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Security in a communication system

A C (k ; u) D(k ; x) B
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Kerchoffs’s Principle

A cryptosystem should be secure even if everything about the
system, except the key, is public knowledge.
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Computational Vs. Information-Theoretic Security

A C (k ; u) D(k ; x) B
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u ux
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Computational security

computing u is computationally infeasible given x but not k
based on the assumed, yet unproven, hardness of a certain
problem (e.g., factoring large integers)

Information-Theoretic Security

I (u; x)→ 0
based on information theory, it is the strongest notion of
security, no assumptions on the attacker’s computing power
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take a measurement without perturbing the system itself.

passive attacks can be detected

no perturbation ⇒ no measurement ⇒ no eavesdropping
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Quantum tools for I-T security

Physical laws of quantum mechanics can be exploited while
looking for I-T security

1 Eavesdropping detection: in quantum systems, one cannot
take a measurement without perturbing the system itself.

passive attacks can be detected

no perturbation ⇒ no measurement ⇒ no eavesdropping

2 No-cloning theorem: perfect copying is impossible in the
quantum domain.

replay and man-in-the-middle attacks are more difficult to

deploy
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agreement protocol?
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Quantum Key Distribution

Eavesdropping detection + no-cloning theorem

do not provide a complete solution for all cryptographic
purposes, but offer an advantage over classical systems
they allow to know a posteriori if the shared information is
actually secret

What if we use these tools in order to deploy a secret key
agreement protocol?

⇓

Quantum Key Distribution
(QKD)
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QKD at UNIPD: the QuantumFuture project

QuantumFuture

3-year research project at UNIPD

1.4 MAC, funded by the University of Padova

4 RUs: Telecom, Controls, Optics, Astronomy

Main focus on free-space QKD

More information available at:
http://quantumfuture.dei.unipd.it

http://quantumfuture.dei.unipd.it
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QKD system model (I)
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QKD system model (I)
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Channel characteristics

Quantum Ch. Classical Ch.

private public, authenticated
low rate high rate
unreliable reliable
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QKD system model (II)
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QKD system model (II)
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Objective

max
fa,fB ,x

H(kA) subject to:

correctness: P [kA = kB] < ε
secrecy: I (kA, kB ; z , c) < ε′

uniformity: L− H(KA) < ε′′
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QKD system model (II)
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Objective

max
fa,fB ,x

H(kA) subject to:

correctness: P [kA = kB] < ε
secrecy: I (kA, kB ; z , c) < ε′

uniformity: L− H(KA) < ε′′

Upper bound

For ε, ε′, ε′′ → 0

max
fA,fB ,x

H(kA) ≤ max
x

I (x ; y |z)
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A practical scheme (I)

Based on a divide and conquer approach
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A practical scheme (I)

Based on a divide and conquer approach
3-phase protocol [Maurer, ‘93]:

1 Sifting → advantage over E

so that I (x ′; y ′) > I (x ′; z , c ′)

2 Information reconciliation → correctness

so that P

[
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< ε′
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A practical scheme (I)

Based on a divide and conquer approach
3-phase protocol [Maurer, ‘93]:

1 Sifting → advantage over E

so that I (x ′; y ′) > I (x ′; z , c ′)

2 Information reconciliation → correctness

so that P

[

x ′′ 6= y ′′
]

< ε′

3 Privacy amplification → secrecy

so that I (kA, kB; z , c) < ε′′

f ′A(·, ·)

f ′′A (·, ·)

f ′′′A (·, ·)

x

x ′
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c ′A
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c ′′′B
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A practical scheme (II)
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A practical scheme (II)
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A practical scheme (II)
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Key reconciliation

A encoder decoder BE

quantum channel
(sifted)

x ′ y ′

x̂ ′

classic channel

c
c cA

ccB

Goals

1 Correctness: P [x ′ = x̂ ′] ≈ 1

2 Minimum information leakage: I (x ′; c)→ 0
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Key reconciliation approaches (I)

1. Interactive - keys are interactively reconciled by means of a
binary error search based on multiple, subsequent
public communications [Brassard-Salvail, ‘93].
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Key reconciliation approaches (I)

1. Interactive - keys are interactively reconciled by means of a
binary error search based on multiple, subsequent
public communications [Brassard-Salvail, ‘93].

2. Systematic - given a (n + r , n) generating matrix G =

[

In
A

]

:

Alice transmits c = Ax′

Bob chooses x̂′ = arg mina∈C d(a, y)
Examples: LDPC [Mondin et al., ‘10]

BCH [Traisilanun et al., ‘07]
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Key reconciliation approaches (I)

1. Interactive - keys are interactively reconciled by means of a
binary error search based on multiple, subsequent
public communications [Brassard-Salvail, ‘93].

2. Systematic - given a (n + r , n) generating matrix G =

[

In
A

]

:

Alice transmits c = Ax′

Bob chooses x̂′ = arg mina∈C d(a, y)
Examples: LDPC [Mondin et al., ‘10]

BCH [Traisilanun et al., ‘07]

3. Hashing - given a (n, n − r) parity check matrix H:
Alice transmits c = Hx′

Bob chooses x̂′ = arg mina:Ha=c d(a, y)
Examples: Winnow [Buttler et al., ‘03]

LDPC [Elkouss et al., ‘09]
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Key reconciliation approaches (II)

The choice of the coding technique for reconciliation depends on
the model for the classical channel

Layer Ch. type Condition Delays Codes used

Physical AWGN high SNR none systematic (soft)

Data link binary low BER low systematic (hard)

Net & up packet error free long interactive, hashing
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syndrome decoding
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Case study: Winnow

i = 0, εi = εq

segment x ′ and y ′ into blocks
of length Li , with εiLi ≪ 1

check if parity of each block is
the same in x ′ and y ′

correct error in blocks of y ′

with different parities
(Hamming codes)

i ← i + 1, estimate εi , equally
permute x ′ and y ′

for i = I , let x̂ ′ = y ′

Hashing-based key
reconciliation protocol

Ingredients

parity check
Hamming codes
syndrome decoding

the condition εiLi ≪ 1
ensures that multiple errors
in a block are unlikely

the block parities and the
syndromes need to be
exchanged (cA, cB)

it can correct a single error
per block
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Case study: Winnow optimization (I)
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Figure: Winnow block size optimization: residual BER with target BER
equal to 10−8, max 4 iterations, max block size 512 bit.
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Case study: Winnow optimization (II)
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Figure: Winnow block size optimization: fraction of disclosed bits with
target BER equal to 10−8, max 4 iterations, max block size 512 bit.
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Case study: Winnow optimization (III)
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Figure: Winnow, optimal percentage of disclosed bits for different target
bit error rates, max 4 iterations, max block size 512 bit.
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Privacy amplification
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Privacy amplification

A compress compress BE

quantum channel
(reconciled)

x ′ x̂ ′

k k̂

classic channel

c
c cA

ccB

Goals

1 Maximum privacy: I (k; z, c) < ε′′

2 Minimum compression: maxH(k)
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Choosing a compression function

How to choose a compression function?

Must be chosen randomly, after transmission

Must be compactly representable

Assume we know that Eve has observed some t-bit linear function
of the reconciled key

z = Mx′ , with M ∈ {0, 1}t×n

(include c observed during reconciliation)
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Choosing a compression function: known results

Theorem (Universal hashing functions [Bennett et al., ‘95])

If the compressing function A is chosen uniformly from a class of
universal hashing s × n matrices, then on average (over M and A)

I (k; z,A) ≤
2n−s−t

ln 2
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Choosing a compression function: known results

Theorem (Universal hashing functions [Bennett et al., ‘95])

If the compressing function A is chosen uniformly from a class of
universal hashing s × n matrices, then on average (over M and A)

I (k; z,A) ≤
2n−s−t

ln 2

Theorem (Point-wise bound [Gilbert et al., ‘01])

In order to achieve a failure probability Pfail ≤ s ′ and a mutual

information I (k; z = z∗,A) ≤ 2−s
′′

ln 2
, the privacy amplification

compression factor should be at least s = s ′ + s ′′.
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Choosing a compression function: open problems

Open problems

Bennett’s theorem gives only an average bound on the value
of I (k; z,A) over random choices of A.
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Open problems

Bennett’s theorem gives only an average bound on the value
of I (k; z,A) over random choices of A.

Gilbert’s theorem provides a point-wise bound given a specific
observation, but does not ensure anything w.r.t. a specific
compression function A = a∗.
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Choosing a compression function: open problems

Open problems

Bennett’s theorem gives only an average bound on the value
of I (k; z,A) over random choices of A.

Gilbert’s theorem provides a point-wise bound given a specific
observation, but does not ensure anything w.r.t. a specific
compression function A = a∗.

Idea

Find a tool for establishing a point-wise bound on the mutual
information, i.e., I (k; z,A = a∗).
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Choosing a compression function

Once we choose a hashing matrix A, we would like to obtain

1 H(k) = s (perfect uniformity)

2 I (k; z) = 0 (perfect secrecy)

Lemma 1

If rank(A) = s and x′ is uniform over {0, 1}n , then k is uniform
over {0, 1}s
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Choosing a compression function

Once we choose a hashing matrix A, we would like to obtain

1 H(k) = s (perfect uniformity)

2 I (k; z) = 0 (perfect secrecy)

Lemma 1

If rank(A) = s and x′ is uniform over {0, 1}n , then k is uniform
over {0, 1}s

Example: binary Toeplitz matrices

A is uniquely specified by n+ s − 1 bits a = [a−r+1, . . . , an−1]

If a is uniform in {0, 1}n+s−1, P [rank(A) < s] = 1/2n−s+1
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Choosing a compression function

Once we choose a hashing matrix A, we would like to obtain

1 H(k) = s (perfect uniformity)

2 I (k; z) = 0 (perfect secrecy)

Lemma 1

If rank(A) = s and x′ is uniform over {0, 1}n , then k is uniform
over {0, 1}s

Example: binary Toeplitz matrices

A is uniquely specified by n+ s − 1 bits a = [a−r+1, . . . , an−1]

If a is uniform in {0, 1}n+s−1, P [rank(A) < s] = 1/2n−s+1

Lemma 2

If dim N (M)− dim (N (M) ∩N (A)) = rank(A) and x′ is uniform
over {0, 1}n , then I (k; z) = 0
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Choosing a compression function

Theorem

If dimN (M)− dim (N (M) ∩N (A)) = s and x′ is uniform over
{0, 1}n, then k is uniform and perfectly secret.
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Choosing a compression function

Are we done now?

The previous theorem states a sufficient condition for designing the
optimal compression function...

BUT

... do we perfectly know M, that is, the matrix summarizing Eve’s
information?
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Choosing a compression function

The nature of leaked information is twofold:

deterministic and known to the legitimate parties on one hand,
due to the disclosure of some bits sent over the public channel

X it can be optimally counteracted

random and not known to the legitimate parties on the other
hand, due to eavesdropping on the quantum channel

× it is not feasible to perfectly compensate for it!

Possible solution (future work): assume a specific, though
probabilistic attack model (e.g., selective intercept and resend) and
bound the mutual information given its statistical description.
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Summary

Achievements

extended analysis and optimization of the Winnow protocol
deployment of a framework for the design of the optimal
privacy-amplification function

Future works

investigation of different techniques for key reconciliation (e.g.,
LDPC codes)
further development of the above framework
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Questions
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