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Analyzing the radio scene

An energy detector can be used to distinguish between ”noise only”
and ”signal(s) + noise”.

But how can we estimate the number of signals?



Scenario

Assuming the receiver is equipped with multiple antenna elements
(sensors), spatial correlation can be exploited to discriminate signal
sources from the spatially uncorrelated thermal noise.
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The mathematical problem

Received nR-dimensional vector

y(t) =

nT∑
i=1

hixi (t) + N(t) (1)

where

nT is the (unknown) number of signals (active transmitters)

N(t) ∈ CnR is the thermal noise, N(t) ∼ CN nR

(
0, σ2InR

)
xi (t) ∈ C is the symbol transmitted by the i th source at time t

hi ∈ CnR , i = 1, . . . , nT, are linearly independent vectors describing
the gain of the radio channel between i th transmitting source and
the nR receiving antennas.

Problem: determine the number of sources nT by observing nS samples
y(t1), · · · , y(tnS

) over which the number of sources and the channel do
not change, assuming nothing is known at the receiver.



Equivalent nR × nT virtual MIMO formulation

y(t) = H x(t) + N(t) (2)

where x(t) = (x1(t), . . . , xnT
(t))T and H = [h1| · · · |hnT

].

Note: the only information available is the structure of the model.
(H, nT, σ

2, and obviously x(t) and N(t) are unknowns)

Assumptions:
x(ti ) ∼ CN nT

(0,Rx), with x(t1), x(t2), ... statistically independent.
N(ti ) ∼ CN nR

(
0, σ2I

)
, with N(t1),N(t2), ... statistically independent.

Observed vectors in a nR × nS observation matrix

Y = [y(t1)| · · · |y(tnS
)] (3)

For a given H the observed vector has covariance matrix

R = E
{

y(t)y†(t)
}

= HE
{

x(t)x†(t)
}

H† + σ2I

= HRxH† + σ2I. (4)

The observed matrix is Y ∼ CN nR,nS
(0,R, InS

), and the matrix
W = YY† ∈ CnR×nR is Wishart.



The multiplicity of the smallest eigenvalue of R

Ordered eigenvalues of R: λ1 ≥ . . . ≥ λnR
.

If nT < nR, the smallest nR − nT eigenvalues of R are all equal to σ2.
Example: nR = 5 antennas, nT = 2 sources

R = UΣU† = U


λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ3 = σ2 0 0
0 0 0 λ4 = σ2 0
0 0 0 0 λ5 = σ2

U†

⇒ determining the number of source ≡ determining of the multiplicity of
the smallest eigenvalue of R.

Unfortunately, R is not available at the receiver ⇒ use its estimate based
on the available nS observations.



The problem seen as estimate of the multiplicity of the
smallest eigenvalue of R based on the sample covariance
matrix

The sample covariance matrix (SCM) is

R̂ =
1

nS

nS∑
i=1

y(ti )y†(ti ) =
1

nS
YY† =

1

nS
W. (5)

This is an estimate of the covariance matrix R.

The problem of determining the number of sources is reformulated as:

find an estimate of the multiplicity
of the smallest eigenvalue of R based on R̂.



Model selection based on Information Criteria: AIC, MDL,
BIC

Consider a set of observed data Y generated according to a probability distribution
within a set of possible distributions

{
f (Y;θ(k))

}
, where the model k is characterized

by the unknown parameter vector θ(k) =
{
θ

(k)
1 , . . . , θ

(k)
ν(k)

}
of size ν(k). The modeling

problem consists of selecting k.

Known methods: Akaike information criterion (AIC), minimum description

length (MDL), Bayesian information criterion (BIC).

Given the observation Y, the selected model is

k̂ = arg min
k

{
− log f (Y; θ̂(k)) + L(ν(k), nS)

}
(6)

where θ̂(k) for a fixed k is the maximum likelihood (ML) estimate of θ(k)and

L(ν(k), nS) is a penalty function which depends on the number ν(k) of free-adjusted

parameters for the model k.

L(ν, nS) = LAIC (ν, nS) = ν for the AIC

L(ν, nS) = LBIC (ν, nS) = ν
2 log nS for the BIC



Methods for the detection of the number of sources

[Wax, Kailath 1985]: the parameter vector is

θ(k) = (λ1, · · · , λk , v1, · · · , vk , σ2) (7)

where λi , vi are the eigenvalues and eigenvectors of R.
The number of free-adjusted parameters is k(2nR − k) + 1.
[Wax, Kailath 1985]: The estimate of the number of signals is

n̂T = arg min
k∈{0,...,kmax}

log

(
1

nR−k
∑nR

i=k+1 li∏nR

i=k+1 li
1/(nR−k)

)(nR−k)nS

+ L(k(2nR − k), nS)} (8)

where li are the ordered eigenvalues of the SCM.
Good performance for a sufficiently large number of observations nS.
Performance degradation for small sample sizes.



Main contributions

Exact distribution of the eigenvalues of the SCM for the Gaussian
multivariate case for population covariance matrix (PCM) with
eigenvalues of arbitrary multiplicities. This problem is of large
interest in multivariate statistical analysis and only approximate
solutions, valid for large number of samples or large dimensions of
the observed vectors, were previously known [Anderson, Muirhead].

The exact ML estimate of the PCM eigenvalues.

New method to estimate the number of sources embedded in
Gaussian noise by means of information-theoretic criteria model
order selection.

Numerical results.



Exact distribution of the eigenvalues of the SCM

Lemma

Let Ỹ ∼ CN nR,nS (0, InR , InS) and let R be an nR × nR positive definite
matrix. The joint p.d.f. of the (real) non-zero ordered eigenvalues
l = (l1, . . . , lnmin) of the nS × nS quadratic form Ỹ†RỸ or of the nR × nR

Wishart matrix R1/2ỸỸ†R1/2 is given by

f(l;µ,m) = K (µ,m) det V(l) det G(l;µ,m)

nmin∏
i=1

lnS−nmin

i (9)

where nmin = min(nR, nS), V(l) is the Vandermonde matrix,

K(µ,m) = (−1)nS(nR−nmin)

Γ(nmin)(nS)
∏L

i=1 Γ(mi )(mi )

∏L
i=1 µ

mi nS
(i)∏

i<j(µ(i)−µ(j))
mimj , Γ(m)(a) ,

∏m
i=1(a− i)! and the

vector µ = (µ(1), . . . , µ(L)) contains the L distinct ordered eigenvalues of R−1, with
corresponding multiplicities described by the vector m = (m1, . . . ,mL).
The nR × nR matrix G(l;µ,m) has elements

gi,j =

{ (
−lj
)di e−µ(ei ) lj j = 1, . . . , nmin

[nR − j]di µ
nR−j−di
(ei )

j = nmin + 1, . . . , nR
(10)

where [a]k = a(a− 1) · · · (a− k + 1), [a]0 = 1, ei denotes the unique integer such that

m1 + . . .+ mei−1 < i ≤ m1 + . . .+ mei

and di =
∑ei

k=1 mk − i .



ML Estimate of the Eigenvalues of the Sample Cov. Matrix

Lemma

Let Ỹ ∼ CN nR,nS (0, InR , InS) and let R ∈ CnR×nR be the a positive definite
matrix having L unknown distinct eigenvalues λ(1) > . . . > λ(L) with
known multiplicities m = (m1, . . . ,mL). The ML estimates of the
eigenvalues of R, based on the observation of a given instantiation of the
nS × nS quadratic form Ỹ†RỸ having non-zero ordered distinct
eigenvalues l̃ = (̃l1, . . . , l̃nmin), are given by

λ̂(i) =
1

µ̂(L−i+1)
, i = 1 . . . , L

where

(µ̂(1), . . . , µ̂(L)) = arg max
µ

∣∣∣K (µ,m) det G(̃l;µ,m)
∣∣∣

the maximum is taken over all vectors µ = (µ(1), . . . , µ(L)) with
µ(1) > . . . > µ(L).



New Methods for Estimating the Number of Sources

Lemma

The estimate of the number of sources based on information criteria and
considering the exact eigenvalues distribution of the SCM in Lemma 1 is

n̂T = arg min
k∈{0,...,kmax}

{
− log

∣∣∣K(µ̂(k),m(k)) det G(̃l; µ̂(k),m(k))
∣∣∣+ L(k, nS)

}
where m(k) = (nR − k , 1, 1, . . . , 1), and the elements of

µ̂(k) = (µ̂
(k)
(1) , . . . , µ̂

(k)
(k+1)) are the ML estimates of the k + 1 distinct

eigenvalues of R−1 in the hypothesis of k signal sources.



Numerical results

(n. RX antennas, n. samples) New (EXBIC) BIC [WaxKai:85] NE [NadEde:08]

(6,6) 0.0218 0.5672 0.0348
(6,8) 0.0198 0.1014 0.0352
(8,8) 0.0140 0.2962 0.0362

(16,16) 0.0038 0.0026 0.0478

Table : Probability of False Alarm, kmax = nR − 1.

New: EXBIC, EXAIC. Literature: AIC, BIC [Wax, Kailath 1985], NE
[Nadakuditi, Edelman 2008]



Numerical results
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Figure : nR = 8 RX antennas, nT = 6 sources, nS = 8 samples.
New: EXBIC, EXAIC. Literature: AIC, BIC [WaxKai:85], NE [NadEde:08]



Numerical results
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Figure : nR = 8 RX antennas, nT = 1 source, nS = 8 samples.
New: EXMDL. Literature: AIC, MDL/BIC [WaxKai:85], ED [NadEde:08]



Example of observed samples (3 RX antennas, only real
parts)

2 4 6 8

-1.5

-1.0

-0.5

0.5

1.0

1.5

2 4 6 8

-0.8

-0.6

-0.4

-0.2

0.2

2 4 6 8

-1.5

-1.0

-0.5

0.5

Figure : nT = 2 sources, nS = 8 samples, SNR = 0 dB



Numerical Results
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Figure : nR = 2 RX antennas, nS = 4 samples. The number of sources
nT is random over the set {0, 1, . . . ,min(nS, nR)− 1}.



Numerical Results
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Figure : nR = 4, nS = 8. The number of sources nT is random over the
set {0, 1, . . . ,min(nS, nR)− 1}.



Numerical Results
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Figure : nR = 8, nS = 16. The number of sources nT is random over the
set {0, 1, . . . , nR − 1}.



Conclusions

Found the exact distribution of the eigenvalues of the sample
covariance matrix for the multivariate Gaussian case

Proposed a new method for estimating the number of signals
embedded in Gaussian noise

The new method has good performance even with a small number
of observations
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