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Feature detectors and descriptors

The SIFT descriptor

Matching and recognition with the SIFT descriptor
Overview of recent descriptors

3D reconstruction from image features
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For some slides and pictures thanks to:
D. Lowe, A. Vedaldi,T. Lindeberg,J. Matas,
K. Mikolajczyk, R.Gonzalez, R. Woods and others...
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Feature detection

Extract relevant features from the images
m Lines

m Edges

m Corners

m Other...

Two key operations:
m Feature detection: extract the features of interest

m Feature description: associate a descriptor to each feature in order
to distinguish from the others

m A very good tutorial:

Modern features: advances, applications, and software, Andrea Vedaldi, Jiri
Matas, Krystian Mikolajczyk, Tinne Tuytelaars , Cordelia Schmid, Andrew
Zisserman, ECCV2012

Some slides and pictures have been derived from this tutorial



https://sites.google.com/site/eccv12features/
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Features

Face Analysis
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m Definition: A feature detector (extractor) is an algorithm taking an image
as input and outputting a set of regions (“local features”).

m “Local Features” are regions, i.e. in principle arbitrary sets of pixels, usually
contiguous, which are at least :
distinguishable in an image regardless of viewpoint/illumination/scale/affine transforms...
robust to occlusion: must be local
Must have a discriminative neighborhood: they are “features”

m Local Feature = Interest “Point” = Keypoint = Feature “Point”

m A descriptor is computed on an image region defined by a detector. The
descriptor is a representation of the image function (colour, ....) in the

region. Derived from Vedaldi et Al, «<modern features»
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Objectives

m |nvariance (or covariance) to a broad class of geometric and photometric
transforms

m Efficiency: close to real-time performance
m Quantity/Density of features to cover small object/part of scenes

m Robustness to:
occlusion and clutter (requires locality)
to noise, blur, discretization, compression

m Distinctiveness: individual features can be matched to a large database
of objects

m Stability over time (to support long-temporal-baseline matching -> video)
m Geometrical accuracy: precise localization
m Generalization to similar objects

m No detector dominates in all aspects, some properties are competing, e.g.
level of invariance x speed

Derived from Vedaldi et Al, «modern features»
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Keypoint descriptor

m Definition: A descriptor is computed on an image region
defined by a detector. The descriptor is a representation
of the intensity/colour function in the region

m Objectives :
Discriminability
Robustness to misalignment, illumination, blur, compression, ...
Efficiency: real-time often required
Compactness: small memory footprint.
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Applications

Methods based on “Local Features™ are the state-of-the-
art for many computer vision problems

Suited to instance matching over change in viewpoint,
scale, lighting, partial occlusion, region of interest ...

Multiple views of the same scene, e.g.
Computing epipolar geometry or a homography
Photo Tourism
Panoramic mosaic

Query by example search in large scale image datasets
Copy detection

Re-acquisition in tracking

Object category recognition



Example 1: Wide baseline matching

e Establish correspondence between two (or more) images

e Useful in visual geometry: Camera calibration, 3D
reconstruction, Structure and motion estimation, ...

Local transf: scale/affine — Detector: affine-Harris Descriptor: SIFT

ECCV 2012 Modern features: ... Introduction. 7/30



Example 2: Panoramic mosaic

ECCV 2012 Modern features: ... Introduction. 8/30



Example 2.Image Stitching: Building a Panoram

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003



Example 3: 3D reconstruction

 Photo Tourism overview

g A
:> Scene >
reconstruction

mrE g i b J Photo
InPUt photographs Relative camera \ EXplorer J

positions and orientations

Point cloud

'+t ©, 2| Sparse correspondence
Video

ECCV 2012 Modern features: ... Introduction. 11/30


Exclusive demo The new Photosynth lets you swoop through 3D panoramas.mp4

Example 4: Query by example search in large scale
image datasets

Find these objects ...In these images and 1M more

Search the web with a visual query ...
ECCV 2012 Modern features: ... Introduction. 13/30



Example 8: Re-acquisition in tracking

Tracking target Input image

Weight vector w, per keypoint Descriptor d; per keypoint

Correspondence score: S;j = <W;, dj>
Hare, Amri, Torr, CVPR 2012

ECCV 2012 Modern features: ... Introduction. 17/30



Example 8: Object category recognition

Sliding window detector
e Classifier: SVM with linear kernel

e BOW representation for ROI

Example detections for dog

—

Lampert et al CVPR 08: Efficient branch and bound search over all windows

ECCV 2012 Modern features: ... Introduction. 21/30
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Type of Features

Extract relevant features from the images

m Isolated points

m Lines

m Edges

m Corners (keypoints are typically corners or regions of
high variance)

m Other...
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- FIGURE 10.8

From left to right,
‘ models (ideal

representations) of
a step, a ramp, and
aroof edge, and
their corresponding

intensity profiles.

a) Step
b) Ramp
c) Roof

FIGURE 10.9 A 1508 x 1970 image showing (zoomed) actual ramp (bottom, left), step
(top, right), and roof edge profiles. The profiles are from dark to light, in the areas
indicated by the short line segments shown in the small circles. The ramp and “step”
profiles span 9 pixels and 2 pixels, respectively. The base of the roof edge is 3 pixels.
(Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)

Figure from Gonzalez’s book
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The simplest idea

— for edge detection:
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FIGURE 10.2 (a) Image. (b) Horizontal intensity profile through the center of the image,
including the isolated noise point. (c) Simplified profile (the points are joined by dashes
for clarity). The image strip corresponds to the intensity profile, and the numbers in the
boxes are the intensity values of the dots shown in the profile. The derivatives were
obtained using Eqgs. (10.2-1) and (10.2-2).

Start and end of edge
Double

Thin

Yes

High

Figure from Gonzalez’s book
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Derivatives are guite sensible to noise

* Noise strongly affect the
derivative computation

« 21 order derivative is
particularly sensible

« The gradient vector is
perpendicular to the edge

—_—

\ |
T a|- oY
| I
X : .

FIGURE 10 l 1 First column: Images and intensity profiles of a ramp edge corrupted by
random Gaussian noise of zero mean and standard deviations of 0.0, 0.1, 1.0, and 10.0
intensity levels, respectively. Second column: First-derivative images and intensity
profiles. Third column: Second-derivative images and intensity profiles. Fi gure from Gonzalez’s book
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Masks for oriented gradient

ab

FIGURE 10.13
One-dimensional
masks used to
implement Eqs.
(10.2-12) and
(10.2-13).
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Figure from Gonzalez’s book
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A simple edge detector

3 Steps

1. Low pass filtering (noise removal)
2. Compute the Gradient

3. Thresholding of the gradient

Figure from Gonzalez’s bok
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Laplacian of a Gaussian (LoG)

VG . .
* Intensity change: maxima
of f’ or zero crossing of f’
« Smoothing : noise removal
b * Isotropic (laplacian)
neure 01 * Matches the Human Visual
- Gmensona plot - SYStEm characteristics
x y eLacm
Negative of the
viG LoG displayed as
0 0 | -1] 0 0 an image. (c)
Cross section of
(a) showing Zero
e R 2
gpproximationto g (X1 y) = I:v G(X’ y)]* f (X’ y)
-1 -2 16 -2 | -1 the shape ?n (a)- 5
The negative of =V?[G(x,y)* f(x,)]
) ) 0 -1 | -2 -1 0 be used in
ZCI‘O Cl‘OSS]I‘lg —\ /— ZCI‘O Cl‘OSSll‘lg practice.
~\ N~ ool =1]lo0]o0
= 22 =

*plot of -LoG

ViG(x,y) =

G (X, y)+8ZG(x, y) 0 e_x2+)2/2 L = N INCIRVC P e_x2+)2/
x> oy>  ox?

Figure from Gonzalez’s book
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Marr-Hildreth edge detector: based on the LoG

Usg;

m Sensitive to very fine detail and noise = blur image ff@ﬂ Fi/t
er

s Responds equally to strong and weak edggs.h,.
; ; : GSh
=>» suppress edges with low gradient magnitude Q/d
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Marr-Hildreth edge detector: procedure

Zero crossing:
© (ah<0)v (bg < 0) v (cf <0)v (de<0)
h

a
d

Threshold

(on couples of zero-crossing)

-

Figure from onzalez’s book
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LoG can be approximated with DoG

ab

h h FIGURE 10.23

(a) Negatives of the
LoG (solid) and
DoG (dotted)
profiles using a
standard deviation
ratio of 1.75:1.
(b) Profiles obtained
using a ratio of 1.6:1.

*The plots show —LoG and -DoG

|
NV V|V
1

_X2+y2
LoG: g(x,y) = 20"
oo o]
X2 4y x2+y? O, — 0, O,
DoG:g(x,y)=——e % — L e 20t @70 (07L6%)
2ro; 2o,

Figure from Gonzalez’s book
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Canny edge detector

Targets:

1. Low error rate

2. Precisely locate edge points
3. “Single” edges

Canny, J., A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
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Derivative of the gaussian

x2+y2

f(x,y)=e 20 *f(x,y)

M (x, y)=J[Z—f;j . ‘?—yj

LTLM |

a(x,y)=tan™

Thick edges!
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Non-Maxima suppression

-157.5° +157.5°
Edge normal
Pr | P2 | P3||P1| R |P3
ps 0% | s || pa pe | ps w
Edge Edge normal
P1 | Hs | Po || P71 | P8 | Py (gradient vector)
o
Edge normal —22.5° +22.5°
\
X
—157.5° +157.5°

+45%dge
—112.5° +112.5°
=— Vertical edge

—67.5° +67.5°

—45%dge

+22.5°

Horizontal edge

LTIM |

ab
c

FIGURE 10.24

(a) Two possible
orientations of a
horizontal edge (in
gray)ina3 X 3
neighborhood.

(b) Range of values
(in gray) of a, the
direction angle of
the edge normal,
for a horizontal
edge. (c) The angle
ranges of the edge
normals for the
four types of edge
directions in a
3X3
neighborhood.
Each edge
direction has two
ranges, shown in
corresponding
shades of gray.

Figure from Gonzalez’s book
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Canny edge detector

Smoothing with a Gaussian filter
Compute gradient (module and direction)
Quantize the gradient angles

Non maxima suppression

Thresholding with double threshold
(Eventually edge linking)

LTLM |
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1. Original image



LTLM

2. Gaussian smoothing
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2. Gradient computed with Sobel's mask
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3. Non maximal suppression
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4. Output of the Canny edge detector
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Gradient vs Canny vs Marr-Hildreth

ab
@ |

FIGURE 10.25

(a) Original image
of size 834 X 1114
pixels, with
intensity values
scaled to the range
[0, 1].

(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using the
Marr-Hildreth
algorithm.

(d) Image
obtained using the
Canny algorithm.
Note the
significant
improvement of
the Canny image
compared to the
other two.

Figure from Gonzalez’s book
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Gradient vs Canny vs Marr-Hildreth

ab
@ |l

FIGURE 10.26

(a) Original head
CT image of size
512 X 512 pixels,
with intensity
values scaled to
the range [0, 1].
(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using
the Marr-Hildreth
algorithm.

(d) Image
obtained using
the Canny
algorithm.
(Original image
courtesy of Dr.
David R. Pickens,
Vanderbilt
University.)

Figure from Gonzalez’s book
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Distinguish edge from corners

A Interior Region B. Edge C. Corner D. Isolated Pixel
Little curvature in any Little curvature along Large curvature in all Large curvature in all
direction edge, large curvature directions directions

perpendicular to edge

The corner Is assoclated with
variations in all directions

Moravec [1980]
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Detecting corner points

=  Many applications benefit from features localized in (x,y)
= Edges well localized only in one direction =» detect corners

= Desirable properties of corner detector
e Accurate localization
¢ |nvariance against shift, rotation, scale, brightness change
e Robust against noise, high repeatability

Bernd Girod: EE368 Digital Image Processing Feature Detection no. 31
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Local displacement sensitivity

Change of intensity for the shift [«,v]:

Intensity

Shifted
intensity

Window function W(X,V) = | e

1 in window, 0 outside (aussian
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What patterns can be localized most accurately?

= Local displacement sensitivity 1
S(AAy)= Y [ f(ny)-f(x+Avny+Ay) |

( x, pwindow

m Linear approximation for small Ax. Ay
flx+Avy+Ay)= f(x.y)+ [ (v ) A+ £, (2. y) Ay

. (. ((Ax)) :
S(axay)= > | fi(xy) fi(xp) H
[I:J']:u'r'.-i.efnul \ | .ﬁl}' Iy,

={ﬁx ﬁ}u}f Z |: f:{gxﬁ_}"] - f,‘,{‘{',f]f;{rﬁ.}.] M':-"'ﬁh.’:'b_"]
| (e Jowindow| S (%: ) S, (%) fi(xy) Ay,
_ [ Ax)
=(Ax Ay)M ‘ »)

s |so-sensitivity curves are ellipses

%/ Bernd Girod: EE368 Digital Image Processing Feature Detection no. 32




Eigenvalues and corners

LTLM |

> fxy) >

M= (x. ) l=windma () h=nindon
> AENLEY 3
(X, W ieadmgiow V=i

bt

f(xy) £, (%)

£, (%)

M, A2 eigenvalues of M
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Alternative method

(Harris and Stephens 1988)

Uniform region

/Col‘ner

R(, y) = det[C(x, y)] +k{Tr[C(x, y)}’
= A, —K(A +24,)°

[ det[C(x, y)] = 44,
TrCx =4 +4

edge

Eigenvalues computation for each pixel: very slow
R(X,y): Faster alternative to eigenvalue decomposition
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Robustness of Harris Corner Detector

= Invariant to brightness offset: flx,1) = flx,y) + ¢

= Invariant to shift and rotation o 2
. . . i T - -
= Not invariant to scaling -
“ﬂ':q;.
_—-.-""--. g D8 b |
_E
m
9 g— 04t
&
2 | N B
edge corner | S
1]1 1.5 2 25 3 as 4 45

Scale factor
[Schmid, 2000]

Wiz Bernd Girod: EE368 Digital Image Processing Feature Detection no. 40
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Example
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What about the «scale»

: - “'f " ~
L BNETS A s
. ] J

Molecule L eaf Tree Forest
10M-12 m 10 cm 5m 1km

Each objects exist at a certain scale level.....
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Multi-scale representations

\_ Scale-Space / Pyramids Wavelets
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Scale Space
=

foGy) = foyt) I /

< original signal
/0= T(uy)

coarser levels
of scale

m Family of signals parameterized by a
continuous parameter (scale)

m Smaller structures are progressively
suppressed while the scale is increased

Continuous parameter Discrete set of resolutions

Same sampling frequency at all the scales The sampling frequency changes
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Scale Space:

Requirements and Properties

m Causality:
Non-creation of local extrema
Non-enhancement of local extrema

m Scale-invariance
m Shift-invariance
m Rotation-invariance

m Linearity (includes commutativity between
derivative and convolution)
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Definition: Scale Space

Convolution of the image with Gaussian
kernels with varying o

L(X, y;t) =g(x,y;t)* f(X,y)

1 2 2
X, ,t _ e—(x +y°) /2t
g(x,y;t) o
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Gaussian Scale Space motivations

m The receptors in the human eye

retina can be modeled as a
superposition of derivatives of
Gaussian functions (Young 1987)

The solution of the heat diffusion
equation leads to the same result

LTAM

Figure 4: Gau

n dervative kernels up o order four the two-dimensicnal case.

6L—1\72L
t% 72



" LTLM |
Scale Space

t=0
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Scale Space

=1
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Scale Space
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Scale Space

t=16
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Scale Space

t=64
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Scale Space

t=256
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Example

Local Minima Local Minima
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.--\..-'_-".\,.:=_.'_h'-:" PRI '_
: e AT C -
) -.--_' .-- .t ' II. .'_.- "l "_I
.- - BT .
. W 1
! 3

From Lindeberg’s paper
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Edge Detection Algorithm

1. New reference system from (x,y) to (u,v) with
v parallel to the gradient direction

2. Derivates along (u,v)
3. The maximum of the derivative along v is the

edge point (L»=0 e Lw<0)

At which scale | need to work ?
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Edges and scale space

/

«g’k

By L§T €

t=256

LTLM |

« Strong edges are present at
all the scales
* Thin Scales:
Fake edges due to noise
» Coarse scales:
The smallest details are lost
and the localization of the
edges is not accurate

From Lindeberg’s paper
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Automatic scale selection

V12 Feature type  Normabzed atrenpgth meaaure for acale aelection  Value of +
0, =t"°0, Fge £ L, 1/2 )
U4 Ridge 1 [ELTPPE— L F 3fa
F — t Corner BT L L 1
en LV Blob VAL 1

m Detect the best scale for each feature

m Derivates at smaller scales have larger values:
need to normalize with respect to the scale

m Compute the feature detection at all the scales
and select the strongest responses
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Multi-Scale edge detection

All the edges at
all the scales

G cd e VR - - ..
0,1 | SRR it Ao e G S S AR SRR R
L N SR At
U2 LD Y “ N VI A B Nt 0 4 RO it VA
‘. Sy ’\-:‘:{k‘:‘?}”’r};‘]&.&r}',;;“‘;l E *‘é‘

"t
B0 A “*hw)’ SR L N R i .8"'7‘.‘,
A S R S e Ty

J _‘_‘_-_-_‘_'_'__'_‘—'—-—.
| The 10 strongest
P edges
é‘t N —

The 50 strongest
edges

\
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Scale-space
edge detection

LTLM |

original grey-level image all scale-space edges the 100 strongest edge curves
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Corner
Cu t
IS l_JII:%L--”.-”I — L‘f.L'yy + LiL;; - 2-'{":;‘-'?—_"3; L':I‘;EJI'T

Gradiente

F.=k =Lk =LL, L
F,=t’LL L,

cn uu

m Corner: locations where both the curvature of the level
curves and the gradient are large

m Corners:y=1

m Search for the corners at all the scale and select the
strongest (normalizing w.r.t. the scale)
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Corner detection

Figure 12: Resuits of corner detection with auto-
matic scale selection on an office scene

(200 strongest junction responses).
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"] "] Although it’s not always the case that a paper cited more contributes more to the field, a
highly cited paper usually indicates that something interesting have been discovered. The
following are the papers to my knowledge being cited the most in Computer Vision.
(updated on 11/24/2013) If you want your “friend’s” paper listed here, just comment
below.

Cited by 21528 + 6830 (Object recognition from local scale-invariant features)

Distinetive image features from seale-invariant keypoints

n n DG Lowe - International journal of computer vision, 2004
Cited by 17671
A theory for multiresolution signal decomposition: The wavelet representation
5G Mallat — Pattern Analysis and Machine Intelligence, IEEE .., 1989

Cited by 17611

A computaticnal approach to edge detection
J Canny — Pattern Analysis and Machine Intelligence, IEEE ..., 1086

Cited by 15422

Snakes: Active contonr models

M Kass, A Witkin, Demetri Terzopoulos - International journal of computer ..., 1988

Cited by 15188

Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
Geman and Geman - Pattern Analysis and Machine ..., 1084

Cited by 11630+ 4138 (Face Recognition using Eigenfaces)

Eigenfaces for Recognition

Turk and Pentland, Journal of cognitive neuroscience Vel. 3, No. 1, Pages 71-86,
1991 (9358 citations)

Image gradients Keypoint descriptor Cited by 8788

Determining optical flow
B.K_P. Horn and B.G. Schunck, Artificial Intelligence, vol 17, pp 185-203, 1981

m Very reliable feature extractor and descriptor

m After 10 years it is still probably the most reliable even if
not the fastest

m Widely used in a huge number of commercial applications
and research works
The most cited paper in the computer vision field
More than 30k citations on the 2 papers (Google Scholar)
#6 in the whole computer science field(Citeseer)
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Descriptors

m Feature Descriptors:
Describe some relevant feature of the scene
Allow to localize the same object or point in different images

m They must be robust:
To image rotations and traslations
To the scaling of the image
To the image noise
To lighting changes

To changes of the viewpoint (i.e., perspective transform, more
complex than affine transform)

To occlusions

affine transforms
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Invariant descriptors

= |mage content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

Immagine © D. Lowe

SIFT Features

A vector (feature descriptor) is associated to some relevant image points
It is invariant with respect to rotations, scaling, lighting, etc..
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Applications

Objective: ldentify the
same object or point in
different images

Applications Training images Test image
Object recognition
» Industrial automation
= Robotics

Matching and registration
» Image mosaicing and panormic images
m Stereo and 3D reconstruction
m Optical Flow

Content-based retrieval
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Requirements

m Locality: the features are local. This makes them robust
to object occlusions

m Distinctiveness: it should be possible to match the
features even inside large databases

m Quantity: many feature could be needed even for small
objects

m Efficiency: real-time or near real-time computation
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Scale Invariant Feature
Transform (Lowe 2004)

4 Steps .

1.

2
3.
4

Scale-space extrema detection
Keypoint localization
Orientation assignment
Keypoint descriptor

Cascade filtering approach
(Sequence of operations, the most complex are at the end

and are executed only on a small subset of points)
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Fase 1. Scale-space extrema detection

N AN
R AN
e\

m Scale space divided in octaves (at each octave o is doubled)
m Gaussian Scale space inside each octave
m Keypoints search on all the scales (scale-invariant result)
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One octave after the other..

Difference of
Gaussian Gaussian (DOG)

« Gaussian scale space with s intervals for each octave
* s+3 Images in each octave: (s+1)+2 to find the extrema
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Difference of Gaussians (DoG)

L(x,y,0) = G(x,y,0) = I(2,y) L

E/\//E—yﬁ
,ﬁﬁ—fﬁ
Glryg.o) = e e
2mo?
D(x,y,0) = (G(v,y,ko) —G(x,y,0)) xI(x,y)

= L(z,y,ko)— L(x,y,0).
G(x,y, ko) — G(x,y,0) ~ (k — 1)0*V*G

Lowe uses the Difference of Gaussians (DoG)
» Approximate LoG
« Simple to compute
* Includes normalization factor for the derivatives in the scale space



" S LTim
Difference-of-Gaussian: Example

<

y

Figure 9.1: A Difference-of-Gaussian octave. The five images in the left
stack are incrementally smoothed versions of the input image. The right
stack shows the resulting DoG.

Slide from N. Vassilieva
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Key point localization

A L L L S
AT

I A A
Scale ST T
DA o7t~ 7
o AT

"mﬂ

m Search for maxima and minima of the DoG

m Each point is compared with 8 neighbours on its
scale and 9 on the previous and next scale levels
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Scale sampling frequency

100 3500
%0 1% 3000
S 2 2500 e
> B0 ;- % / T
2 S 2000 :
L 40 =
K © 1500
Matching location and scale —— é ]
20 earest descriptor in database =~ ] 3 1000 Total number of keypoints ]
< Nearest descriptor in database -----—-
0 500 L
1 2 3 4 5 B 7 8 1 2 3 4 5 6 7 8
Number of scales sampled per octave Number of scales sampled per octave

« More points if more scale levels are used

* On the other side the matching accuracy decreases (less
stable points)

« With s=3 maximum accuracy (Lowe)
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Scale Invariant Feature

Transform (Lowe 2004)

4 Steps .

1. Scale-space extrema detection
2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor
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Step 2 : Keypoint localization

m Keypoint localization in the maxima points is not precise

m Taylor series approximation of the DoG in the
neighboorhood of the point to accurately locate the
maxima

m Keep only the stablest keypoints (where the gradient is
bigger than a threshold)
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Taylor approximation

oD1 1 92D
D(x) = — —x T2
(X) =D+ 7= X+ 35X 5=

X

2D topT 1oD7T
s _ D(X)=D+-——_ %
x ox2  Ox (%) T 2 Ox *

m Taylor series of the second order centred in the
identified point

m Zero-crossing of the derivative of the
approximation: accurate location of the maxima

m Discard points with |D(%)|<0.03




" A LTLM
Avolid edges

Ir(H) = Dyz + Dy = a0 + 3,
Dy, -Di'y 1 | |
Dy Dyy Det(H) = D, Dy, — [ﬂw}z = /7.

Tr(H)?  (a+5)2  (rG+3)72  (r4+1)?
o = r,B 2 Det(H) o — rF2 ro

3 TI‘ILH,I r 4+ lJ
[]'PHH,I b r

m DoG has a strong response at the edges, but the edges are
not very good as features

m Similar to the Harris detector: the edge is located where the
Hesslan has a large eigenvalue and a small one

m Threshold on the eigenvalue ratio a/f3
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Example

Threshold on the peak value of the DoG and in the ratio of the
main curvatures (similar to the Harris approach)

L

gLl

st WAL = -1
.‘u......mmmmux;b 5.’33! T[TV

(a) 233x189 image

(b) 832 DOG extrema

(c) 729 left after peak
value threshold

(d) 536 left after testing
ratio of principle
curvatures
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Scale Invariant Feature

Transform (Lowe 2004)

4 Steps .

1. Scale-space extrema detection
2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor
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Step 3: Orientation assignment

miz,y) = /(L@ + 1Ly) = Lz — Ly)2 + L.y + 1) = Lz, — 1)?

O(,y) = tan” ' ((L(z,y +1) = L(z,y = 1))/(L{z + 1,y) = L(z — 1. 9)))

m An orientation is associated to each keypoint
m Based on the gradient

m All the subseqguent operations for the keypoint will be
made on an image rotated with respect to the found
orientation and scaled according to the keypoint scale

m Makes the description invariant with respect to scale and
rotation
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Computation of the orientation

m An histogram (with 36 bins) of the o
gradient directions at the chosen . .
scale in a neighbourhood of the . S
point is built | | |

m Each sample is weighted with his .| ;
gradient module m(x,y)

m Gaussian smoothing is applied - =

m The orientation is the direction
corresponding to the peak value

m Multiple orientations if close peaks
m Parabola fitting

m Stable coordinates for each point
(X, y, scale, orientation)

n A Y m
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Stability

*r""m“mummqwif:::::jﬂ;::::I:::;===__ﬁﬁﬂhh
80 B
""""""" - T
‘:.:. """"" F 3
=
T 60
i3]
s}
=
=
= 40
i
c3 Keypoint location ——
Location & orientation -——w=—
20 Nearest descriptor -—--#--- =]
0 i i
0% 2% 4%, % 8% 10%

Image noise

Position and orientation are robust w.r.t noise
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Scale Invariant Feature

Transform (Lowe 2004)

4 Steps .

1. Scale-space extrema detection
2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor
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Fase 4: Descriptors

m At each keypoint :
Position
Scale
Orientation
m Invariance to these parameters
m Descriptors should also be invariant to
lllumination
Change of viewpoint

m Furthermore it should be possible to discriminate
between the points
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Descriptor computation (1)

1. Compute magnitude and direction of the
gradient in a neighbourhood of the keypoint
(usually 16x16) with the orientation and scale of
the keypoint

2. The values are weighted with a Gaussian
function centered in the keypoint
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Descriptor computation (2)

3: Histogram
The window is divided in regions of 4x4 pixel

For each region an histogram with 8 values corresponding to 8
intervals of 45° are built

For each interval the sum of the of the samples
with falling in that interval is computed

Descriptor dimension is (16/4) x (16/4) x 8 = 128 elements

/X..H T, i\\
Af NER W f\
\,-‘u_au"if -

S Y

) \*nT; = ow |

L~ —|._,,"*r—--b-+ - -t

e ..a_,,-"‘v.‘_. 7 —

N <=l F e 1A

\Y‘--**h?/
"«'-..,_________,"

Image gradients Keypoint descriptor

~ v gk [NHTHN-
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Descriptor computation (3)

4. Trilinear filter on all the 3 dimensions for a
better stability

5. Normalization to 1 for robustness to
Hlumination

6. Threshold to 0,2 on all the components (the
large ones are sensible to light)

7. Further normalization to 1

— V9 bt N—HT—HN>




Robusthess to noise

LTLM |

m Feature matching after random rotation and scale change
with different levels of noise

m Nearest neighbour on 30,000 features database

Correctly matched (%)

100
- _______.__::;_:__,_1::___:__::5::::?______—__‘_
80 . e =,
___________ = 1
"""""" *
60
40
Keypoint location ——
Location & orientation -——
20 Ne-:are-st descript:or ----- #eee T
0 |
0% 2% 4% 6% 8%

Image noise

10%
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Robustness to affine transforms

m Feature matching after random scale change and rotation
with 2% noise and affine distortion

m Nearest neighbour on 30,000 features database
m Good for small angles

100

&

E 60 |

2

[48}

E

>

T 40 |

@

3 Keypoint location ——

Location & orientation -—------
207 Nearestdescriptor ..... o
0 - I i .

Viewpoint angle (degrees)
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Features distinctiveness

m Variable size database, 2% noise and 30° viewpoint change
m Percentage of correct nearest neighbour matches

100

80

.....................

60 |

Keypoint location & orientation ——

o Correct nearest descriptor -—----

Correctly matched (%)

20

1000 10000 100000
Number of keypoints in database (log scale)
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Descriptors: synthesis

m At each keypoint :
Position
Scale
Orientation

m Descriptor: normalized and filtered histogram of the
gradient with respect to orientation in a 16x16 region
around the keypoint

m 4x4x8=128 dimensions vector
4x4= 16 regions of 4x4 pixel
Histogram quantized on 8 directions
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m Match between SIFT features of the object
and of the image

m Large database: difficult matching
m Find 1% inliers in 99% outliers
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Slmple solutlon

1. Compute SIFT DB for each object
2. Compute SIFT DB on the image

3. For each image keypoint find the closest in the
object DB (with Euclidean distance)
m |t does not work !
Too many matches
Even with threshold on the distance low results
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Find correct matches

0.6 + PDF for correct matches ——
H p - m PDF for incorrect matches -
1

>0.8 0.5 |
[p—m,| |

0
Il

PDF
o
In

0 1 R e NN N I I
0 0.1 0.2 03 04 05 06 07 08 09 1
Ratio of distances (closest/next closest)

m Compare the nearest neighbour with the second closest (the closest
among the ones taken from another object)

m 0.8 threshold on the two distances ratios
m Remove 90% of wrong matches and 5% of the correct ones
m  Approximate fast search with BBF algorithm (Beis and Lowe, 97)
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Find groups of consistent clusters

m Search for clusters of 3 consistent feature match over
3000 feature matches !

m Hough Transform
Find consistent sets of 3 points in a 4 parameters

space
Insert in the 2 closest bins Position (x)  0.25 Do
Select bins with at least 3 votes Position (y)  0.25 Dmax

Rotation 30°
Scale 2X
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Matching procedure

1. Check all the clusters with at least 3 features

2. Find the affine transform corresponding with a
east squares approximation

3. Discard the points that do not satisfy the found
transform

4. Estimate the probability of a correct match
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Synthesys

1. Find closest keypoint (Euclidean distance)

2. Threshold with the ratio from the distance of the
second closest point

3. Hough transform (find groups of consistent
keypoints)

4. Estimate affine transform corresponding with
the least square approximation

5. Final consistency check of the keypoints with
the computed transform
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Recognition (1)

v \l - f a »
s '. N ‘ _‘ ', > ;
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Example: object recognition (2)

m Search for the 2 objects
m WWorks even In the presence of occlusions



" A
Example:
Image matching
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Example: Image mosaicing

i 3'
50 % e‘;
100 [
150 [P

A
200 [
250
300

350

Matlab tool from the author of the method
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Beyond SIFT:
Variations derived from the approach

S
7

s T Bl
E5aR32 '@g%@ﬁ'

(b) keypoint descriptor

PCA-SIFT SURF GLOH
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PCA-SIFT

m Steps 1-3 are the same; Step 4 Is
modified.

m Take a 41 x 41 patch at the given scale,
centered at the keypoint, and normalized
to a canonical direction.

Thanks to George Bebis

Yan Ke and Rahul Sukthankar, “PCA-SIFT. A More Distinctive Representation for
Local Image Descriptors”, Computer Vision and Pattern Recognition, 2004
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PCA-SIFT

m Instead of using weighted histograms,
concatenate the horizontal and vertical
gradients (39 x 39) into a long vector.

m Normalize vector to unit length

2 X 39 x 39 = 3042 vector

Thanks to George Bebis
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PCA-SIFT

m Reduce the dimensionality of the vector using
Principal Component Analysis (PCA)

e.g., from 3042 to 36

PCA

N x 1L Kx1

m Some times, less discriminatory than SIFT. |
Thanks to George Bebis
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SURF: Speeded Up Robust Features

m Speed-up computations by fast approximation of
Hessian matrix and descriptors using “integral
images”.

Lo(x o) Loy(x, o)
Hix, o) = |i % 0 ylX i”] .

Loylx, o) Lyylx, )

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, “SURF: Speeded Up Robust Features”,
European Computer Vision Conference (ECCV), 2006.

Thanks to George Bebis



" A LTLM
Integral Image

m The integral image Is(X,y) of an image I(X, y)
represents the sum of all pixels in I(x,y) of a
rectangular region formed by (0,0) and (x,y).

Oy Using integral images, it
takes only array
references to calculate

P ’ the sum of pixels over a
rectangular region of any
size.

S=A-B-C+D
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Approximation with box filters

m Approximate L, L,,, and L,, using box filters.

(box filters shown are 9 x 9 — good approximations for a Gaussian with 6=1.2)

| |
i |
i ﬁ |
1
| B
derivative L approximation derivative L approximation

J_.:l_.l _‘--'LI

m Can be computed very fast using integral images!
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Scale-space (1)

m In SIFT, images are
repeatedly A
smoothed with a
Gaussian and
subsequently sub-
sampled in order to
achieve a higher
level of the pyramid.

Scale
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Scale-space (2)

m Alternatively, we can
use filters of larger
size on the original \
Image.

Scale

m Due to using integral
Images, filters of any
size can be applied
at exactly the same
speed!
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SURF: Approximate with box filters

« Approximation of H:

Using DoG SIET - HSFT — D, Dy
. approx [) [)

yX yy
Lo dx.a) Lo, (x, 7
Hix, o) = | =07 Em T
Laylx, &) Lyylx, ) _ -
L. L

SURF ; HSURF | 7 7

approx

Using box filters L, L,
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Orientation assignment

Circular neighborhood of
radius 6c around the interest point
(o = the scale at which the point was detected)

\'\.

— Haar wavelets (responses
weighted with Gaussian)
Side length = 46

Can be computed very fast using integral images!
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Keypoint descriptor (1)

Keypoint descriptor (square region of size 200)

* Description Ax4 Foo0® Sum the response over
dx .
rid > dv each sub-region for d,
gri 214 and d, separately.

m To bring in information
about the polarity of the

R
{a 2 ‘ intensity changes,
0 ' extract the sum of
absolute value of the
responses too.
Feature vector size:

de
2 d

L
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Keypoint descriptor (2)

» Description - m SURF-128

1 The sum of d, and
|d,| are computed
separately for
points where d, < 0
and d, >0

~1 Similarly for the

sum of d, and |d,|
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SURF: Speeded Up Robust Features

m Has been reported to be 3 times faster than
SIFT.

m Less robust to illumination and viewpoint
changes compared to SIFT.

K. Mikolajczyk and C. Schmid,"A Performance Evaluation of Local Descriptors",
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10,
pp. 1615-1630, 2005.
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Gradient location-orientation histogram (GLOH)

m Compute SIFT using a log-polar location grid:
3 bins in radial direction (i.e., radius 6, 11, and 15)
8 bins in angular direction

m Gradient orientation quantized in 16 bins.
m Total: (2x8+1)*16=272 bins > PCA.

Keypoint descriptor

Image gradients

K. Mikolajczyk and C. Schmid,"A Performance Evaluation of Local Descriptors", IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615-1630, 2005.
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Beyond SIFT:
Other Approaches

« Shape context
« LBP

 BRIEF

« ORB

« MSER

And many others!...
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Shape Context

m A 3D histogram of point locations and orientations.

Edges are extracted by the Canny edge detector.

Location is quantized into 9 bins (using a log-polar coordinate
system).

Orientation is quantized in 4 bins (i.e., horizontal, vertical, and
two diagonals).

m Total number of features: 4 x 9 = 36

K. Mikolajczyk and C. Schmid,"A Performance Evaluation of Local Descriptors",
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10,
pp. 1615-1630, 2005.



LBP:
Local Binary Patterns

* First proposed for texture recognition in 1994.

1. Sample 2. Difference 3. Threshold

‘ 1%1 + 1°2 + 1%4 + 1°8 + 016 + 0*32 + 064 + 0°128 = -

Citations:
4. Multiply by powers of two and sum 2500 (2012)

T. Ojala, M. Pietikdinen, and D. Harwood (1994), "Performance evaluation of texture measures
with classification based on Kullback discrimination of distributions”, ICPR 1994, pp.582-585.

M Heikkila, M Pietikainen, C Schmid, Description of interest regions with LBP, Pattern
recognition 42 (3), 425-436



BRIEF:
Binary Robust Independent

Elementary Features

 Random selection of pairs
of intensity values.

* Fixed sampling pattern
of 128, 256 or 512 pairs.

* Hamming distance to
compare descriptors (XOR).

Citations:
149 (2012)

M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary Robust Independent Elementary
Features, 11th European Conference on Computer Vision, 2010.



ORB:
Oriented FAST and Rotated BRIEF

e Add rotation invariance to BRIEF Citations:
43 (2012)

* Orientation assignment based
on the intensity centroid

Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary Bradski, ORB: an efficient alternative to SIFT
or SURF, ICCV 2011



Maximally Stable Extremal Regions (Matas et al 2002)

» Based on watershed algorithm i?SB“Z';Zm)
— Consecutive image thresholding by all thresholds 1620 (2012)

— Maintain list of Connected Components

— Regions = Connected Components
with stable area (or some other property) over multiple thresholds
selected

ECCV 2012 Modern features: ... Detectors. 16/60



MSER
Regions

m MSER regions are connected areas characterized by almost uniform
intensity, surrounded by contrasting background.

m They are constructed through a process of trying multiple thresholds.

m The selected regions are those that maintain unchanged shapes over
a large set of thresholds.
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MSER Construction

» For each threshold, compute
the connected binary regions.
« Compute a function, such as
i> area A(i), at each threshold
“ il value i.
» Analyze this function for each
potential region to determine
intensity image shown as a surface function those that persist with similar
function value over multiple
thresholds.

400

8 8 8

Area A(I) (in pixel)
8

: ) (A 50 ulmoA . 1_;0 200 I,—1; 25
Threshold simulation & B Soglia di luminanza T =1

Extremal Regions (represented by

their original lumiance values)
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Properties

Affine invariant

Simple, efficient scheme
High repeatability
Fires on similar features as IBR

(regions need not be convex, but need to be closed)

Sensitive to image blur

ECCV 2012 Modern features: ... Detectors. 17/60



Comparison of i A = e
different mehtods S S

Rotation (a,b)

Zoom (c,d)

Viewpoint change (e,f)
Blur (g,h)

JPEG compression (i)
Light change (j)

(1) )
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— shape context w——= differential invariants :
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Fig. 4. Comparison of different matching strategies. Descriptors computed on Hessian-Affine regions for images from figure 3(e).
(a) Threshold based matching. (b) Nearest neighbor matching. (c) Nearest neighbor distance ratio matching. hes-lap gloh
is the GLOH descriptor computed for Hessian-Laplace regions (cf. section TV-A.4).
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Performances of the

various descriptors

Descriptor E,— | 1o cigemnine(d) E,— cigenmale (i) Descriptor recall | I-precision | #nearest neighbor
PCA-SIFT 10830412 19743212 Soreet malehes
GLOH 025 0.52 192
GLOH 1.4085e+11 28I TTes11
SIFT 0.24 0.56 177
SIFT 34210409 6454149 Shape context 022 0.59 166
Shape coniext 3.3582e+09 T.114%+09 PCA-SIFT 019 065 139
Spin images 44791409 5.2335¢+09 Moments 018 067 13
Cross correlation 1.0657e+09 1407 6c+09 Cross cormelation 015 072 113
Steerable filers 41529407 4. 2909407 Steerable filters 012 078 90
Differential invariants 2. 5070407 26349407 Spin images 0.0g 084 &4
Complex filters 1.6328e407 182640407 Differential invariants | 0.07 0.87 54
Moments 1.3820e407 18100e+07 Complex filters | 006 | 089 4
TABRLE I

TABLE I

RECALL, 1-PRECISION AND NUMBER OF CORRECT MATCHES OETAINED WITH DIFFERENT DESCRIPTORS FOR A FIXED
DISTINCTIVENESS OF THE DESCRIPTORS. SUM OF THE AIRST 10 AND SUM OF ALL EIGENVALUES FOR DIFFERENT

NUMEBER OF 400 NEAREST NEIGHEOR MATCHES ON THE IMAGE PAIR DISPLAYED IN FIGURE 13. THE REGIONS ARE
DESCRIPTORES.

DETECTED WITH HESSIAN-AFFINE.

K. Mikolajczyk and C. Schmid,"A Performance Evaluation of Local Descriptors",
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10,
pp. 1615-1630, 2005.
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3D Reconstruction of a scene

from a set of picutres

* measure scene with camera, using image projections!

+ better to automate

+ incorporate images for appearance
- how can it be done ?

Ly Pdcau
Kl

DAGM 2001-Tutonal on Visual-Geometric 3-D Scene Reconstruction
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3D Reconstruction
G

m Computer vision enables us to reconstruct highly
naturalistic computer models of 3D environments from
camera images

m We need to extract
1 The camera geometry (calibration),
1 The scene structure (surface geometry)
1 The visual appearance (color and texture) of the scene



LTLM

= All scene points are at on plane II,
« Camera is completely free in K,R,C

m A 3D point is projected onto a set of 2D images

m Recognize the same location on different images (feature extraction
and descripition!)

m  The intersection of the optical rays is the 3D location of the point !
m Need also camera calibration parameters



Simplest case:
Image mosaicing
(planar scene)

Geometries of mosaic aquisition

arbitrary scene

planar scene

" Ll b C
5 & & il L- * () 0} (] L
R L L o™ L - - . o
w, am o* el L d ] & " ¥
= ] ] 0 L} - L) »
o B o o
- "#a,

e tating translating and rotating
camera camera

DAGM 2001-Tutorial on Visual-Geometric 3-D Scene Reconstruction

iy

e

W6 | <8 vasercws = | Budwetser | FIFA | 6ot + et KN FUdI

mosaicing

Kang et al. (ICPR 2000)



Multiple view geometry

Projection onto two views:

Py =K,Ry'[1 0] P=KR'[l —C|]
Py = FM - KoRo'[I 0]M pim,=PM=KR'[I —C,]M

Py = KRy 'Ry K ' pomy — KiR;'C,
= pfmy = pH..my + €,

Epipolar line
M"f Mg
'y X X 0
Y| |Y| |O
P, M=|_|=|,|*]o|7M-t0
O
1] o] |1




The Fundamental Matrix F
mll,=0 I, = Fm, m{ Fm, =0

F = [e] H.. = Fundamental Matrix

Po ==

~~~~~~~~~~~~~~~~~~~~ M_
Epipole = Estimation of F from image correspondences
e1T F=0 = = Given a set of corresponding points, solve linearily for the 9
elements of F in projective coordinates

» since the epipolar constraint is homogeneous up to scale,
only eight elements are independent

* since the operator [€], and hence F have rank 2, F has only
7 independent parameters (all epipolar lines intersect at e)

» each correspondence gives 1 collinearity constraint
=> solve F with minimum of 7 correspondences
for N>7 correspondences minimize distance point-line:

N

mf,. Fmy; =0 Z(mL,anﬂ )’ = min!

n=l

LgPdcau

il DAGM 2001-Tutorial on Visual-Geometric 3-0 Scene Reconstruction 6a



Estimation of Fundamental Matrix

Robust correspondence selection m; <->m,

Y bheed DAGM 2001-Tutorial on Visual-Geometric 3-D Scene Reconstruction
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Output of the approach

m Sparse 3D point cloud (i.e., 3D location of feature points)
m Camera locations and parameters
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3D Reconstruction Pipeline

= camera calibration from feature tracking
* dense depth estimation from stereo comrespondence
» depth fusion and generation of textured 3D surface model

wﬁ% -a—,

e L_“ 'fﬂl;ﬂ

4 Tty .
2 3 J oy
# &
h‘ o ———lad T

Image sequence camera calibration scene geometry 3D surface model
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Structure-from-Motion from

unordered image collections

[Brown05, Snavely06, Agarwal09]

* Image clustering
 Pose Initialization

* Bundle-adjustment

http://phototour.cs.washington.edu/bundler



http://phototour.cs.washington.edu/bundler

