ISAR GEOMETRY AND SIGNAL
MODELLING



SPOTLIGHT SYNTHETIC APERTURE

* The antenna can be steered in order to increase the synthetic aperture

_, The antenna can be mechanically or
electronically steered

[lluminated area

4
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From SAR to ISAR

e The name Inverse SAR refers to the fact that the synthetic aperture is not formed by
means of the movement of the platform that carries the radar but rather it is formed by

exploiting the movement of the target.

v

v

e The synthetic aperture can be seen as a coherent processing of echoes that comes from
different view angles.

e The inverse synthetic aperture is achieved when there is a variation of the target-radar
aspect angle.
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THE TURNTABLE EXPERIMENT

The turntable experiment can be interpreted as a SAR experiment where the antenna array
is formed along a circular path.
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ISAR SYSTEM GEOMETRY
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EXAMPLES OF ISAR SYSTEMS



FGAN - TIRA

e |nitially used for detecting and tracking
ballistic missiles,FGAN-TIRA is now used as
a powerful ISAR system.

e |t is able to form images of satellites



SCAN MODES

GMTI >5 km/hr MDV, 6 km swath
Maritime 2m @ 12 km swath
12 m @ 48 km swath

Radar Parameters
Frequency 9.8-10.4 GHz
Incidence Angles 45° — 89°
Scan Angles up to 240°
2 Receive Channels

DSTO - INGARA

STRIP MODES

SAR 2 mres, 12 km swath
4 m res, 24 km swath
8 m res, 48 km swath
Full-Pol SAR
4mx1.33mres,
< 8 km swath
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SPOT MODES

SAR 0.3 mres, 1km spot
ISAR 0.3 mres, 1 km spot
Full-Pol SAR-ISAR
0.3 mres, 0.5 km spot
1.0 mres, 1.5 km spot

Dual Pol Antenna




ISAR SIGNAL MODELING
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SIGNAL MODELLING

Transmitted signal (base band representation)
N
ST (f) = ZS (t — kTR ) A (l‘) = Amplitude Modulation

k
S(f) = A(t)exp[jg(t)} 9(1‘) = Phase Modulation
The k-th transmitted pulse
s, (t.k)=s5(t— kT, )= S, (f.k)=S(f Jexp(~j27K/T, )

Amplitude and/or phase modulations are needed in order to obtain wide-band signals
and therefore high range resolution

Phase Modulations are preferred because they do not need linear power amplifiers.
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SIGNAL MODELLING

Received signal (base band representation)

Assumption: the target is composed of ideal independent scatterers

_______

Y

:.: e | ;fi ° .
Sk (t’ k) - as (t - kTR o Ti) M = Number of scattering centres
i=1 |
2 ai — aieﬂ//i
R(t,x
T. = ( Z)
C (4 x,)
S : 2R(t, x,
SR<f»k>=S(f>Zaz-exp{—ﬂ”("fa+ : ﬂ
i=1
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SIGNAL MODELLING

Continuous target

In real scenarios the target must be represented by means of a continuous function in
the spatial domain. Such a function is called target reflectivity.

iaié'(xi) = £(x) where &(x)#0 when xeV

i=1

J = volume where the target is defined

For continuous targets, the received signal can be rewritten in this form:
, 2R\t,x
—JZJIf(kTR + (r.%) dx
C

And the phase associated with the radar-target distance:

- .2R(t.x)
)= -2mf —
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5,(£.k) = S(f) [E(x)enp
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SIGNAL MODELLING

Straight iso-range approximation

A

> — o

(xiayi

Assumption: [ <<r

!

a < 5 degrees

R(xi’yi) :‘R(xi’yi)‘ =i

LLos

R(xiﬂyi) zIa(xiayi)'iLOS
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SIGNAL MODELLING

Static model

X3

————m-

Reference system embedded on the target

The distance between the radar and a generic target scatterer can be represented as
follows:

R(x)= R(x,) i,05 = Ry +X, i,

Therefore, the received signal at the k-th sweep is:
: r
SR(f,k)zS(f)exp{—]Zﬂ( ﬂZa exp( ]—x tLOSj
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SIGNAL MODELLING

Dynamic model (pulsed radar)

When the platform moves along a given trajectory the aspect angle changes. Therefore
the i; 55 changes as well.
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In the dynamic case the received signal at the k—th sweep is:

S.(f.k)=S(f)exp —j2n’f(kTR J Ea exp( Jﬂx zws(kTR))

i=]
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REAL AND APPARENT TARGET
ROTATION

Real rotation

—————

Real rotation
vector

Apparent rotation

; Apparent
“a g rotation ;
% vector ;
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COORDINATE TRANSFORMATION

2D Problem

* The total rotation vector can be seen as a superposition (sum) of the apparent rotation
vector and the target’s own motion rotation vector

Q(kT,)=Q,, (kT )+ Q,, (kT)

y2 A x2
T(x,,x,) Reference system embedded on the
Y1 target
O(kT,) T yy) Reference system centred on the -
> Scene centre and rotating along with the
X
Q(kT, ) ! LOS
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COORDINATE TRANSFORMATION

2D Problem

Coordinate transformation:
o ol

With respectto  T(y,,y,the radar-target LOS i, ,((kT}) is represented by coordinates
(0,1). Therefore, by inverting the coordinate transformation, we obtain the coordinate of

i; os(KTR) relative to the reference system T(x;x,)

sin [H(kTR )]
cos | 0(kT) |

jTa )(kT )=

LOS
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SIGNAL MODELLING

Therefore, the received signal at the k—th sweep is:

S.(f,k) = S(f)exp 2R, (KT )\

—j2:tf(kTR -+

ia,exp{ ]ﬂ x, (i sin[@(kTR)]+x2(i)]cos[6(kTR)]}

Where ( ( ) ( )) are the coordinates of the i-th scatterer.

Let the transformation N7 be defined as

X, :Esin[ﬁ(kTR)
V< Zc

X, = fcos[@ kT, ]

\ C

Therefore, the received signal...

Sz(f k) =5(f)exp|-j2mf ("TR 2 EkTR))

ga, exp{-j2m [ X%, (i) + X,x,(i)]]
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Received Signal Interpretation

In order to give an interpretation of the received signal we will consider the continuous
time and continuous target version of the signal model

S.(f.t)=S(f.t)exp —j2n’f(t+2R+(t)).ff‘g'(x,,xz)exp{—jZJt[Xlxl +X2x2]}dx, dx,

J \ )

1 [ 1 1

Known Phase term associated with ~ 2D-FT of the target distributed
the focusing pont reflectivity

If the last term could be extracted from the received signal, it would be possible to obtain the
reflectivity function of the target, i.e. we would be able to obtain a radar image that is
equivalent to the reflectivity of the target.

Such a result is ideal!!!
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Received Signal Interpretation

Comments

e The knowledge of the reflectivity function FT is only limited to a region of the FT domain

é’(Xl,Xz): _”f(xl,xz)exp {—jZH[Xlxl + szzj}dxl dx, (Xl,Xz)eD

Such a constraint limits the resolution of the radar imaging system

e The target reflectivity function is defined in a 3D space whereas the image is defined in

a 2D space.
§(x1,x2 )= G[g’ (xl,xz,x,j)}

G represents a function that maps the 3D reflectivity function onto the image plane
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ISAR IMAGE FORMATION



IMAGE RECONSTRUCTION

Se(f:t) = S(f.t)exp

JZWf(t + 2R, )) ff&(xl,xz)exp{—jZJt[Xlx, + X)X, ]}dxl dx,

C
2

Steps 3
1. Deconvolution

S (fot)=57(7, t)eXP( j2rft)Se(f:t)

_j 4Jl‘fR ]ff& X, xz)exp{ JZ.‘II‘[X X, + szz]}dx dx,

= exp

2. Motion Compensation

ArfR,(t)] ., /.
~ SR (£1)

S"R(f,t)= exp| J

=ff§(x1,x2)exp{—j2n:X,x1 + X,x, ]}»e:ix1 dx,
3. 2D Inverse Fourier Transform

I(v,v)=2D - IFT{S"(f.1)}
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IMAGE RECONSTRUCTION

Functional Block Scheme Interpretation

Demod
(Range Comp.)

Vv

Radial Motion
Compensation

ISAR Image < FT
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MOTION COMPENSATION

e The operation of Motion Compensation requires the knowledge or the estimation of
the quantity R (7).

* In SAR systems the geometry is generally known and therefore the operation of motion

compensation is not too critical.
Example: for a linear trajectory, the distance between the radar and the scene centre can

be written as:

R (t) = \/r2 +(u(t)—x0 )2

Where x_ is the azimuth coordinate

Nevertheless GPS measurement errors and platform fluctuations must be compensated.

* In ISAR system the geoetry is generally not known. Therefore, a blind motion
compensation must be performed.

Autofocusing techniques
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IMAGE FORMATION

Signal after deconvolution and motion compensation

Se(f.t)= jjf(xl,xz)exp{—jZE[Xlxl +X2x2]} dx,dx,

X,
Fourier domain:

-

2f
X, = » s1n[6? ]

2f
\Xz ccos[é’ (1) ] /3'

The knowledge of the target

reflectiviy in the Fourier domain is
limited by the:

(1) (X)) °

AO = total aspect
angle variation

X

e total aspect angle variation AO
e transmitted signal bandwidth B
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IMAGE FORMATION

The deconvoluted and compensated signal can be rewritten as follows:

S (/1) =J.“‘f(xl,xz)exp{—j27z[)(1x1 +X2x2]} dx,dx, =

:W(XI,X2)I jff(xl,xz)exp{—jbz[)(lxl+X2x2]}dxldx2

—00 —00

Therefore, the complex image that we obtain by means of a 2D-IFT is a filtered
version of the reflectivity:

I (x,%,)=&(x,x,) @@ w(x,x,)

where
w(x,,x,)=2D- IFT[W X, X, )]

is called Point Spread Function (PSF).
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IMAGE FORMATION

Point Spread Function

The point Spread Function is an indicator of the system performance, because it
determines the system resolution.

1 when (X,X,)eD

0 otherwise

W(Xl,Xz):{

Because of a simple property of the Fourier Transform, the larger the domain D, the
narrower the PSF, and therefore, the better the resolution.

Being the domain D related to the parameters B and 48 by means of V¥, it is clear
that the larger the signal bandiwith and the total aspect angle variation, the better
the resolution.

This is the reason why high resolution systems need large bandwidths and large
synthetic aperture, in order to generate a large variation of the aspect angle.
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IMAGE FORMATION

From continuous to discrete

e Almost all the signals employed in modern
systems for radar imaging are discrete signals.

e By referring to our signal model, frequency and
time are discrete and hence the received signal
samples are mapped onto the Fourier domain on
a grid.

e For each aspect angle (radar sweep) one sample
is collected for each transmitted frequency.
ThAavaAafara +lhhA ciminal carmairlAac AvrA maarmimnAaA Anlm A
1Hrerciore, uice sigridi sdimnpices dic indppcedud oOll1l d
polar grid. The samples are generally not evenly
spaced because the rotation vector is not

constant.

/)

AB = total aspect
angle variation

M. Martorella - University of Pisa
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IMAGE FORMATION

Numerical problem
e The calculation of the 2D-IFT on a generic domain is too expensive in terms of computational
load. In fact, any calculation of the Fourier Transform is expensive, unless a Fast Fourier
Transform (FFT) technique can be applied.

e The conditions that guarantee a succesful calculation of the FT by means of a FFT are:

e evenly spaced samples
e rectangular grid

e The grid of the signal samples in the Fourier Domain is not rectangular and moreover is
generally not evenly spaced.

e Several solutions to this problem have been proposed. The main solutions are:

e Range-Doppler (directly iplementable)
e Polar Reformatting (requires the knowledge of the effective rotation vector, directly

applicable in turn-table experiments)
e Backprojection (requires the knowledge of the effective rotation vector, directly

applicable in turn-table experiments)
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RANGE-DOPPLER



RANGE DOPPLER

The Range-Doppler (RD) technique can be applied when:

e the total aspect angle variation is small enough (< 5 degrees). In such a condition the
domain W can be approximated by means of a rectangle.

e the grid is evenly spaced. This is achieved when the rotation vector is constant (for
short observation time this is true).

X,

X - 2fsm[9 ]szg) 2/Qt 21,0

& &

g =7cos[9(t)] ~ 7

g -9 S%

fo Central frequency

X
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ISAR Signal Processing

S (f,f) Non-aided S (f’t)

> Motion >

Compensation

Range-Crossrange

Image
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POLAR REFORMATTING



POLAR REFORMATTING

e The aim of the use of Spotlight SAR is to achieve high resolution, therefore the total
aspect angle variation is usually larger than 5 degrees.

e The Range Doppler technique is not applicable because the assumptions on which it is
based are not satisfied.

eThe numerical computation is still the main problem whenever a 2D DFT has to be

calculated on given domain.

Polar Reformatting

e The polar domain is first transformed into a rectangular domain

e The DFT can be performed by means of a FFT
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POLAR REFORMATTING

Transformation from polar grid to regularly spaced rectangular grid

In order to reduce the computational cost, the 2D
interpolation can be performed by means of two 1D
interpolations (keystone):

e the first interpolation is performed along the

coordinate f
e the second interpolation is performed along the

coordinate X
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BACK-PROJECTION



TOMOGRAPHIC APPROACH

e The derivation of the theory for SAR image formation can also be obtained by means
of a tomographic approach.

e Computer Tomography (CT) was first formally suggested by
G. N. Hounsfield in 1972 and found direct application in medical imaging.

e The need to reveal small amounts of abnormal tissues in the middle of healthy tissue
drove the scientist towards the development of CT.

e The analytical formulation of the medical problem and the reconstruction of the SAR
image are formally identical. Therefore, the application of the CT to the problem of

reconstructing SAR images is straightforward.

* In the case of rectilinear trajectory of the platform, the 3D scenario can be simply
derived from the 2D scenario.
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TARGET PROJECTION

2D CASE: Wy

Given a function & (x,)) and a value of the orientation angle 9

the function projection along the angle g can be defined as:

P.g(r)= ”f(x,y)5(xcosg+ysen&—r)dxdy
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TARGET PROJECTION

R r

£(x) f
Bk =
/ x

Py, (r) - ”f(x’ y)5(x cOs '91 +ysen '91 B r)dx dy k target projections, relative to

k different aspect angles, are
collected.

P, (7”)2 Hf(x,y)é‘(xcoségk + ysend, —r)dx dy
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PROJECTION-SLICE THEOREM

Fourier Transform of a projection

Rg(R)z : D (r)e_jz’”R dr =fjj§(x,y)5(xc039+ysen&—r)dxdye_jz”m dr =
Xy

—00

:J. .g(x,y) e—jzz(xcos19+ysen)R dxdy — @(X, Y)‘X:Rcos&

Y=Rsen 4

p,(r) ===p P (R)

X
@ (Xa Y)‘X=R00819

Y=Rsen 9
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FOURIER DOMAIN

By Fourier transforming the /N projections we obtain slices of the Fourier Transform of
the target reflectevity function.

P, (R
Y ( )
Pg (R)
» . 1
X
-
w(X,Y)

Fourier domain where the target
reflectivity function is known
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FOURIER PROPERTY

Relationships between the Fourier Transform and the cartesian to polar coordinate
transformation.

S(xy) <4==p O(X,Y)

I

fp(r,gp) - ®P(R’(D)

g(x’y): JT@(X, Y) ej27r(xX+yY)dXdY @P (R’(D)Q:S = Pg (RX

: (r,go): J. o (R,CD) ejzﬂchos(cb—cv)RdR do| O, (R,(D + 72')(1):9 =P, (—Rj
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BACK-PROJECTION ALGORITHM

Ey)= & (r.0) cﬂ\ j | RO, (R,®) @) gR ddy

§(x,y) _ ];’{]iﬁR‘ {Pg (R)}gzq) ej27rR(xcosCD+ysenCD\)PR:|ch
U

Inverse Fourier Transform of a product of two functions wrt the variable R,
calculated in the coordinate xcos D + ysen ©

o) J P Rl <R>};9 N
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BACK-PROJECTION ALGORITHM

The product in the Fourier domain corresponds to the convolution in the spatial
domain

FT 1[{}93 (R)f, @]xcos®+ysen® = Py (xcosD + ysen @)
« [T DRH =7 ) ‘R‘ :jz%jbzR sgn(R)



BACK-PROJECTION ALGORITHM

« FT! [j27Z'R] = di < Derivative

r
. FT’J[ sgn (R) ] = Hilbert (r) € Hilbert’s Transform
Let 7. (x cos D + ysen CI)) be the filtered projection

99-0 ('XCOSCD T ysen CD) - FT_I {|R| {P‘g (R)}&':q) }xcos®+ysenCD =

1{ | oo (1) @h(r )]}

]272'

g, ()]en()|

r=xcos®+ysen® r=xcos®+ysen®
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BACK-PROJECTION ALGORITHM

The reconstruction of the reflectivity function follows:
§(x,y) = Iq3:® (xcos(l) +ysen(l)) dd
0

In practical scenarios, the number of projections is limited and therefore the integral
must be substituted with a sum.

M=

f(x,y)= qg (xcos 9 +ysend)

i=1

Where f(x,iyl)we reconstructed reflectivity function, which represents an estimation
of the actual function. N is the number of available projections.
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BACK-PROJECTION ALGORITHM

Interpolation: the value of ¥ must be mapped onto values of ¢ according to the cartesian
grid given by the coordinates (x,))

r == t =xcosD, +ysmd,
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BACK-PROJECTION ALGORITHM

Frequency Approach
py (7)
g(xy)
o (r)
49=0, - Do-o,




Target
AY
(6} ()
© 7 >
X
(¢} ()

EXAMPLE

[ P
Set-up

* Stepped frequency radar
* 48 view angles

* 32 tx frequencies
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EXAMPLE

20 40 60 80 100 120 140 160 180 o0 40 0 a0 10n 1o 1an 1A 1an 20 40 60 80 100 120 140 160 180

3 2500
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magnitude (linear)
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Turntable experiment

Set-up

Fully polarimetric radar

~ ~
~ ~
S o
Parameters Value Turntable
f, 9.6 GHz
frequency step 3 MHz
N° transmitted frequencies 221
azimuthal sampling rate 0.05° ] ] o
- No radial motion compensation is needed
N~ sweeps 79
total aspect angle for each file 3.9°
range and cross range resolution | 1 foot
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Turntable experiment

Results

The resolution improves
when using wider aspect
angle variations




JOINT TIME-FREQUENCY ANALYSIS
(JTFA)
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Amplitude (dB)

To R & 4 2 i 2 4 3 5 10 -1a

Range-Doppler Limitation

Q=9eﬂ

Ideal Scatterers

RADAR

At low resolution:

eShort observation time
eConstant Doppler
ecomponents

At high resolution:

eLong observation time
LM Doppler components

[DOPPLER PROFILES

Tob=1.5s

Tob=2.5s

RD Doppler Profile

Amplitude (dB)

RD Doppler Profile

_Fre_ uency (Hz
. v (Hz) M. Martorella - University of Pisa

-4 -2 D 2
Frequency (Hz2)



Fourier Transform and Time-Frequency
Transform

e The Fourier Transform is a powerful tool for analysis of stationary signals, i.e. those
signals that have a stationary frequency signature.

e When the frequency content of a signal varies with respect to time, the Fourier
analysis is not capable to retrieve the time varying frequency content.

e A modification of the Fourier Transform, which is able to track the frequency signature
is the Short Time Fourier Transform (STFT).

S, (f.t)= js(r) w(z—t)exp(—j27f7)dr
Where W(t)s a time window.

e The definition of the time window affects the time and frequency resolutions.

e Unfortunately the two resolution cannot arbitrarily chosen: if we enhance the time
resolution, the frequency resolution is automatically degraded.
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Time-Frequency Trasnform

* In order to enhance the frequency resolution, a long integration time is needed. Therefore,
long time windows are needed.

e [n order to enhance the time resolution, short time windows are needed.

2

e The limits of the STFT can be relaxed by using different Time-Frequency Transforms (TFTs).

e A general TFT is not necessarily linear.

e A particular class of non-linear TFT is the Wigner-Ville (WV) transform, which is a bilinear
transform.

e Following the WV transform, other bilinear transforms have been introduced: Margenau-
Hill, Choi, Pseudo Wigner-Ville, ...

e All these bilinear TFTs have been grouped into a general bilinear class of TFTs by Cohen.
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Time-Frequency Trasnform

Bilinear Time-Frequency Transforms:
the Cohen class Time Frequency Distributions (CTFD)

jot —]a) ]Bu %k _é é
CTFD(t,w)= [[[e"e”**e" K(0,&)s (u 2js(u+2)dudé‘d6?

K(Q,f) Is the kernel of the CTFD. The kernel defines the particular CTFD.

Basic Time-Frequency Transform: Wigner-Ville
W (t,w)=[s* (t — gjs(t + g) e dé

e Non-linear transforms introduce cross-terms (CTs).
e CTs must be eliminated by defining suitable kernels K(&’,f)

Cross-terms:

Smoothed Pseudo Wigner Ville (SPWV)

K(6.5)=F(0)G(¢)

F(@) and G(ﬁ) are generic smoothing windows, such as Hamming, Kaiser,
Gaussian, etc
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Range-Instantaneous Doppler

Si(/51) | Time Sww (/1) [ Motion Sg(f’t): FT
] Windowing ] Compensation 2>t
Ay r,t)
Doppler Profile 6{;}
](Ta‘/) D H « Extraction [* N
I.(7,v) I (z,v, e\ L1235

e The RID differs from the RD technique because of the substitution of the
Fourier analysis with the Time-Frequency Analysis.

e Among all the possible choices of TFTs, the SPWV better solves the trade off between
cancelling the cross-terms and loosing cross-range resolution.

e The narrower the kernel windows, the lower the level of the cross-terms and the worse
the resolution loss.
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Range-Instantaneous Doppler

(Tob=2.5s)

L SMEARED
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Simulation Results

12m -GmAI ® I
e

3m .
0 : s
6m T i i

Geometrical parameters

Geometry

RADAR Parameters

Radar-Target Distance (Km) 15
Target Velocity Direction (degree) 60
Target Oscillation Amplitudes (degree) [1451.125]
Target Oscillation Periods (s) [109.58]
Target Velocity (Knots) 15

Carrier Frequency (GHz) 10
Bandwidth (MHz) 300
Observation Time (s) 0.9
Number of Echoes 256
Number of Range Cells 128
Resolutions
RANGE RESOLUTION (m) 0.5
CROSS-RANGE RESOLUTION (m) 0.3
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Simulation Results

RD Algorithm

RID Algorithm

A

A

=1
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B
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dB

20

30

Simulation Results

Results:
e The scatterer A is

e smeared when the RD algorithm is used
e well focused when the RID algorithm is used

e The RD technique produces a spatially variant response whereas the RID produces

a spatially invariant response

RD PROFILES

RID PROFILES

""""""""""""""""""
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Statistical Analysis

Statistics generation criterion:

eRadar parameters are kept constant
eTarget oscillation amplitudes, periods and initial phases are changed
*The observation time is chosen to have the best resolution

Longer observation time allowed Spatial Resolution Improvement
0 .45 , 095
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(ross-Tange

Real Data Results: Bulk Loader

ISAR image of "bulk" ship by means of RD

250

RD ISAR image

ISAR image of "bulk" ship by RID

s0 RID ISAR image | 200 250
j
10 *

200

250

50 100 150 200 250

down-range
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INTERPRETATION OF ISAR IMAGES



Received Signal Interpretation

From 3D to 2D

* The reference system embedded on the target is totally arbitrary

* The received signal does not depend on the choice of the particular reference system

e

| 2R\1,x, int-li
52(7.)= () Saenp -2 [ar, + ZEB]L e

i=1

o

2R(t’x) dx Distributed

target

kT, +

Sa(f:k)=5(f) [[[&(x){ -2 f

X and Xhave three components, since they represent 3D coordinates
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* The radar is only able to measure time delays and phases

* A target’s rotation around the LOS axis does not produce any time delay or phase
changes in the received signal

The radar is blind to any target’s rotation with respect to the LOS

* An Effective Rotation Vector can be defined as the component of the total rotation vector
that is orthogonal to the LOS

2, (1)=i,()<[20)<, ()]

6 i
i,= LOS
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IMAGE PLANE INTERPRETATION

* The aspect angle variation
* is responsible for the synthetic aperture formation
* is produced by the effective rotation vector

e occurs on the plane orthogonal to the effective rotation vector

A
Image Plane: the image plane can be defined when Qeﬁ (f)
the effective rotation vector direction is constant.
()G~
L,

i

X

Image Plane /
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IMAGE PLANE INTERPRETATION

From 3D to 2D

* The reference system embedded on the target can be chosen as shown in figure

Q,, (kT,) o, (7,) x,=LOS

oy G, )

X=X, X X,
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* By considering a distributed 3D reflectivity function and by choosing the reference system
as previously described, the received signal can be rewritten as follows

Sk (fak): S(f)exp _jzﬂf[kTR T 2 EkTR)}

”j f(xl,xz,x3 )exp{ — —[xl sm[@(kTR )] <k 3%, cos[@(kTR )ﬂ}dxl dx, dx,

* It should be noted that the third coordinate (x;) does not produce any phase change in
the received signal. This is due to fact that the effective rotation vector produces position
changes only on the plane orthogonal to itself.




The integral part can be manipulated as follows:

4

_U &' (x1 Xy,X, )exp{ J _f[xl sm[é’(kTR )] + X, cos[&’(kTR )ﬂ}dxl dx, dx,
= J'Ucf (x1 Xy,X, )a’xJeXp {—] 47zf[x1 sin[@(kTR )] + X, cos[é’(kTR )]]}dxldxz
. ” g(x1 X, )exp{ ]—[xl s1n[6’(kTR )} + X, cos[@(kTR )ﬂ}dxl dx,

The function G that maps the 3D reflectivity function onto a 2D domain is, in facts, a
projection

(v )= GL & (ono )| = [ € oo o,




* It is therefore correct to consider an equivalent 2D reflectivity function in the received
signal

* The 2D reflectivity function is the projection of the 3D (real) reflectivity function onto the
image plane

2 (f.K)=5(f )exp —j27ff[kTR + 2K ngR)]

0%

¢ 2T sin[ (kT )] + Z
1] g(xl,xz)exp{ J y [xlsm[ (kTR)] xzcos[ (kTR)ﬂ}a’xla’x2

* The ISAR image is a linear convolution of the projection of the reflectivity function with
the system PSF

3D Projection Filter ISAR
reflectivity > onto image g (PSF) Image
function plane




RANGE DOPPLER

.........

Point .)prt-_'d Function

Given a transmitted signal bandwidth B and an observation time 7., we can define a
window W(f.,t), which can be related to W(X X))
rect
]-:)bs

By exploiting the relationship between (f,¢) and (X,,X,), we obtain

_ =1
W(f,t)—rec{ 2

2/ |
2 X
W(X,,X,)=rect , rect 1
% 2-f0 obs
| C _ N C _
System PSF ) _
, X ” 214 , X
- 2 2r=Lo
w(xl,x2) sinc B exp(] T ; x2jsmc .
—2B zﬁ) obs |
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RANGE DOPPLER

Point Spread Function

Zeros of the sinc function

\ c/2B
L

2B/c ‘ 2 JoT 582

v

zfé}obsQ

Resolution

-
2B

X, Range Resolution:

c
Cross-range Resolution: .

27 O

obs
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RANGE DOPPLER

Ambiguity
X,
Ox,
0X, 0x,
:XI
*0X, = 1/ Ax, «o0x, = 1/ AX,
o)X, = 1/ Ax, ° Ox,= 1/ AX,
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RANGE DOPPLER

Circular ambiguity - Examples

20 20

40 40
60 60
80 80
100 100

120 120

20 20

40 40
60 60
80 80
100 100

120 120




Differences and analogies between
SAR and ISAR
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SAR and ISAR: is it only a matter of
reference systems?

e |t seems that by simply changing the reference system we can look at synthetic aperture
from a SAR or ISAR point of view.

e The only subtle difference that separates the two worlds is the target cooperativity.

* In ISAR scenarios the target motion is usually not known whereas in SAR scenarios the
area illuminated by the antenna is usually static during the synthetic aperture formation.

e Target cooperation can be seen as system geometry knowledge. The knowledge of the
geometry enables straightforward image formation processing.

e Most of the ISAR image formation techniques deal with the problem of target non-
cooperativity and for this reason they differ from SAR image formation techniques
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SAR and ISAR example

SAR Image with unfocussed ship targets (EMISAR data)

M. Martorella - University of Pisa



SAR and ISAR example

* The target’s own motions are not considered when using a SAR processor
* ISAR imaging must be used to obtain a focussed target

* Focussed ISAR images of the ships can be obtained even starting from the SAR complex
image

Original _ SAR
data " Image

ISAR Data
Sub-image domain
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SAR and ISAR example

Unfocussed ship target Focussed ship target (ISAR
(SAR processed data) processed data)
original - ¥ Refocussed - ¥y
. T . r r — 5 r T . T . —
15
10} 1 L 44 L 145
20 1 4 20 F 4
S (] . L4
304 ' - 0} |
B 3 A 35
40l , - . 40| .
25 3
S0t " = S0t
': 5 (] 25
B0 | 'Il F _ BO | T 5
70| ] 1.5 70| ”
an L 4 1 an | ;
an | 4 ns an | s
100 f , , , , , , , ; " 100 f , , , , , , , ; "
100 200 300 400 =00 600 700 200 100 200 300 400 =00 600 700 200

* The Focussed sub-image has the same number of pixels of the unfocussed sub-image (crop)

* The focussed ISAR sub-image can be reinserted in the original image by replacing the sub-
image crop
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Analogies and differences between
SAR and ISAR
e The name Inverse SAR refers to the fact that the synthetic aperture is not formed by

means of the movement of the platform that carries the radar but it is formed by
exploiting the movement of the target.

v

v

e The synthetic aperture can be seen as a coherent processing of echoes that comes from
different view angles.

e The inverse synthetic aperture is achieved when there is a variation of the target-radar

aspect angle.
M. Martorella - University of Pisa



Analogies and differences between

N A I o™ A ™

SAR dNA IDAR
e Such an insight opens the horizons of SAR to another set of scenarios where the radar
is fixed on the ground and the target moves with respect to it.
e Nevertheless, this view is limited and does not highlight the underlying difference
between SAR and ISAR. In fact, by changing the reference system it is possible to
consider either the radar or the target as fixed and the other moving. Therefore, one
scenario would be completely equivalent to the other.

e The real substantial difference is given by the cooperation of the target.

e  Generally, for a SAR system, the target is cooperative because itis a static
or quasi-static scene and the geometry and cinematic of the radar-target system
is known a-priori.

e  For an ISAR system, the target is non-cooperative and hence the
geometry and cinematic of the system cannot be known a-priori.
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Analogies and differences between
N A I o™ A ™
SAR dNA IDAR
e Because SAR and ISAR systems are equivalent apart from the non-cooperation of the
target, most steps of the signal processing remain unchanged.

e Nevertheless, the non-cooperativity of the target causes a few problems:

e the motion compensation cannot be performed by exploiting the
knowledge of the geometry

e the grid of samples in the Fourier domain is not evenly spaced because the
rotation of the target with respect to the radar is not constant

e the scaling operation along the cross-range coordinate cannot be

performed unless the total aspect angle variation is somehow estimated,
therefore the image is generally scaled in range-Doppler  coordinates
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ISAR IMAGE AUTOFOCUS
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Automatic Motion Compensation

e Because the target is non-cooperative, the motion compensation must be performed
without any external aid.

e Such an operation is also known as: image autofocusing. In fact, the better such an
operation is performed the higher the image focus is.

e Several techniques have been proposed. They can be grouped into two classes:
parametric and non-parametric techniques.

e Parametric techniques make use of a signal model. The parameters of the signal
model have to be estimated in order to achieve the target motion compensation.

e Non-parametric techniques do not make use of any signal model.

The use of either parametric or non-parametric techniques depends on the accuracy and
computational cost required by the specific application.
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Parametric and non-parametric
techniques

Parametric techniques
Image Contrast Based Autofocus

Image Entropy Based Autofocus

Non-parametric techniques
Prominent Point Processing (Hot Spot)

Phase Gradient Autofocus
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Image Contrast Based Autofocusing
(ICBA)
e The implementation of the ICBA requires the definition of a signal model and a
criterion for the estimation of the signal model parameters.

e The ICBA is based on:
e the definition of a polynomial signal phase

e the definition of the Image Contrast (IC)

» By defining a signal model it is possible to estimate the signal phase component
associated with the radial motion of the phase centre.

e The estimation of such a signal phase component is equivalent to the estimation of
the phase centre radial motion, therefore it has the physical meaning of estimating
the radial motion of a single point that belongs to the target.

e The maximisation of the IC will be used as a criterion for optimal estimation of the
radial motion parameters.
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Motion Compensation
(or Image Autofocusing)

Polynomial phase term

Deconvoluted received signal (continuous time, continuous target):

S (f>1) =W(f,t)exp{—j 47Tf jjé(xlﬂx2)exp{_j2ﬂ[X1xl +X2x2]} dx,dx,

N _
—~

N
. k Assumption:
R (=@ @) .
k=1 The image plane must
/ remain unchanged during

Focusing parameters the integration time.

Shift term (radial motion parameters)

e Physical meaning:

*Q, = radial velocity of the phase centre
* o, =radial acceleration of the phase centre
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Shift term

Parameter A, :

e provokes a shift along the range coordinate in the image

e does not affect the image focus

Demonstration:
N
Let Sy (e tpbmpensated by means of , wheRg (t) R (1) = Zaktk

Hence,

520y WL o oo L Ty 21
e 1) ) -

l—)V

=1, BY sinc[ T, Jsinc[ BeJe 7 00 (5 ;
k=1

COQ V) ® ®5(V)5(
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Focusing Parameters

The focusing parameters  prayoke a defocusing of the image

When the demodulated signal is compensated by means of an incorrect phase

N
term Ro(t) = Ztﬁrke{‘ains some residuals of the radial motion. Therefore,
k=1

the reconstructed image is blurred by the effect of the residual phase term.

Arnf L
Sg(f,t)z W[f,t]jjg(xl,xz)exp {—jZE[Xlxl + X x, }dx dx ZGXP{ 7Tf o }
Where ¢, =a, a*éz;he focusing parameter residuals.

Hence, the reconstructed complex image is
Defocusing term

I (T’ V): TobngSinC[Tobs V]Sinc[ Br]e‘fzﬂfof
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Image Focus and Image Contrast

* In order to maximise the image focus, the focusing parameter residuals (estimation
errors) must be minimised.

e Optimal estimation techniques can provide an accurate estimate of the focusing
parameters and therefore a minimisation of the focusing parameter residuals.

e Because the image focus is related to focusing parameter residuals, it can be
convenient to define a new parameter that is able to provide a measure of the image

focus.

Image Contrast

\/A {12 (r.v:a)- 4 {12 @G V;“)}T o= (e,

A {0 }: spatial mean operator

AT ) (o 58 s s
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Range (m)

Image Focus and Image Contrast

Scala LINEARE

Example

The higher the Image Contrast
the better the image focus

Range (m)

Doppler (Hz)

Scala LINEARE fully focused

Range (n frequenze)

IC =

100 150 200 250 300 350 400 450 500
Cross-Range (n sweep)

-60 -40 -20 0 20 40 60
Doppler (Hz)
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Image Autofocusing by means of
Image Contrast Maximisation

By exploiting the definition of IC and its property in relation to the image focus, we can
derive an autofocusing technique.

Criterion:

Find the focusing parameter vector that maximises the IC:

(@)= are (max [ 1€ (a )]j

e The estimation problem is transformed into an optimisation problem.

e The solution is not unique and a closed solution of the global maximum cannot be found,
hence a numerical technique must be implemented.

e |t is important to analyse the cost function IC in order to implement effective optimisation
techniqges.
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Cost Function

Analysis with two focusing parameters

The optimisation problem becomes:

(7.5)- e

max
Pt

()

With two focusing parameters, the cost
function graph can be displayed in a three

dimensional domain

contrasto
o
- &)

o
o

2
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Image Contrast Based Autofocusing

Two focusing parameters

e Classic optimisation techniques, such as Steepest Descend, Newton or Nelder-Mead
can be used to find the optimal solution if a good initial guess is provided;

Initialisation Motion _
Compensation

Contrast
Maximisation

Stop criterion:
The iterations stop when the Euclidean distance between two consecutive
estimates is smaller than a given quantity.
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S’ (7,¢)

v

s2(74) | T

r {(range cell number)

Estimation of the T Radon
radial velocity (5) Transform

A

B = 1g (P

20 40 60 80 100 120 140 160 180
angle (degree)

gz; = arg {max [RTSR (r,¢)]} —%

¢
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Initialisation — estimation of »

» The estimate " is obtained by means of an exhaustive line search,
over the variable y, of the maximum of the image contrastin a
pre-defined interval

/4

Line search

gamma
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The polynomial order of the received signal phase associated with the target phase
centre must be chosen wisely:

* high orders give a better approximation of the target radial motion

e low orders provide a faster autofocusing process

The polynomial order depends on the length of the integration time and on the target
motions.

When the integration time is long, the target radial motion cannot be modeled by,
means of low order polynomials
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Phase Model Order

Second order model for Ry(7)

Bad approximation

*| Good approximation

Tob 4
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Image Entropy

e The same principle can be applied by using a different cost function. This is the case of
the Minimum Entropy Autofocusing (MEA).

* Image Entropy:

Hln (r.v;a )f(f,v;a)dm’v

where

~
—_

[(r,v;a)=1" (r,v;oz)/A(]2 (r,v;a))

The focusing parameter estimates are obtained by solving an equivalent optimisation

(#)- s [ @)
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The principle ideas for this technique were obtained by delving into two other areas of
research, namely time delay estimation and adaptive beamforming.

Step 1: Rough Range bin alignment

A rough range bin alignment can be obtained by means of a cross-correlation. In fact, by
assuming that the range profiles do not change too much within two adjacent sweeps, the
delay, and hence the range offset, between two adjacent sweeps can be measured and
compensated by means of a cross-correlation. Such an operation is iterated through all
the range profiles.

AT, = arg{maxﬂ !S’; (T,i)! S (Z' + 1,1+ I]Idr}
n

where

Sy (7,i) isthe i-th range profile

St (z+m,i+1) is the complex conjugated of the (i+1)-th range profile

Range shift (circular):

%(T,i + 1)= L%)(T — Arl,’m,i + 1]




Step 2: Phase Conjugation

The phase Conjugation represents a refinement of the range bin alignment. In fact, in
order to obtain a satisfactory motion compensation, it is necessary to align the range bin
with an accuracy comparable with one tenth of the radar wavelength.

Because the rough range alignment cannot reach an accuracy finer than the range bin
resolution, a refinement must be performed.

e Firstly, the most stationary range cell must be found. Such a selection is performed by
measuring the amplitude variance and by choosing the range cell with minimum
variance.

e The phase history relative to the selected range cell is stored and used to
compensate the phase histories of all the range cells (Phase Conjugation).

~
~

Sw(z,t)=S, (r,t)exp[—jqpo (t)] —T,/2<t<+T,/2
Where @, (t)s the phase history of the minimum variance range cell.

Such an algorithm is also called PPP because often the MV range cell is given by a
prominent scatterer.



S; ( f, t) ; Cross
(f91') Correlator
50 100 2® 250 300 350 400 450 500 :,
t (sweep number)
R(r,t)
v

A

Phase
Conjugation

)

@
=)

60

A

MVE

r(range cell number)

50 100 150 200 250 300 350 400 450 500
t (sweep number)
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e The PGA is another technique that is able to perform a phase adjustment. The
limitation provided by the PPP regarding the fact that a prominent stable scatterer is
needed within the scene, is here overcome.

e In fact, the PGA performs a phase estimation refinement by considering the whole
scene.

e The PGA is directly obtained by exploiting the Maximum Likelihood Estimation (MLE).

Let the aligned range bins be represented by the discrete time signal:

6:‘,; (k,n)=Sc(k,n)exp| jop,(n)]

where @, (t)is the residual phase to be compensated and is ﬂle(werﬂectly
compensated signal. It is worth noting that the residual phase is assumed to be the
same for each range cell k.

The phase adjustement can be obtained by estimating the residual phase Q. (t)



5.
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The residual phase estimation is obtained by means of the sum of the phase difference
estimates

mdk Al
ent AIgo

l“J
1dUliICT

G)

n (Y oF o
riidotT

Residual phase estimator:

where

The calculation of the angle of the sum of all the range cell contribution is more robust
with respect to the noise. Such a result is directly derived from the theory of the MLE.
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Non-parametr

rnase Graaient

The first estimate often shows poor accuracy. An iterative calculation of the residual
phase increases the accuracy of the estimator.

Si(v:1) S (2.1)

Stop Condition:

The iterations stop when the

euclidean distance between two T
consecutive residual phase

estimates are smaller than a

given threshold.
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e Each of the ISAR autofocusing techniques mentioned here have pro and cons.
e Because the final use of ISAR is the target classification or identification, the choice of the
best technique is correlated to the performance of the Automatic Target Recognition (ATR)

system.

e Nevertheless, it is possible to evaluate the performances of the autofocusing techniques
by defining parameters that act as performance indicators.

e The comparison analysis we proposed is based on the following criteria:
e Visual analysis
¢ Image Contrast (IC)
e Image Peak (IP)
e Computational load (CL)

e Two data sets are analysed: one relative to an airplane and one relative to a ship



Real Data Application:

Boeinqg 737

Yy
N°  of sweeps 512

N°  of transmitted frequencies 128
Lowest frequency 9.26 GHz
Frequency step 1.5 MHz
Range resolution 0.78 m

Radar height (h) Ground level
Target type Boeing 737
PRF/Sweep Rate 20 kHz / 156.25 Hz

Data time length

3.27s

d

ta Set

Bulk Carrier
N°  of sweeps 256
N° of transmitted | 256
frequencies
Lowest frequency 9.16 GHz
Frequency step 0.6 MHz
Range resolution 0.97 m
Radar height (h,) 305m
Target type Bulk Loader

PRF/Sweep Rate

20 kHz / 78.13 Hz

Data time length

Radar carried
by a C-130
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doppler (Hz)

doppler (Hz)

Visual analysis: airplane

PPP PGA

doppler (Hz)

40 60
range (m)

40 60
range (m)

MEA ICBT

doppler (Hz)

40 60

range (m)
range (m)
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Visual analysis: ship

PPP PGA

doppler (Hz)

100 0 50 100 150 200 250 ae

range (m) range (m)

MEA ICBT

30

g 2
T 0 5
? =
- g

-10

-20

-30

0 50 100 150 200

range {mj range (m}
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Image Contrast Image Peak (dB)
Bulk 737 737 Bulk 737 737
loader 1:128 129:256 loader 1:128 129:256
PPP 1.84 1.01 1.14 PPP 41.96 37.03 38.85
PGA 1.90 1.24 1.14 PGA 42.22 39.51 38.62
MEA 1.88 1.29 1.20 MEA 4431 42.30 39.83
ICBT 1.96 1.29 1.23 ICBT 44.57 42.36 40.20

Computational Load
e Both the PPP and PGA are roughly ten times faster than the MEA nad the ICBT.

e An image of 128x128 pixels can be focused in 0.1 s by means of the PPP and PGA and in 1-2
seconds by means of the MEA and ICBT.

e Even so, the higher CL of the MEA and ICBT is still acceptable for
real-time applications.



TIME WINDOW SELECTION



In ISAR scenarios the integration time is strongly affected by the target non-cooperation.
In fact, the irregular mapping of the received signal samples onto the Fourier domain
provokes image distorsions.

Typical target oscillations, which are usually unknown, produce an irregular and
ambiguous mapping on the Fourier domain. The irregularity and ambiguity can be
removed only by knowing the time-variation of the target aspect angle.

* In order to have a regularly sampled grid in the Fourier domain, the rotation vector must
be constant.

e When the rotation vector is time varying, the polar grid is unevenly sampled

e When the rotation vector is described by a non-monotonic function of the time, the
sample locations in the Fourier domain are ambiguous

When the integration time is short, we can assume that a constant or at least almost
constant rotation vector is present.

=

Problem of time-windowing!!!
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Dappier (Hz)

Doppler (Hz)
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Doppier (Hz2)

256 sweeps —3.27 s
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Range (m)



Dappier (Hz)

Daprier (Hz)

Fange {m)

Fange {m)

Doppler (Hz)

Doppler (Hz)

64 sweeps —0.82 s
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Dopper (Hz)

Daprier (Hz)

=)
=

=

=}

=

o

o

o

Fangs (m)

Fange {m)




Doppler (Hz)

Doppler (Hzy

Doppler (Hz)

Doppler (Hz)

96 sweeps —1.23 s

Fangs (m)

Fangs (m)

Doppler (Hz)

Doppler (Hz)

Fangs (m)

Fangs (m)



e When a short integration time is used, the total aspect angle variation achieved is
generally limited to a few degrees.

e |n this condition, the best ISAR image formation to use is the Range-Doppler.

/
> (f’t) R Time Saw (f,t) R Motion Si (f’t) ., Range
Windowing Compensation Doppler
1. (T,V)
S (f,t) Deconvoluted received signal |
Sww (f5t)  Time-windowed signal |.|
S; (f,t) Signal after motion compensation
1, (Z',V) Complex ISAR image ](T,V)

](T,V)

Intensity ISAR image



Time Windowing

e Given a long recorded data set, we define a window by means of two time parameters,
namely 7and , Which selgq:;c the data subset to be used to reconstruct the ISAR image.

e By changing the values of rand Ar, all possible data subsets can be selected.

\ 4
]
¢}
¢}

A
[~

\ 4

A

v
N

ISAR image
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As for the motion compensation, we will define an automatic non-aided algorithm for the
selection of the optimal time-window for the ISAR image reconstruction.

Given a long recorded data set, we can define two parameters that identify the selection
window:
7 = centre of the time window

Ati = length of the time window

The optimum criterion is to choose the time window that maximises the /IC

(Z',AT)Z arg aX[[C(T,AT):I

T,AT

Because rand A7 are discrete variables the maximum search problem is not a typical
optimisation problem.

A simple solution, based on a trial and error method can be provided by analysing the IC
separately for the two variables.



The analysis of several real data has shown a particular characteristic of the
Image Contrast

70

T
window length =04 s
window length=0.8s
— window length=1.2s
80+ ;| =——window length =16 s

50 [ .....

=
<
T

Image Contrast
W
Q
T

20 R

10+

0
-15 15

Time (s)

e Apart from slight differences due to noise, the Image Contrast time history
looks similar for the four different window sizes;

e Such a characteristic can be exploited to define an optimisation algorithm
based on two separated linear searches.



Maximum Peak Locator (MPL)

e A sliding window of time length At s applied to the data in order to produce an
Image Contrast time serie IC(7);

* The maximum of /C(7) is searched and the MPL gives at the output the maximum
position 7, , .

Fpvie,ac® ) Fopt
——l NPT, (= Az
; opt oyt
WLH ——»
I Ve, A7)

Window Length Estimator (WLE)

e The window time length Atopt is estimated by defining a new window centred at

T=1T,, with a generic time length  Af, which represents the new search domain;

* The maximum of /C(7,,, At ) is estimated with respect to Aand the optimal value
of the window length is produced.



Real Data Application:

Boeinqg 737

Yy
N°  of sweeps 512

N°  of transmitted frequencies 128
Lowest frequency 9.26 GHz
Frequency step 1.5 MHz
Range resolution 0.78 m

Radar height (h) Ground level
Target type Boeing 737
PRF/Sweep Rate 20 kHz / 156.25 Hz

Data time length

3.27s

d

ta Set

Bulk Carrier
N°  of sweeps 256
N° of transmitted | 256
frequencies
Lowest frequency 9.16 GHz
Frequency step 0.6 MHz
Range resolution 0.97 m
Radar height (h,) 305m
Target type Bulk Loader

PRF/Sweep Rate

20 kHz / 78.13 Hz

Data time length

Radar carried
by a C-130
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Boeing 737 - T, = 0.41 , sweeps = 64 Boeing 737 - T, = 3.27s , 512 sweeps

1 2
1200
2000
41000
800 -11500
E £
L k]
§=] o
5 600 S
o o
1000
400
500
200
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
Doppler (Hz) Doppler (Hz)

Boeing 737 - T o, = 0.87 , sweeps = 126

Three ISAR images have been reconstructed
by processing different data subsets. [
1) Short integration time: Random choice of

64 sweeps (T,,,=0.415s); : =

2) Long integration time: all the 512 sweeps
(Tops =327 S);

3) Optimal integration time: 126 sweeps
(Tobs =0.87 s)

-60 -40 -20 0 20 40 60
Doppler (Hz)



1 Bulk Carrier - T, = 0.82 s - sweeps = 64

Range (m)

-30 -20 -10 0 10 20 30

Doppler (Hz)

Three ISAR images have been reconstructed

by processing different data subsets.

1) Short integration time: Random choice of

64 sweeps (T,,.=0.82s);

(0]

2) Long integration time: all the 256 sweeps

(Tops = 3.28 s );
3) Optimal integration time: 80 sweeps
(Tobs =1.02 s)

1600

1400

11200

11000

Range (m)

Range (m)

Bulk Carrier - T

obs = 3.27 - sweeps = 256

1450

400

1350

-300

1250

-30 -20 -10 0 10 20 30

Doppler (Hz)

Bulk Carrier - T, = 1.02 5 - sweeps = 80

11000
900
1800
41700

600

1500

-30 -20 -10 0 10 20 30

Doppler (Hz)



Characteristics

* The ship’s angular motion is dominant with respect the translational motion

* The Image Plane strongly depends on the target own motions (pitch, roll and yaw)

Top view

12 m

Idea

e

e Separate top-view from side-view 6m

[

view

* Select the image frame based on the desired 6 m T /

»l
».

om | 12m

»
»

27 m

LM

33 m
Side view




Ad hoc Technique for Ships

Segmentation and time-frame selection

The top-view and side-view
portion of the ship ISAR

image are quantified as
follows:

* A,, = Nr of pixels that are
covered by the ship deck

* A,, = Nr of pixels that are
covered by the ship
superstructure

The top-view images are
selected by choosing
maximum values of A, in
correspondence of
minimum values of A,

Side-view area

doppler (Hz)

1] 50 100 150 200 250
range (m)
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CROSS-RANGE SCALING
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e After the application of the Range-Doppler technique, the ISAR image is scaled in fast time (
) and Doppler( ). vV

e The ISAR image needs to be scaled in order to be represented in a spatial domain (both range
and cross-range)

e The scaling operations along the two coordinates are:

C .
yp=—1 Range coordinate

2

C
=—V
2fOQeﬁ”

cr Cross-Range coordinate

e In order to scale the cross-range coordinate, the knowledge of the modulus of the effective
rotation vector is required.

e The effective rotation vector depends on the relative motion of the target with respect to the
radar, therefore it is usually unknown. Estimation techniques for the effective rotation vector are
needed in order to scale the ISAR image.

e When the Image cannot be scaled, it is generally represented in Doppler/meters (Range-
Doppler representation).



Chirp rate method

Signal modeling

Received signal phase (k-th scattering centre)

o, (fiD)= (- @ [(Sin(€2,, 1), + (€08, D)y, ] reet(=)

obs

Received signal phase approximation (k-th scattering centre)

41 1 {
0103 L, 43,0023, 00 rect( )

obs

Received signal (k-th scattering centre)

4rf, (
Lyzk + V2t~

§’g‘)(r,t) = 4, sinc {B(T - %yzk] }exp{—j

@Q
2

2 2\
eﬁt J}CC{T

t

obs

|



$¥) (z.0)

Chirp rate method

A 4

2—-LPFT

5531{) (z,v,m)

v

Relationships

2f0
270 2
c ¥

éeﬁ‘ - i“d

S:'gek)(r,v,m) — j Sl(ek) (r,t)exp{—j27r(vt+%t2 ﬂ dt

Estimations
; 2%, q
%) . Y1k eff
= argmax (z,v, m)‘
mk 27y 2
—y,,Q
C y2k eff
N ) 1 N A N
kaka_szkzyzk
&zargmain{Z(mk } k=1N k=]1v =
k=1 2k N k=1 2




Chirp rate method

The scattering centre separation is accomplished in the image domain

K .
Ie(rv)=Y 5@ v.m=0)
k=1

via a segmentation approach

20+

Io(T,v) when |Io(z,v)|> u
I (z,v)=

0 otherwise af

BO -

Range hin numhber

The image is then segmented by aal L. v
. . - 0N
means of a clusterisation X <
100 F
N
120
ZIZ("}/Z T V 1 1 1 1 1 1 1 1 1 1
10 20 a0 40 a0 GO 70 B0 a0 100

n=1 Cross-range bin number




Chirp rate method

~

I;n)(r,v) 51('%”) (7,1) 5&”3(1,v,m)
FT > 2—-LPFT >

v

The chirp rate associated with a scattering centre is estimated by maximising the sub-image

contrast

4 L T
+  chirp rate estimates
LSE

m, = arg max []Cn (m)]

A{[

Chirp rate (Hz'9)

%7)(7, v,m)‘— A[

1

. um)\ﬂz}
). | _

1
70 75 a0 85 a0 95
Range (m)

1€, (n)-

&)




Cross-range scaling

Chirp rate method

SR (Tat)

(LSE)

o0
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Motion S R (Ta t ) R Image
Compensation 7| formation
ID-FT
1 C (Ta V)
A 4
Image
Segmentation
1(1) ...... I(N)
T (Ta V) T (Ta V)
v y
Azimuth
Decompresssion
FT(v>19)
C C S«(l) ( r t) ...... ~(N )
1] ... N R > S R (T, t )
" m N —
Estimation of [« Chirp rate estimation
the modulus of ‘ 2-LPFT
the effective +
rotation vector [« - IC
my



Results

s - -
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=
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Range bin nurmber
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Range bin number

Range {m)

20F

0r

60

a0

100

120

10

20

30

40

50

&0

70

g0

40

100

20 30 40 50 &0 70
Cross-range bin nurnber

100

Chirp rate (Hz'9)

*

chirp rate estimates
LSE

Cross-range (m)

A b —
R R R TR
Range (m)
Boeing 737 Bulk Carrier
A ~t11al Tangagth M1 N1_24 AK51 rMsSNn_1701
Aviual lbllébll LJL.UL JU._I'JJ LlJU 1 IUJ
(m)

Estimated 36.8 144

length (m)
Actual wing 28.88 -

span (m)
Estimated 28.37 -

wing span (m)




Backprojection based Cross-
Range Scaling

Frequency approach

i
. - 2t

’”) psN(”)

Q“"“)—q”"’) s
TR SR e
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Backprojection based Cross-
Range Scaling

S(= C TN C N c
ﬁz AT 2T, QX2 1, (N -1)00

. N

N
Angle variation at

Assumption of

: Assumption of Discrete Time
rectangular Fourier P each radar sweep
: constant angular
domain _
rotation

* The concept is that of forming sub-images from sub-apertures

» Each sub-aperture will produce an ISAR image with a given cross-range resolution, which
will depend on the sub-aperture length

S — C
T 2f (Nsub _ 1)59
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Insight
* Divide the whole aperture into equal sub-apertures of length

N N

N, =— with % an integer number

sub

» Rotate the i-th sub-image by an angle 6’0 =N .56

sub

e Add up all the sub-images coherently

In the case of perfect knowledge of the angle , the recofiétructed ISAR image is the
same as that formed by using the whole aperture
(This can be easily shown by re-interpreting the backprojection algorithm)




Backprojection based Cross-
Range Scaling

Insight

e The angle @ not known a priori, therefore the method proposed is not directly
applicable

* The angle Aflust be estimated
* An error in the estimation of  pr@é@uces an image defocusing

* The level of image focus can be measured by means of IC, IE, IP, etc

4

The angle A&&@n be estimated by maximising (minimising) some cost function which is able
to measure the level of focus
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Zhishun She et al.

50 = argmax <{]P (5(9)}

Where ]P(5@)he image peak found in the ISAR image formed by adding sub-images after
rotating them of an angle equal to 6’0 =N .50

sub

Other suggestions may be

50 = argmax {IC (5«9)} 50 = arg n}gn <{[E (5«9)}

Where ]C(dﬁ')d [E(t%)\e ISAR image contrast and entropy



