Graduate School in Information Engineering: Ph.D. program
Department of Information Engineering
University of Padova

Course Catalogue
2015
Requirements for Ph.D. Students of the Graduate School of Information Engineering:

1. Students are required to take courses from the present catalogue for a minimum of 80 hours (20 credits) during the first year of the Ph.D. program.

2. Students are required to take for credit at least one out of the following three basic courses “Applied Functional Analysis”, “Applied Linear Algebra”, and “Statistical Methods” during the first year of the Ph.D. program. Moreover, the other two courses are strongly recommended to all students.

3. After the first year, students are strongly encouraged to take courses (possibly outside the present catalogue) for at least 10 credits (or equivalent) according to their research interests.

Students have to enroll in the courses they intend to take at least one month before the class starts. To enroll, it is sufficient to send an e-mail message to the secretariat of the school at the address calore@dei.unipd.it

Students are expected to attend classes regularly. Punctuality is expected both from instructors and students.

Instructors have to report to the Director of Graduate Studies any case of a student missing classes without proper excuse.
Contents

1. Advanced Topics in Computational Biology, Prof. F. Vandin 5
2. Applied Functional Analysis, Prof. G. Pillonetto 7
3. Applied Linear Algebra, Prof. G. Picci 9
4. Applied Machine Learning in Biomedicine, Prof. E. Grisan 10
5. Bayesian Machine Learning, Prof. G.M. Di Nunzio 11
6. Computational Inverse Problems, Prof. F. Marcuzzi 13
7. Digital Processing of Measurement Information, Prof. C. Narduzzi 14
8. Fluid mechanics for the functional assessment of cardiovascular devices, Prof. F.M. Susin 15
10. Introduction to Quantum Optics, Quantum Information and Quantum Communications, Prof. P. Villoresi and Prof. G. Vallone 19
11. Mathematical modeling of cell Biology, Prof. M. Pedersen 21
12. Physics and operation of heterostructure-based electronic and optoelectronic devices, Prof. G. Meneghesso 22
13. Real-Time Systems and applications, Prof. G. Manduchi 23
14. Resonant converters and inverters: topologies and modeling, Prof. G. Spiazzi 24
15. Statistical Methods, Prof. L. Fineso 25
The FFT and its use in digital signal processing, Prof. S. Pupolin

Tissue Engineering: Principles and Applications, Prof. A. Bagno
1 Advanced Topics in Computational Biology

Instructor: Fabio Vandin, e-mail: vandinfa@cs.brown.edu

Aim: To provide the students with an understanding of the computational problems that arise in selected areas of computational biology, and of the state-of-the-art methods to solve such problems. The course focuses on problems that arise in the analysis of high-throughput biological datasets.

Topics:

- Mutation Detection from Sequencing Data: sequencing technologies, the mutation detection problem, algorithms for mutations detection;
- Mutations and Diseases: finding single mutations associated with diseases; interaction networks and groups of mutations associated with diseases; de novo discovery of groups of mutations associated with diseases;
- Genetic Heterogeneity: genetic heterogeneity in populations and diseases; genetic heterogeneity and sequencing technologies; detecting genetic heterogeneity from sequencing data; reconstructing the evolution of cancer genomes;
- Inferring Haplotypes from Sequencing Data: inferring haplotype frequencies in populations; haplotype assembly from sequencing data.

References: The following articles provide basic background material:

Additional research articles for the specific topics will be made available on the course website.

Time table: Course of 20 hours (2 lectures per week, 2 hours per lecture). Class meets every Tuesday and Thursday from 2:30pm to 4:30pm. First lecture on Tuesday, October 6, 2015. Room DEI/G, 3-rd floor, Dept. of Information Engineering, via Gradenigo Building.

Course requirements: basic knowledge of algorithms; basic knowledge of probability. (No biology background is assumed; necessary background will be introduced in lectures and reading.)
Examination and grading: Each student is required i) to present and lead the discussion of one or more research paper in class, and ii) to submit short reviews of the papers before they are presented and discussed in class. The grade is based on i) participation in class, ii) paper presentations, and iii) paper reviews.
2 Applied Functional Analysis

Instructor: Prof. G. Pillonetto, Dept. Information Engineering, University of Padova, e-mail: giapi@dei.unipd.it

Aim: The course is intended to give a survey of the basic aspects of functional analysis, operator theory in Hilbert spaces, regularization theory and inverse problems.

Topics:

Course requirements:

1. The classical theory of functions of real variable: limits and continuity, differentiation and Riemann integration, infinite series and uniform convergence.

2. The arithmetic of complex numbers and the basic properties of the complex exponential function.

3. Some elementary set theory.

All the necessary material can be found in W. Rudin’s book Principles of Mathematical Analysis (3rd ed., McGraw-Hill, 1976). A summary of the relevant facts will be given in the first lecture.
References:

Time table: Course of 28 hours (2 two-hours lectures per week): Classes on Tuesday and Thursday, 10:30 - 12:30. First lecture on Tuesday September 22nd, 2015. Room DEI/G, 3-rd floor, Dept. of Information Engineering, via Gradenigo Building.

Examination and grading: Homework assignments and final test.
3 Applied Linear Algebra

Instructor: Giorgio Picci, University of Padova, Italy e-mail: picci@dei.unipd.it

Aim: We study concepts and techniques of linear algebra that are important for applications with a special emphasis on linear Least Squares problems, their numerical treatment and their statistical interpretation. A wide range of exercises and problems will be an essential part of the course and constitute homework required to the student.

Topics:

1. Review of some basic concepts of L.A. and matrix theory
2. Deterministic Least Squares and the projection theorem
3. Statistical Least squares
4. Numerical treatment of Least Squares problems and regularization techniques

References:

[1] Gilbert Strang’s linear algebra lectures, from M.I.T. on You Tube
[2] Notes from the instructor

Course requirements: A good working knowledge of basic notions of linear algebra as for example in [1]. Some proficiency in MATLAB.

Examination and grading: Grading is based on homeworks or a written examination or both.

4 Applied Machine Learning in Biomedicine

Instructor: Enrico Grisan, e-mail: enrico.grisan@dei.unipd.it

Aim: The course will introduce advanced topics in machine learning and pattern recognition and how they apply to real world problems. In this course we will present the mathematical background of some classification/regression tools, and show the pros and cons of their application to biomedical problems with extensive case studies.

Topics:

- Introduction to classical machine learning problems.
- Linear models for classification.
- Neural Networks
- Kernel methods and Support Vector Machine
- Sparse coding (if time allows)

References:

Course requirements: Basics of probability theory. Basics of Matlab programming. The course "Bayesian Machine Learning" is suggested.

Examination and grading: Homework assignments and final project.
5 Bayesian Machine Learning

Instructor: Giorgio Maria Di Nunzio, e-mail: dinunzio@dei.unipd.it

Aim: The course will introduce fundamental topics in Bayesian reasoning and how they apply to machine learning problems. In this course we will present pros and cons of Bayesian approaches and we will develop a graphical tool to analyse the assumptions of Bayesian approaches in practical problems.

Topics:

- Introduction of classical machine learning problems.
 - Mathematical framework
 - Supervised and unsupervised learning
- Bayesian decision theory
 - Two-category classification
 - Minimum-error-rate classification
 - Bayes risk
 - Decision surfaces
- Estimation
 - Maximum Likelihood Estimation
 - Bayesian estimation
- Graphical models
 - Bayesian networks
 - Two-dimensional probabilistic model
- Evaluation
 - Measures of accuracy
 - Statistical significance testing

References:

Time table: Course of 20 hours. Class meets every Tuesday and Thursday from 10:30 to 12:30. First lecture on Tuesday, 11th November, 2014. Room DEI/G, 3-rd floor, Dept. of Information Engineering, via Gradenigo Building.

Course requirements: Basics of Probability Theory. Basics of R Programming.

Examination and grading: Homework assignments and final project.
6 Computational Inverse Problems

Instructor: Fabio Marcuzzi, Dept. of Mathematics, University of Padova e-mail: marcuzzi@math.unipd.it

Aim: We study numerical methods that are of fundamental importance in computational inverse problems. Real application examples will be given for distributed parameter systems. Computer implementation performance issues will be considered also.

Topics:

- definition of inverse problems, basic examples and numerical difficulties.
- numerical methods for QR and SVD and their application to the square-root implementation in PCA, least-squares, model reduction and Kalman filtering; recursive least-squares;
- regularization methods;
- numerical algorithms for nonlinear parameter estimation: Gauss-Newton, Levenberg-Marquardt, back-propagation (neural networks), adjoint model (VDA);
- examples with distributed parameter systems;
- HPC implementations and parallel implementations on GPUs;

References:

Course requirements:

- basic notions of linear algebra and, possibly, numerical linear algebra.
- the examples and homework will be in Python (the transition from Matlab to Python is effortless).

Examination and grading: Homework assignments and final test.
7 Digital Processing of Measurement Information

Instructor: prof. Claudio Narduzzi – Department of Information Engineering, University of Padua
e-mail: claudio.narduzzi@unipd.it

Aim: provide tools and methods for advanced analysis and accuracy assessment of measurement
information obtained from experimental data.

Topics:

- uncertainty, quantisation and the additive noise stochastic model: a reappraisal
- characterisation of digitisers and data acquisition systems
- signal processing algorithms in measurement: statistical properties of discrete Fourier transform-
based spectral estimators, least squares regression and the Cramer-Rao bound
- compensation of measurement system dynamics: dealing with inverse problems and ill-
posedness
- an application of multi-resolution analysis in measurement - characterization of clock stability
- model-based measurement and compressive sensing
- evaluation of uncertainty in measurement: the probability-based approach and its recent
developments

References:
Lecture notes and selected reference material will be handed out during the course.

Time table: Course of 16 hours.

Class meets every Tuesday and Friday from 10:30 to 12:30. First lecture on Friday, April 10th,

Course requirements: no specific requirement.

Examination and grading: presentation of report on pre-assigned argument.
8 Fluid mechanics for the functional assessment of cardiovascular devices

Instructor: Francesca Maria Susin, Dept. ICEA, University of Padua, e-mail: francescamaria.susin@unipd.it

Aim: The course is intended to give a survey of research approaches for the assessment of cardiovascular medical devices. Emphasis will be given to methods and techniques adopted for in vitro analysis of hemodynamic performance of prosthetic heart valves and total artificial heart.

Topics: Review of basic fluid mechanics concepts. Fluid mechanics of prosthetic heart valves (PHVs) and ventricular assist devices (VADs). Pulse duplicators for in vitro testing of PHVs and mock circulation loops for pre-clinical evaluation of VADs. Experimental techniques for the assessment of PHVs and VADs performance. CFD for functional assessment of PHVs and VADs.

References:

Time table: Course of 16 hours. Lectures (2 hours) on Wednesday 4:00 – 6:00 PM, starting on Wednesday, November 5, 2014 and ending on Wednesday, December 17, 2014; plus the last

Course requirements: Fundamentals of Fluid Dynamics.

Examination and grading: Homework assignment with final discussion.
9 Information theoretic Methods in Security

Instructor: Nicola Laurenti, Department of Information Engineering, Univ. of Padova, e-mail: nil@dei.unipd.it

Aim: To provide the students with an information theoretic framework that will allow formal modeling, and understanding fundamental performance limits, in several security-related problems

Topics: Topics will be chosen, according to the students’ interests from the following list:

- Measuring information. Review of basic notions and results in information theory: entropy, equivocation, mutual information, channel capacity.

- Secrecy without cryptography. The wiretap channel model. Rate-equivocation pairs. Secrecy capacity for binary, Gaussian and fading channel models.

- Security from uncertainty. Secret key agreement from common randomness on noisy channels. Information theoretic models and performance limits of quantum cryptography.

- A different approach. Secrecy capacity from channel resolvability. Secret-key capacity from channel intrinsic randomness.

- The gossip game. Broadcast and secrecy models in multiple access channels. The role of trusted and untrusted relays.

- Writing in sympathetic ink. Information theoretic models of steganography, watermarking and other information hiding techniques.

- The jamming game. Optimal strategies for transmitters, receivers and jammers in Gaussian, fading and MIMO channels.

- Leaky buckets and pipes. Information leaking and covert channels. Timing channels.

- The dining cryptographers. Privacy and anonymity. Secure multiparty computation.

- Information theoretic democracy. Privacy, reliability and verifiability in electronic voting systems.

- Alea iacta est. Secure and true random number generation. Randomness extractors and smooth guessing entropy.

- The Big Brother. An information theoretic formulation of database security: the privacy vs utility tradeoff.

References:

A short list of reference papers for each lecture will be provided during class meetings.

Time table: Course of 20 hours (two lectures of two hours each per week). Class meets every Tuesday and Friday from 2:30 to 4:30, starting on Tuesday, November 11-th, 2014. Meeting Room DEI/G (3-rd floor, Dept. of Information Engineering, via Gradenigo Building).

Course requirements: Basic notions of Information Theory.

Examination and grading: Each student must submit a project, and grading will be based on its evaluation. I encourage students to work from an information theoretic point of view on a security problem related to their research activities.
Introduction to Quantum Optics, Quantum Information and Quantum Communications

Instructors: Paolo Villoresi, e-mail: paolo.villoresi@unipd.it
Giuseppe Vallone, email: vallone@dei.unipd.it

Aim: The Course is intended to provide the basic concepts of Quantum Information and Quantum Communications. It will start with review of the underlying concepts of quantum physics. It will be followed by the discussion of entanglement, quantum interference, quantum computation, and quantum communication. Specifics of practical implementation of quantum bits and quantum logic gates in different physical environments will be considered. Existing problems of experimental implementation associated with detrimental effects of decoherence will be discussed. The second part of this course is intended to provide the overview of novel technological approaches based on the use of quantum correlations and quantum entanglement. Specifics of optical implementation of qubits and linear-optical quantum gates will be discussed. This course will review specific concepts of quantum-optical state engineering and design of non-traditional quantum measurement devices that outperform their classical counterparts. Several such novel approaches as quantum imaging, super-resolution quantum phase measurement, dispersion cancelation, and correlated imaging and microscopy will be discussed.

The Course is the organized within the research group QuantumFuture
web: quantumfuture.dei.unipd.it.

Topics:

1. Review of Quantum Mechanics;
2. quantization of EM field;
3. statistics of radiation;
4. entanglement: definition and measure;
5. quantum interferometry;
6. principles of quantum computation and quantum key distribution.
7. Generation and tomography of entangled states;
8. linear-optical quantum state engineering;
9. teleportation and entanglement swapping
10. integrated quantum optics: example of quantum algorithm
11. Propagation of single photon beam along long channels and toward the Space.
12. Quantum Communications in Space.

References:
C. Gerry, P. Knight, “Introductory Quantum Optics”, (Cambridge 2005)

Vlatko Vedral “Introduction to Quantum Information Science” (Cambridge 2006)

Additional reading:

M. A. Nielsen and I. L. Chuang “Quantum Computation and Quantum Information” (Cambridge 2010)

Time table: Course of 20 hours. Class meets every Tuesday and Friday from 2:30 to 4:30. First lecture on Tuesday, March 10, 2015. Meeting Room DEI/G, 3-rd floor, Dept. of Information Engineering, via Gradenigo Building.

Course requirements: Basic concept of Quantum Physics.

Examination and grading: Homworks on selected topics.
11 Mathematical modeling of cell Biology

Instructor: Morten Gram Pedersen, Department of Information Engineering, University of Padova, e-mail: pedersen@dei.unipd.it

Aim: The aim of this course is to provide an introduction to commonly used mathematical models of cellular biology. At the end of the course, the students should be able to build models of biological processes within the cell, to simulate and analyze them, and to relate the results back to biology. The focus will be on electrical activity and calcium dynamics in neurons and hormone-secreting cells, but will also discuss models of other cellular processes occurring in other cell types.

Topics: Biochemical reactions; Ion channels, excitability and electrical activity; Calcium dynamics; Intercellular communication; Spatial and stochastic phenomena (if time allows); Contractions in muscles; Circadian rhythms; Qualitative analysis of nonlinear differential equations.

References: The following books will provide the core material, which will be supplemented by research articles:

Time table: Course of 20 hours (2 two-hours lectures per week). Class meets every Monday and Wednesday from 10:30 to 12:30. First lecture on Tuesday, October 5, 2015. Room DEI/G, 3-rd floor, Dept. of Information Engineering, via Gradenigo Building.

Course requirements: Basic courses of linear algebra and ODEs. Basic experience with computer programming. Knowledge of cellular biology is not required.

Examination and grading: Final project.
12 Physics and operation of heterostructure-based electronic and optoelectronic devices

Instructors: G. Meneghesso, E. Zanoni, M. Meneghini, F.A. Marino, Dept. Ingegneria dell’Informazione (DEI), University of Padova, e-mail: gauss@dei.unipd.it, zanoni@dei.unipd.it

Aim: this course provides an introduction to the physics and operating principles of advanced electronic and optoelectronic devices based on compound semiconductors. These devices are particularly important for several applications: high electron mobility transistors (HEMTs) represent excellent devices for the realization of high frequency communication systems, radars, satellite applications, and high efficiency power converters. On the other hand, LEDs and lasers are high-efficiency monochromatic light sources, that can be used both for lighting applications (with a considerable energy saving), in the biomedical field, and in photochemistry.

To understand the capabilities of this technology, and to be able to design advanced systems based on LEDs, lasers and HEMTs, it is important to study the physics and the operating principles of these devices. This course will focus on the main aspects related to the physics of heterostructures, on the recombination processes in semiconductors, on carrier transport in heterostructures, on the structure and operating principles of MESFET, HEMTs, GITs, on the trapping and reliability in compound semiconductor devices, on the operating principles of LEDs and lasers, and on parasitics and reliability in LEDs and lasers.

Topics:
1. physics of heterostructures, band diagrams, carrier transport in heterostructures;
2. recombination processes in semiconductors;
3. properties of compound semiconductors;
4. basic structure of heterojunction transistors, MESFET, HEMT, GIT;
5. trapping, parasitics and reliability in heterojunction based transistors;
6. operating principles of LEDs and lasers;
7. parasitics and reliability in LEDs and lasers;
8. methods for advanced characterization of heterojunction based devices;

References:

Course requirements: Introductory course of device physics: Microelectronics, Optoelectronic and Photovoltaic Devices

Examination and grading: Written test at the end of the course
13 Real-Time Systems and applications

Instructor: Gabriele Manduchi, Consiglio Nazionale delle Ricerche
e-mail: gabriele.manduchi@igi.cnr.it

Aim: The course will provide an insight in the realm of real-time system. Knowledge in this field is normally fragmented and scattered among different engineering disciplines and computing sciences, and the the aim of the course is present aspects related to theory and practice in a way which is holistic enough to prepare graduates to embark on the development of real-time systems, frequently complex and imposing safety requirements. For this reason, after presenting in the first part of the course a surveys of related topics, including scheduling theory and real-time issues in operating systems, the control system of a Nuclear Fusion experiment will be presented as Use Case and analyzed in the second part of the course.

Topics:

- Concurrent Programming Concepts: the role of parallelism and multithreading, deadlocks, interprocess communication, network communication.
- Real-time scheduling analysis: task-based scheduling, schedulability analysis based on utilization, schedulability analysis based on response time analysis, task interaction and blocking.
- Internal structures and operating principles of Linux real-time extensions.
- Data Acquisition systems: general concepts and architectures.
- An introduction of massive parallel operation in real-time applications using GPUs.
- Analysis of a real-time control system for nuclear fusion experiment.

References:

Time table: Course of 20 hours. Class meets every Tuesday and Thursday from 8:30 to 10:30. First lecture on Tuesday, January 20, 2015. Room DEI/G (3-rd floor, Dept. of Information Engineering, via Gradenigo Building).

Course requirements: Basic knowledge of Operating System concepts.

Examination and grading: Each student will develop a case study, possibly related to his/her own research activity, addressing some topic presented in the course.
Resonant converters and inverters: topologies and modeling

Instructor: Giorgio Spiazzi, e-mail: spiazzi@dei.unipd.it

Aim: the increased demand for more efficient and compact power supplies for a variety of applications together with the availability of faster switching devices, has pushed the switching frequency of modern power supply from tens of kilohertz toward the megahertz range. At such frequency values, the corresponding switching losses become unacceptable and soft-commutations become mandatory. In this contest, resonant converter and inverter topologies have been rediscovered as valid alternative to classical PWM topologies. The aim of this course is to provide basic knowledge of resonant converter topologies, their operation as well as their modeling and control, together with suggestions on the best design procedures for different applications.

Topics:

1. Switching losses in Pulse Width Modulated converters.
2. Basic dc-dc resonant converter topologies.
 - state-plane analysis;
 - fundamental component analysis.
3. LLC resonant converter.
4. Bidirectional resonant converters (Dual Active Bridge).
5. LCC resonant inverter for fluorescent lamps.

References:

[1] lecture notes and written material on specific topics

Time table: Course of 20 hours. Class meets every Tuesday and Fryday from 10:30 to 12:30. First lecture on Tuesday, June 4th, 2015. Meeting room DEI/G, 3rd floor, Dept. of Information Engineering (via Gradenigo building).

Course requirements: basic knowledge of Power Electronics.

Examination and grading: homework and final examination.
15 Statistical Methods

Instructor: Lorenzo Finesso, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, IEIIT-CNR, Padova, e-mail: lorenzo.finesso@unipd.it

Aim: The course will present a small selection of linear statistical techniques which are widespread in applications. The unifying power of the information theoretic point of view will be stressed.

Topics:

Background material. The noiseless source coding theorem will be quickly reviewed in order to introduce the basic notions of entropy of a probability measure and informational divergence (Kullback-Leibler distance) between two probability measures.

Divergence minimization problems. Three divergence minimization problems will be posed and, on simple examples, they will be connected with basic methods of statistical inference: ML (maximum likelihood), ME (maximum entropy), and EM (expectation-maximization). We will solve some instances of the ME problem to show the interplay between linear and exponential families of probability measures.

Multivariate analysis methods. Linear regression analysis: OLS ordinary least squares and related methods: GLS (generalized least squares), TLS (total least squares). Connection with ML under Gaussian assumptions and the Gauss Markov theorem. PCA (principal component analysis) for empirical data and random vectors: position of the problem, derivation of the solution, geometrical interpretation. Applications of PCA to least squares: PCR (principal component regression) and PLS (partial least squares). Approximate matrix factorization and PCA, with a brief detour on the approximate Nonnegative Matrix Factorization (NMF) problem. Canonical Correlations (CC): position of the problem and derivation of the solution. Factor Analysis: position of the problem. For most of these methods there is a natural interpretation in terms of divergence minimization which will be reviewed.

EM methods. The Expectation-Maximization method will be introduced as an algorithm for the computation of the Maximum Likelihood (ML) estimator with partial observations (incomplete data) and interpreted as an alternating divergence minimization algorithm à la Csiszár Tusnády.

Hidden Markov models. We will introduce the simple yet powerful class of HMM (hidden Markov models) and discuss parameter estimation for HMMs via the EM method.

References: A set of lecture notes and a list of references will be posted on the web site of the course.

Time table: Course of 24 hours (two lectures of two hours each per week). Class meets every Monday and Wednesday from 2:30 to 4:30, starting on Monday, April 20-th, 2015. Meeting Room DEI/G (3-rd floor, Dept. of Information Engineering, via Gradenigo Building).

Course requirements: Basics of Probability Theory and Linear Algebra.
Examination and grading: homework assignments and take-home exam.
16 The FFT and its use in digital signal processing

Instructor: Prof. S. Pupolin, Dept. Information Engineering, University of Padova,
e-mail: pupolin@dei.unipd.it

Aim: The course is intended to give a survey of the basic aspects of signal domains and the effects in digital signal processing in terms of signal distortion.

Topics:

1. Review of some notions on Fourier Transform in different time domains (continuous and discrete; aperiodic and periodic). The FFT.
2. Definitions and properties of signal energy, convolution, correlation in the time domains and their Fourier transforms
4. Numerical computation of the Fourier transform of a continuous-time finite energy signal via FFT
5. Numerical computation of the convolution (correlation) of two continuous-time finite energy signals via FFT.
6. Bandlimited continuous time signal filtering: from analog filters to a mix of analog and digital filters.
7. Example of applications: OFDM modulation and cyclic prefix.
8. Estimate of power spectrum for finite power signals. From definitions to numerical computation.

Course requirements:
Basic knowledge of signals and systems.

References:
All the necessary material can be found in G. Cariolaro book: "Unified Signal Theory", (Springer-Verlag, London 2011).

Time table: Course of 20 hours (2 two-hours lectures per week): Classes on Monday 2:30 – 4:30 and Wednesday, 10:30 – 12:30. First lecture on November 10-th, 2014. There will be no lecture on November 19-th and 26-th. Room 318 DEI/G (3-rd floor, Dept. of Information Engineering, via Gradenigo Building).

Examination and grading: Homeworks and final exam.
17 Tissue Engineering: Principles and Applications

Instructor: Andrea Bagno, Department of Industrial Engineering, University of Padova. e-mail: andrea.bagno@unipd.it

Aim: The course will provide the basic knowledge of materials and methods for tissue engineering (TE) techniques. The course will also present some practical applications with regard to the production of engineered tissues.

Topics:
1. Fundamentals of TE.
2. Engineering biomaterials for TE.
4. Regeneration templates.
5. TE of biological tissues (cartilage, heart valves, bone).

References:

Other material and research papers will be available online for download.

Course requirements: Basic courses of chemistry, biology and physiology, biomaterials.

Examination and grading: Homework assignments and final test.
<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>Ognissanti</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>14:30 Pupolin</td>
<td>10:30 Di Nunzio</td>
<td>10:30 Pupolin</td>
<td>10:30 Di Nunzio</td>
<td>10:30 Di Nunzio</td>
<td>14:30 Laurenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>14:30 Pupolin</td>
<td>10:30 Di Nunzio</td>
<td>16:00 Prof. Susin</td>
<td>10:30 Di Nunzio</td>
<td>14:30 Laurenti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>14:30 Pupolin</td>
<td>10:30 Di Nunzio</td>
<td>16:00 Prof. Susin</td>
<td>10:30 Di Nunzio</td>
<td>14:30 Laurenti</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
December 2014

Festività italiane

<table>
<thead>
<tr>
<th>Day</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14:30 Pupolin</td>
</tr>
<tr>
<td>2</td>
<td>10:30 Di Nunzio 16:00 Prof. Susin</td>
</tr>
<tr>
<td>3</td>
<td>10:30 Di Nunzio 14:30 Laurenti</td>
</tr>
<tr>
<td>4</td>
<td>14:30 Laurenti</td>
</tr>
<tr>
<td>5</td>
<td>14:30 Laurenti</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10:30 Di Nunzio 14:30 Laurenti</td>
</tr>
<tr>
<td>9</td>
<td>10:30 Pupolin 16:00 Prof. Susin</td>
</tr>
<tr>
<td>10</td>
<td>10:30 Di Nunzio 16:00 Prof. Susin</td>
</tr>
<tr>
<td>11</td>
<td>14:30 Laurenti</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14:30 Pupolin</td>
</tr>
<tr>
<td>16</td>
<td>16:00 Prof. Susin</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>10:30 Prof. Susin</td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Natale</td>
</tr>
<tr>
<td>25</td>
<td>Santo Stefano</td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Ph.D. Courses: Room DEI/G
<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>08:30</td>
<td>10:30</td>
<td>08:30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Prof. Bagno</td>
<td>Prof. Bagno</td>
<td>Manduchi</td>
<td>Meneghesso</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>10:30</td>
<td>10:30</td>
<td>08:30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Prof. Bagno</td>
<td>Prof. Bagno</td>
<td>Manduchi</td>
<td>Meneghesso</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>08:30</td>
<td>10:30</td>
<td>08:30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Prof. Manduchi</td>
<td>Prof. Bagno</td>
<td>Manduchi</td>
<td>Meneghesso</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>10:30</td>
<td>10:30</td>
<td>08:30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Prof. Bagno</td>
<td>Prof. Bagno</td>
<td>Manduchi</td>
<td>Meneghesso</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>08:30</td>
<td>10:30</td>
<td>08:30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Prof. Manduchi</td>
<td>Prof. Bagno</td>
<td>Manduchi</td>
<td>Meneghesso</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>10:30</td>
<td>08:30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Prof. Marcuzzi</td>
<td>10:30 Prof. Marcuzzi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>10:30</td>
<td>08:30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Ph.D. Courses: Room DEI/G
Festività italiane
Ph.D. Courses: Room DEI/G

<table>
<thead>
<tr>
<th>Date</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>10:30 Prof. Marcuzzi</td>
<td>10:30 Prof. Marcuzzi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>10:30 Prof. Marcuzzi</td>
<td>10:30 Prof. Marcuzzi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>10:30 Prof. Marcuzzi</td>
<td>10:30 Prof. Marcuzzi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
<td>Friday</td>
<td>Saturday</td>
<td>Sunday</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Pasqua</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Lunedì dell'Angelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>Festa della Liberazione</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>Festa del lavoro</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Ph.D. Courses: Room DEI/G

Festività italiane

- 10:30 Prof. Picci
- 14:30 Prof. Vallone and Villaresi
- 10:30 Prof. Narduzzi
- 14:30 Prof. Vallone and Villaresi
- 14:30 Prof. Narduzzi
- 14:30 Prof. Finesso
- 14:30 Prof. Finesso
- 14:30 Prof. Finesso
- 14:30 Prof. Finesso
- 10:30 Prof. Narduzzi
Festività italiane

Ph.D. Courses: Room DEI/G

- **June 2015**
 - **1°** Festa della Repubblica

Calendar

- **Monday**
 - **1°**
 - **4°**
 - **11°**
 - **18°**
 - **25°**

- **Tuesday**
 - **2°**
 - **5°**
 - **12°**
 - **19°**
 - **26°**

- **Wednesday**
 - **3°**
 - **6°**
 - **13°**
 - **20°**
 - **27°**

- **Thursday**
 - **4°**
 - **7°**
 - **14°**
 - **21°**
 - **28°**

- **Friday**
 - **5°**
 - **8°**
 - **15°**
 - **22°**
 - **29°**

- **Saturday**
 - **6°**
 - **9°**
 - **16°**
 - **23°**
 - **30°**

- **Sunday**
 - **7°**
 - **10°**
 - **17°**
 - **24°**
 - **31°**

May 2015

- **May 1st**
- **May 2nd**
- **May 3rd**
- **May 4th**
- **May 5th**
- **May 6th**
- **May 7th**
- **May 8th**
- **May 9th**
- **May 10th**
- **May 11th**
- **May 12th**
- **May 13th**
- **May 14th**
- **May 15th**
- **May 16th**
- **May 17th**
- **May 18th**
- **May 19th**
- **May 20th**
- **May 21st**
- **May 22nd**
- **May 23rd**
- **May 24th**
- **May 25th**
- **May 26th**
- **May 27th**
- **May 28th**
- **May 29th**
- **May 30th**
- **May 31st**
Festività italiane

Ph.D. Courses: Room DEI/G

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10:30 Prof. Spiazzi</td>
<td>10:30 Prof. Spiazzi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Ph.D. Courses: Room DEI/G**
- **Festività italiane**