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Outline 

¨  Part 3: QoE-oriented networking 
¤ Mixing up PHY and application-layer signals  

n  smart environments 

¤ Context awareness from signal processing 
n SSIM characterization of video content 
n Handover optimization 

¤ Bye bye! 

http://www.keepcalm-o-matic.co.uk/p/keep-calm-it-s-lunch-time/ 
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Exploiting complementarities  

¨  Pros 
¤  Low cost  

n  Large networks with many devices 
¤  Low energy consumption 

n  Possibility to power with small 
batteries or energy-scavenging  

¨  Cons 
¤  Limited computing capabilities 
¤  Limited memory 
¤  Limited transmission range/speed 

¨  Cons 
¤  High cost  

n  Single or few units 
¤  High energy consumption 

n  Need for large batteries and/or 
recharging stations 

¨  Pros 
¤  High computational capabilities 
¤  Large memory 
¤  Large energy capacity 
¤  Large transmission range/speed 
¤  Advanced mobility 

Wireless Sensor Nodes (WSN) Autonomous Mobile Robots (AMR) 
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Application scenarios 

¨  Smart Environments 
¤  AMRs may catalog, localize and 

retrieve objects upon request 
¤  Libraries: AMRs may put back books on 

the shelves after closure 
¨  Assisted Living  

¤  A portable device may drive a visual-
impaired person through a partially 
unknown environment by vocally 
describing the smart objects that 
recognizes along the way 

¤  A personal robot may display to a 
motion-impaired user the list of smart 
objects that it discovers  
n  remote controls, mobile phones, books, … 

¨  Dataset of object-models stored 
on the robot 
¤  Low flexibility: new objects shall 

be included in the directory to be 
recognized 

¤  Similar objects are 
indistinguishable 

¨  RFID-based communication 
¤  Cheaper, but requires physical 

proximity and does not support 
sophisticated algorithms nor 
multi-hop communication 

Application Scenarios Limit of existing solutions 
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Target application: autonomous exploration of 
unknown “smart” environments 

¨  AMR equipped with 
¤  odometers for self-localization  

¤  on-board camera 

¤  RF transceiver 

¨  Smart Objects (SOs), i.e., common objects 
tagged with WSNs that provide  
¤  Computational/communication capabilities 

¤  data storage 

¤  self-management features 

¨  Autonomous exploration of unknown 
environments and interaction with SOs 
¤  No prior info about the number or kind of SOs  

Vision Goal 
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Experimental Set up 

¨  250 kbps @ 2.4 GHz 
¨  Ultra low current consumption 

¨  Light, temperature, RSSI 
sensors 

¨  TinyOS  

¨  Home-made, based on Pioneer 
2 ActivMedia platform 

¨  Linux OS with Miro middleware 
¨  ATX motherboard  

¤  1,6 GHz Intel Pentium 4, 256 
MB RAM, 160 GB HD 

¨  On-board camera 
¨  Odometers 

TmoteSky sensor nodes AMR Bender 

TmoteSky connected to ATX 
via USB + MoteService class 

added to Miro 

6 



System’s building blocks  

1.  Smart Object Identification 
¤  The AMR gets a list of close by SOs, but does not 

know their location 
2.  Smart Object Mapping 
¤  The AMR builds a map of the area estimating SOs’ 

location 
3.  Smart Object Recognition 
¤  The AMR gets close to a selected object and, then, 

visually recognizes it in the image taken by the on-
board camera  
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Step 1. Smart Objects Identification 
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Identification: centralized approach 

ID=1, Laptop  

ID=2, cellphone 

ID=3, ashtray 

ID=4, keys 

ID=5, Tablet PC 

Who’s out there? 

ID Object type 

3 ashtray 

5 Tablet PC  

4 Keys 

1 Laptop 

2 Cell phone 

Smart Objects Lists 
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Identification: distributed approach 

Hello! I’m ID=1, Laptop 
I know:  

ID=3, ashtray 
ID=5, Tablet PC 

ID=4, Keys  

Hello, I’m ID=2, cellphone 
I know:  

ID=3, ashtray 
ID=5, Tablet PC 

ID=4, Keys  
ID=5, Laptop 

Hello!  
I am: ID=3, ashtray 

I know: nobody 

Hello! I’m ID=4, keys 
I know:  

ID=3, ashtray 
ID=5, Tablet PC 

Hello! 
I’m: ID=5, Tablet PC 
I know: ID=3, ashtray  

Who’s out there? 

ID Object type 

3 ashtray 

5 Tablet PC  

4 Keys 

1 Laptop 

2 Cell phone 

Smart Objects Lists 

Hello, I’m ID=2, cellphone 
I know:  

ID=3, ashtray 
ID=5, Tablet PC 

ID=4, Keys  
ID=5, Laptop 
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Step 2. Smart Objects Mapping 
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Mapping: still a challenge 

¨  GPS works pretty well… outdoor… 
¤ Not that well indoor though! 
¤ Hungry for energy (& money): not suitable for SOs 

¨  Cricket-like systems work fine, but require dedicated hw 
¤  Impact on device size, cost, location, energy efficiency… 

¨  RF-based localization techniques are very attractive…  
¤  if you’re not too picky about performance! 

n  Radio Signal Strength Indication (RSSI) is natively provided by all 
WSN platforms 

n  However, RSSI-based ranging is usually VERY noisy! 
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Mapping: our solution 

¨  Improve RSSI-based 
ranging by using the 
communication 
capabilities of WSNs 
¤ Multi-channel RSSI 

averaging 

¨  Use on-board 
odometers of the AMR 
and its computational 
capabilities to perform 
sophisticated 
localization algorithm 
¤  SLAM: Simultaneous 

Localization (of the AMR) 
And Mapping (of the 
SOs)  

WSN-wise AMR-wise 
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Received 
power 

Transmit power Path loss 
coefficient 

reference 
distance 

environmental 
constant 

transmitter-receiver 
distance 

Deterministic component 

RSSI-based ranging: basics 

¨  Path loss channel model 
¤  received power Pi @ distance di  

Shadowing  

Random term 

Fast Fading 

€ 

ˆ d i =10
PTx +K−Pi [dBm ]

10η = di10
−
ψ i

10η
Ranging error 

Propagation-based ranging 
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RSSI-ranging: an example… 

Random variations due to shadowing 
and fading obscure the log-decreasing 
law for the received power vs distance 

 

Distance [mt] 
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Measured samples 
Deterministic component 
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Mitigating RSSI randomness 

¨  Shadowing term is 
actually due to strong 
and slowly time 
varying multipath 
interference  

¨  A shift in the carrier 
frequency will change 
the way reflected 
copies combine at the 
receiver 
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Multi-channel RSSI: experimental results 

Time Average Frequency average 
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RF-jumping protocol in a nutshell! 

Anybody in CH1? 
(Next CH2) 

I’m in CH1!  
(Next CH2) 

I’m in CH1!  
(Next CH2) 

Everybody’s switching on 
CH2. Let’s follow them!  
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RF-jumping protocol 

¨  Set TX Channel to default RF 
Channel 

¨  FOR NextRFCh=1 TO 16 DO 
¤  Send REQUEST(NextRFCh) 

n  Start REQ_TO 
¤  WHILE NOT(REQ_TO expired) DO 

n  IF (REPLY pkt received)  
n  Store RSSI sample 
n  Restart REQ TimeOut 

¤  ENDWHILE 
¤  Set TX Channel to NextRFCh 

¨  ENDFOR 

¨  Set flag=false 
¨  IF (REQUEST pkt received)  

¤  Get NextRFCh 
¤  Set flag=true 
¤  Set random REP_TO in [0,REQ_TO]  
¤  WHILE NOT(REP_TO expired) DO 

n  IF (REPLY pkt received) & flag THEN Restart 
REP_TO 

¤  ENDWHILE 
¤  Send a REPLY pkt & switch to NextRFCh  

¨  IF (REPLY pkt received) & NOT flag THEN  
¤  Get NextRFCh 
¤  Switch to  NextRFCh 

AMR side SO side 
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Extended Kalman Filter 

Odometry RSSI Measures 
Initialization 

Motes pose and robot position estimation 

 

Localization Algorithm: 

 
 

Standard SLAM 
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Standard SLAM result 

Much better than standard WSN-only localization 
Still large placement errors for WSNs 
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Extended Kalman Filter 

Odometry 

RSSI Measures 

Initialization 
Particle Filter 

Motes pose and robot position estimation 

 

Localization Algorithm: 

 
 

SLAM with particle filter 
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Delayed Initialization based on 
Particle Filter 

15 
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Step 3. Smart Objects Recognition 
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Feature matching under motion 
blur (Pretto et al. ICRA 2009) 

SO recognition by visual 
inspection 

¨  The AMR should be able to recognize the objects from a description of the 
objects’ appearance 

¨  The object appearance is stored inside the object (in the motes) 

¨  The appearance is coded by scale invariant feature descriptors robust also 
to motion blur (MoBIF) 
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5 meters 

2 meters 

1 meter 

Storing the appearance 

¨  Enhancing robustness to scale: 
¤  the object is imaged at different distances: near, medium, far 

¨  Enhancing robustness to rotation: 
¤  the object is imaged every 20 deg.  

¨  Limiting descriptors size 
¤  MoBIF descriptors extracted at different distances and angles are merged 

removing redundancy! 
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MoBIF Matching 

¨  The AMR requires the selected SO to send its MoBIF descriptors 
¨  The AMR dynamically extracts MoBIF descriptor from the image taken 

by onboard camera  
¨  When MoBIF descriptors matching exceeds a threshold the SO is 

recognized 
¤  matching is robust to scale, occlusion, illumination and rotation  
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Conclusions 

¨  Synergetic combination of WSN and AMR: 
¤ AMR helps WSN nodes localization 
¤ WSN helps object recognition and handling by AMRs 
¤ AMR & WSN together delivers new services  

¨  Future work: 
¤  Improve localization by using also images taken by 

onboard camera into the SLAM algorithm 
¤  Include smart navigation algorithms to the framework 
¤ Adding  object-handling algorithms to the system  
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Context-awareness and reactiveness 
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Cognition-based Network 

¨  Each node of the network:  
¤ exploits local information to achieve its goal  
¤  shares it with its neighbors  

¨  Self-adaptation to the environment to achieve 
network wide goals 

¨  Cognition applied to the entire network (not just at 
the PHY and MAC layers) 
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Restricted Boltzmann Machines 
(RBM) 

¨  Stochastic neural network 
¤  input layer symmetrically connected with a hidden layer 

of feature-detectors 

¨  Unsupervised learning of an internal model of the 
data  
¤  features or latent causes 
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Hierarchical processing 
A key feature of cortical computation 
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Example of learning/generation  
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Example of applications 

¨  Content-based video management 
¨  Context-dependent handover in HetNets 
¨  Context-aware proactive content caching  
¨  … 
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Multimedia growth 

source: 
Cisco report 
(2014) 
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Challenges for video systems 

¨  Heavy data 
¨  Hierarchical system 
¨  Backhaul network capacity 
¨  Must handle different access  
   techniques 
¨  Needs to account for video popularity, 

heterogeneous user terminals 
¨  Quality-of-Experience of video is hard to capture 

Wi
Fi 

3
G 

LT
E 
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Analysis 

¨  We consider a test set of 38 video clips, all 
encoded in an H.264-AVC format 

¨  All the videos are encoded with a 16-frame 
structure (1 I-frame, 15 P-frames) and 
compressed with 18 different rates 

¨  Depending on the content, the perceived 
quality of a compressed version changes 
¤ We used the SSIM indicator to capture it 
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Remarks 

¨  All the video exhibit similar trends 
¤ monotonic descent 
¤ a steep “fall” after a threshold 

¨  However, quantitative differences mean 
¤ different perceived end quality 
¤ different resource requirements 

¨  These characteristics are more or less consistent 
within the same video 
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Requirements for video delivery 

¨  QoE-based and content-aware resource allocation 
¤ Rate-distortion curve depends on video content 
¤ Video content affects size of the encoded video frames 
¤ RBM can be used to infer rate-distortion curve of a 

video by observing the size (not the content) of video 
frames 
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“Our”	
  Video	
  Classes	
  
43 



RBM SSIM estimate 
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Cognitive video admission control 

Rate-based resource allocation 

Cognitive QoE-based 
resource allocation 

Link rate over aggregate full-quality video rate  
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Conclusions 

¨  need for consolidated understanding of the  
fundamental limits for  
¤ massive access 
¤  short packets 
¤ extremely variable transmission patterns 

¨  Need for developing cognitive optimization modules 
that seamlessly interoperate at system level 
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That’s all folks! 
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