )σβ u( )
2( )
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Throughput 

¨  k: reception capability 
¤ max number of signals that can be simultaneously decoded 

¨  Sn(k): average number of signals captured by a system with 
reception capacity k and a collision size n 

¨  Note: previous literature focused on Sn(1)=1-Cn(0) only! 
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ANALYSIS OF THE SIC CASE 
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Notation: reception set and 
vector 

¨  n : number of overlapping signals 

¨  r : overall number of decoded signals 

¨  h ={0,1,…,K}: SIC iteration  

¨  Uh: set of signals decoded at the h-th SIC iteration 
¤  Uk+1: set of missed signals at the end of the reception process 

¨  r=[r0,r1,…,rk,rk+1]: reception vector 
¤  rh=|Uh|, rk+1=|Uk+1|= n-r 

r ={        r0,                      …, rh , ….                       rk,                  rk+1  } 

TX1 TX2 TXj TXr TXr+1 TXn 

U={       U0,                     …, Uh, ….                     Uk,                 Uk+1  } 

decoded missed 
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Notation: aggregate power 

¨  Set of signal powers for users in Uh 

¨  Aggregate power of users in Uh 

¨  Overall sign. power at the h-th decoding cycle 

  

€ 

Ph = Pr0 +r1 +…+rh−1 +1,…,Pr0 +r1 +…+rh{ }

€ 

Γh = Pj
j∈Uh

∑

€ 

Λh = z Γ j
j= 0

h−1

∑ + Γi
i= h

k+1

∑
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Visually 

TX1 TX2 TXj TXr TXr+1 TXn 

P={       P0,                      …, Ph , ….                    Pk,                 Pk+1  } 

  

€ 

P1,…,Pr0 ,   

€ 

Pr0 +r1 +…+rh−1 +1,…,Pr0 +r1 +…+rh   

€ 

Pr0 +r1 +…+rk−1 +1,…Pr0 +r1 +…+rk

Γ={          Γ0,              …,                     , ….                 Γκ,                    Γκ+1  }	


€ 

Γh = Pj
j∈Uh

∑

Λ={          Λ0,        …,                                 , ….         Λκ,                 Λκ+1  }	


€ 

Λh = z Γ j
j= 0

h−1

∑ + Γi
i= h

k+1

∑

  

€ 

Pr0 +r1 +…+rk +1,…,Pn

z 
z 

z 
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Step 1: a bit of combinatorial 
analysis 

€ 

Cn r;K( ) = A r( )c r( )
r
∑

k= 0

K

∑

  

€ 

Pr

first r0 signals are decoded at iteration 0
successive r1 signals are decoded at iteration 1


successive rh  signals are decoded at iteration h


last rk+1 signals are undecoded after k iterations

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 

€ 

Pr r signals are decoded in at most K iterations[ ]

Ordered  
probability distribution 

Combinatorial coefficient 

84 



Step 2: express decoding 
probability in terms of Pj 

¨  Signals in Uh are decoded at the h-th SIC iteration if 
1.  were not decoded at previous iterations 
2.  verify capture condition after h SIC iterations 

¨  Mathematically 

¨  Considering all k SIC iterations… 

€ 

1. γ j =
Pj

Λh−1 − Pj

≤ b⇒ Pj ≤ ' b Λh−1

2. γ j =
Pj

Λh − Pj

> b⇒ Pj > ' b Λh€ 

∀j ∈Uh,

€ 

" b =
b

b +1where 

  

€ 

c r( ) = Pr P0 > " b Λ0 ≥ P1 > " b Λ1,, " b Λk−1 ≥ Pk > " b Λk,Pk +1 ≤ " b Λk +1[ ]
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Step 3: let’s start conditioning 
¨  The capture threshold at each SIC iteration are 

¨  Conditioning on {Γh=gh} the capture thresholds becomes deterministic 

¨  Then, we can write (we omit g in the  argument of λh) 
€ 

" b Λh = " b z Γ j
j= 0

h−1

∑ + Γi
i= h

k +1

∑
' 

( 
) ) 

* 

+ 
, , 

Aggregate power of 
signals in Ui 

€ 

λh g( ) = # b z g j
j= 0

h−1

∑ + gi
i= h

k +1

∑
& 

' 
( ( 

) 

* 
+ + 

  

€ 

c r( ) = Pr P0 > λ0 ≥ P1 > λ1,,λk−1 ≥ Pk > λk,Pk+1 ≤ λk+1Γ = g[ ]Pr Γ ≅ g[ ]dg∫∫∫
PDF of the random vector Γ  
evaluated in g=[g0,...,gk+1] 

k+2 nested integrals 
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Step 4: swap terms 

¨  Applying Bayes rule we get 

¨  The issue now is to compute this conditional probability 

  

€ 

c r( ) = Pr Γ ≅ gP0 > λ0 ≥ P1 > λ1,,λk−1 ≥ Pk > λk,Pk+1 ≤ λk+1[ ]∫∫∫
Pr P0 > λ0 ≥ P1 > λ1,,λk−1 ≥ Pk > λk,Pk+1 ≤ λk+1[ ]dg

€ 

FP λh( ) − FP λh−1( )[ ]rh
h= 0

k

∏
iid 

€ 

Pr Γ ≅ gPh ∈ λh ,λh−1( ]h= 0
k ,Pk+1 ≤ λk+1[ ] =

Pr Γk+1 ≅ gk+1Pk+1 ∈ 0,λk+1( ][ ] Pr Γh ≅ gh Ph ∈ λh,λh−1( ][ ]
h= 0

k

∏λ-1=-∞	


iid 
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Step 5: aux variables help 
decoupling terms 

¨  Each Γh is the aggregate power of the signals in Uh given that 
they are in the interval (λh-1,λh]   

¨  We then define 

¨  where αh,i(u,v) are iid with PDF 
¨  Hence, for any given g, we have 

€ 

fα u,v( ) x( ) = fP x P ∈ (u,v]( )

€ 

˜ Γ h u,v( ) = αh,i u,v( )
i=1

rh

∑

€ 

Pr Γh ≅ gh Ph ∈ λh ,λh−1( ][ ] =

Pr ˜ Γ h λh,λh−1( ) ≅ gh[ ] =
i=1

rh

⊗ fα λh ,λh−1( )

) 

* 
+ 

, 

- 
. gh( ) = Ψα λh ,λh−1( ) ξ( )[ ]

rh ei2πξgh dξ
−∞

+∞

∫
Fourier Transform 
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Step 6: put all pieces together 

¨  Number of nested integrals grows linearly with number K of 
SIC iterations, not with n 
¤  Equation can be computed for large values of n, provided that the 

number of SIC iterations remains reasonable (5÷6) 

¨  Central limit theorem can be invoked for sufficiently large rh 

€ 

c r( ) = FP λk+1( )rk+1∫∫∫ FP λh( ) − FP λh−1( )[ ]rh
h= 0

k

∏
& 

' 
( 

) 

* 
+ 

Ψα λh ,λh−1( ) ξ( )[ ]
rh ei2πξgh dξ

h= 0

k

∏
−∞

+∞

∫
& 

' 
( 

) 

* 
+ Ψα 0,λk+1( ) ξ( )ei2πξgk+1dξ
−∞

+∞

∫ dg

€ 

Ψα u,v( ) ξ( )r ei2πξgdξ
−∞

+∞

∫ ≈ exp
g − rmα u,v( )( )

2

2rσα u,v( )
2

+ 

, 

- 
- 

. 

/ 

0 
0 

2πrσα u,v( )
2
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Throughput 

¨  Sn(k): average number of signals captured by a system wit 
collision size n and at most K SIC iterations 

¨  Exact expression: 

¨  Approximate (iterative) expression 

¨  Where       is the approximate mean number of signals 
decoded at the h-th SIC iteration  

€ 

Sn K( ) = rCn r;K( )
r=1

K

∑

€ 

˜ S n K( ) = ˜ r h
h= 0

K

∑

€ 

˜ r h
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Approximate mean number of 
captures: first reception 

¨  Iteration h=0: number of undecoded signals n0=n 

¤ Compute capture threshold 

¤ Approximate capture condition 

¤ Mean number of decoded signals 

¤  Residual interference power € 

Pr P > I0[ ] =1− FP I0( )
€ 

I0 = b n −1( )E P[ ] = b n −1( )mα 0,∞( )

€ 

˜ r 0 = n 1− FP I0( )( )

€ 

R0 = z˜ r 0E P P > I0[ ] = z˜ r 0mα I 0 ,∞( )
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Approximate mean number of 
captures: first reception 

¨  Iteration h>0: number of undecoded signals: 

¤ Compute capture threshold 

¤ Approximate capture condition 

¤ Mean number of decoded signals 

¤  Residual interference power 

€ 

nh = n − ˜ r i
i= 0

h−1

∑

€ 

Pr P > Ih P ≤ Ih−1[ ] =1− Fα 0,I h−1( ) Ih( )
€ 

Ih = b Ri
i= 0

h−1

∑ + nh −1( )E P P ≤ Ih−1[ ]
% 

& 
' 

( 

) 
* 

€ 

˜ r h = nh 1− Fα 0,I h−1( ) Ih( )( )

€ 

Rh = z˜ r h E P Ih−1 ≥ P > Ih[ ] = z˜ r hmα I h ,I h−1( )

Residual interf. Interf. from undecoded  signals 
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CASE STUDY 
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Case study 

•  TXs uniformly distributed within a circle of radius R centered at RX  Pure Path Loss (PL) 

•  TXs at equal distance from RX (or long-term power control) but 
signals affected by multi-path fading  Rayleigh Fading (RF) 

•  TXs uniformly scattered around RX, within a disk of radius  R with 
signals affected by independent Rayleigh fading 

PathLoss & Rayleigh 
fading (PLRF) 

•  TXs at equal distance from RX (or short-term power control) but 
nominal signals power affected by small Gaussian noise [dBm]  LogNormal (LN)  
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Cn(r) in PL scenario 
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Path Loss

 

 
n=  15

n=  30

n= 100

n= 500

n=1000

b = 0.02, � = 2, R = 10
When n << 1/b’, all signals 

are captured with high 
probability 

When n > 1/b’, the distribution of 
the number of signals captured is 

bell-shaped 

When n >> 1/b’, fewer and 
fewer signals are captured 

r ≤ 1/b’=51 

95 



10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of overlapping signals (n)

T
h

ro
u

g
h

p
u

t 
S

n
(k

)

PL & PLRF (b=0.1 !=2)

 

 
k=1

k=2

k=3
k=4

k=5

k=6

Throughput in PL & PLRF 
r ≤ 1/b’=11 

S(6)≅S(11)  
ê 

Max performance are closely 
approached even with partial 

reception capability. 

Rayleigh fading augments diversity 
of received signal strength & 

increases capture probabilities for 
large values of n 
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Approximate vs exact expressions 
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Exact 

Approximate 

¨  Sn(1)=1-Cn(0)=Pr[capturing at 
least one signal]  
¤  metric considered in most of the 

previous literature 

¨  The accuracy of the approx. of 
Cn(0) is very good in all the 
considered cases 

¨  The approximation of Cn(r) is not 
very good when either r or n-r are 
positive but small (not shown here) 



PERFORMANCE WITH SIC 
Rayleigh channel only 
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Capture probability distribution 

Multiple SIC (K>1): 
capture probability 
keeps improving, but 
gain reduces 

One SIC (K=1): likely 
to decode 4÷10 
signals, double capture 
capabilities!!! 

No SIC (K=0): likely to 
decode 2÷5 signals n=20, b=0.1, z=0.1 
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Throughput vs n 
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Max SIC gain analysis 

¨  SIC is more effective 
with small b 

¨  The less residual 
interference, the larger 
the SIC gain 

¨  For K>1/z, SIC gain is 
negligible   
¤  Empirical conjecture 
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An example of application to 
network planning 

¨  Goal: dimensioning an MPR access point 
¨  Given parameters: 

¤  Users’ spatial distribution: Poisson process with density δ 	

¨  Performance metric: average throughput SD(K)=E[Sn(K)] 
¨  Knobs 

¤  Cell radius: D 
¤  Capture threshold: b 
¤  MPR capability: R 
¤  SIC capability: K 
¤  Power control capabilities 

n  NoPC: No power control  à Path Loss propagation model (PL) 
n  SPC: Slow power control  à Rayleigh Fading (RF) 
n  FPC: Fast power control  à LogNormal (shadowing) fading (LN) 
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1st step: determine throughput when varying cell 
radius with infinite MPR and no SIC 

Optimal cell radius depends on  
the power control capabilities 

No Power Ctrl 
Slow Power Ctrl 
Fast Power Ctrl 

The better the Power Ctrl  
the higher the peak rate but 
the less robust to variations 
in population size 

No power control yields 
lower but more stable throughput 
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2nd step: determine the number 
of MPR cycles 

¨  Focusing on the No Power Control case we set the 
cell radius to D=50m 

¨  Using our equations we find the minimum MPR 
capability Rm of the receiver beyond which the 
performance gain becomes negligible 
¤ we can set Rm = arg minR{Sn(R)/Sn(∞) ≥ 1 − ρ} where 
ρ is the maximum acceptable performance loss 

¤  In our example, Rm=15 yields less than 10% of 
throughput loss 
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3rd step: introduce SIC 
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No Power Ctrl 
Slow Power Ctrl 
Fast Power Ctrl 
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Asymptotic performance 
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Spare slides 
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Break!!!! We all need it! 
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BFFT

Bluestein FFT algorithm 

¨  FFT samples are equally spaced over the entire signal bandwidth 

¨  When raising the FTs to a power >1 most of such samples reduce to zero! 

¨  Bluestein's FFT algorithm (BFFT) ``squeezes’’ the samples into a fraction of the original 
bandwidth, so that samples are still significant after power raising 
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Rayleigh fading 

¨  Exponential distribution of the received power Pj 

¨  Fourier Transform of the auxiliary rv α(u,v) 

¨  Mean value of α(u,v) 

€ 

fP x( ) = exp −x( )1 x( ); FP x( ) = 1− exp −x( )[ ]1 x( );

€ 

Ψα u,v( ) ξ( ) =
e−u i2πξ +1( ) − e−v i2πξ +1( )

1+ i2πξ( ) e−u − e−v( )

€ 

mα u,v( ) =
u +1( )e−u − v +1( )e−v

e−u − e−v
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Appendix: asymptotic throughput 
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Appendix: asymptotic throughput 

Taking the derivative wrt mu_infty 
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1. Poisson: Energy efficiency 

¨  Mean number of tx per slot 
(proportional to energy 
consumption) comparable to the 
best performing algorithms  

ABRADE 

ABRADE 
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massive asynchronous access 

¨  approach 
¤  move complexity to BS 

¤  use advanced MAC/PHY 
n  MPR: multi packet reception 
n  SIC: successive interference  
cancellation 

TX1 

TX2 

TX3 

TXj 

TXn 

Pj 

Pn P1 P2 

P3 

RX 
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SIC+MPR throughput 
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A. Zanella, and M. 
Zorzi, "Theoretical 
Analysis of the 
Capture 
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What is RFID 
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What is RFID 

¨  RFID = Radio Frequency Identification 

 
 
 
 
¨  An RFID tag is an object that can be applied to or 

incorporated into a product, animal, or person for the 
purpose of identification using radiowaves 

¨  Some tags can be read from several meters away and 
beyond the line of sight of the reader 

Wikipedia 
definition of RFID 
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Components and types of RFID tag 

¨  Antenna: for receiving and transmitting the signal 
¨  Integrated Chip 
¨  Plastic Inlay 

 
¨  Maybe sensor, battery, external memory… 
 
TYPES 
¨  Passive: no battery, the electrical current induced in the 

antenna by the incoming radio frequency signal provides just 
enough power in the tag to power up and transmit a 
response 

¨  Active: internal power source, which is used to power the 
integrated circuits and broadcast the signal to the reader 

¨  Semipassive: similar to active tags in that they have their 
own power source, but the battery only powers the microchip 
and does not broadcast a signal. 

125/134 kHz 
13,56 MHz 

868/915 MHz 
>2,4 GHz 

 

international standard for 
RFID:  Epc Gen2 Electronic 
Product Code Generation 2: 

 
 

From Wikipedia 
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Communication in passive tags 

Reader transmits 
a wave signal 

The tag’s 
antenna gets the 

power 

This power is 
sufficient to read 
the data saved 

in the chip 

And transmit the 
answer to the 

reader 

Image from Alien 
Guide 

Image from Alien 
Guide 
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RFID vs BAR CODE 

¨  Is possible to attach a tag on many 
surfaces 

¨  No line-of-sight 
¨  Many informations and/or 

applications 
¨  Can be reprogrammed in the field to 

reflect current information 
¨  Cheap: 0,20 $ 

¨  Now everything has a bar code 

¨  Requires line-of-sight 

¨  Only ID information 

¨  Data is fixed at the moment the 
label is printed 

¨  Cost free 

RFID BAR CODE 

..but RFID are not only for identification scope.. 
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