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In the context of optimization, control, estimation, decision making, computation, etc, 

the word DISTRIBUTED is used with different meanings:

The task is distributed over many agents in order to speed up the task completion 

(i.e. parrallel computers).

The system itself is constituted by several interacting parts which need to be 

coordinated (i.e. wireless sensor networks).
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Distributed (leaderless) decision models

In the context of the distributed decision models we can distinguish: 

Distributed decision models with leaders or with a hierarchy (based on spanning 

trees construction).

Leaderless distributed decision models in which the agents are peers in the 

network. In this case the goal is not perfomance, but the robustness and the of self-

organization.



Distributed decision models
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Example: Communication networks
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Example: robotic networks

Kiva systems

Distributed decision models
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Example: robotic networks

GRASP Lab at the University of Pennsylvania

Distributed decision models
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Example: wireless sensor networks

Distributed decision models



Water distribution Traffic
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Distributed decision models
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Leaderless distributed decision models

Required
unit	  

reliability
performance Cost Effort	  in	  

configura:on

Centralized/hierarchical high high high high

Distributed/Leaderless low low low low

Centralized vs. Leaderless

Complex systems High cost in the 
initial configuration
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Leaderless distributed decision models

Leaderless decision models = extreme design paradigm

High level

Low level

Centralized

Leaderless

Layered
architecture



Scientific context

pV = nRT

Statistical mechanics 

how the local interactions of 
particles may yield simple 
thermodynamics laws 
describing the global 
emerging behavior.
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Scientific context

Cooperation: simple global behavior from local interactions 

Flocking: collective animal behavior given by the motion of a 
large number of coordinated individuals
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Scientific context

Social and economic networks: individual social and economic 
interactions produce global phenomena
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Problem description

The object of our investigations is to study the behavior of “complex” 
systems constituted by the interconnection of many units which are 
themselves dynamical systems.

The behavior of these systems will depend on the dynamics of the 
units and on the interconnection topology. We want to understand 
how these two features produce the global dynamics.

+=
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Multi-agent systems architecture for 
distributed estimation
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Example: distributed estimation

Sensor

Communication link

Sensing link

16

∈ R

= +

ˆ :=
∑



The consensus algorithm
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The consensus algorithm
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The consensus algorithm
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Pros and cons

Advantages

Disadvantages
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ρ(P )

Convergence rate
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( ) −→ (∞)

ρ( ) = max{|λ| : λ }

| ( )− (∞)| ≤ costρ( )



Convergence rate
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We consider here network topologies coming from wireless sensor networks 

applications, namely the geometric graphs

Network topologies
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Rate of convergence

Geometric graph
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Rate of convergence

Random graph
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Performance of randomized consensus 
algorithms
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Performance of randomized consensus 
algorithms
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xi(t)

xj(t)

ij

Example: gossip algorithm 
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Example: gossip algorithm 
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Example: gossip algorithm 
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Gossip algorithm (Boyd et al. 2006)
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Smart grids



Smart grids

Examples of a leaderless management of an electric grid



Power distribution network
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Microgrid
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Definition of a microgrid



Reactive power

Lossless electric components need current but 
they do not need electric power.

However, in order to bring this current to these 
components some electric power is dissipated 
along the transmission lines.
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It is convenient that the current 
is provided by the generator 
which is closed, namely by the 
generator which is connected to 
the lossless component by a 
line with smaller resistance.



Reactive power
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Definition of the reactive power



A model of a microgrid
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A model of a microgrid
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A model of a microgrid

∈ C

∈ U
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A model of a microgrid
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Power line: 
impedanceLoad or 

generator



A model of a microgrid
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Sinusoidal regime
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A model of a microgrid
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Model of power lines



A model of a microgrid
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A model of a microgrid
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Kirchhoff's current law
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Model of the nodes

A model of a microgrid

On this node the utility imposes 
the nominal voltage

( )

+
-

43

( ) = ψ

is the nominal voltage



A model of a microgrid

Non-linear constraint
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( ) ( )∗ = ( )

Model of the load/generator nodes
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A model of a microgrid
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Controlled and uncontrolled (disturbance) variables

∈ U

∈ C
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Equations describing the model

A model of a microgrid
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Equations describing the model

A model of a microgrid

46

, , , ( ), ( ), ( ), ( )

( )

, ,Determine






Linear 
constraints

Nonlinear
constraints}

inputs

}






+ = 0
+ = 0

(0) = ψ

( ) ( )∗ = ( ) != 0

( ) !=

( , , , , ) =



Equations describing the model

A model of a microgrid
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Equations describing the model

A model of a microgrid
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Equations describing the model

A model of a microgrid
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Equations describing the model

A model of a microgrid
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The cost function

Minimizing the loss in a microgrid
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The grid model

48

( ), ∈ C

( ), ∈ C

( ), "∈ C

( ), "∈ C

, ,

,

= ∗Re[ ]



Power series expansion

Approximation of the cost
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THEOREM

( , ) = ( ) − + ( ) − + · · ·

( ) = ∗

Proof: Implicit function theorem



Approximated cost function
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Approximation of the cost
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Quadratic optimization

Optimization problem

min

( , )
C

∑
( ) = 0

( ) ∈ C
( ) !∈ C



Motivation for distributed algorithm
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Distributed optimization algorithm
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Distributed optimization algorithm
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Distributed optimization algorithm
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i-th optimization subproblem
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Distributed optimization algorithm
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Distributed optimization algorithm

i-th optimization subproblem

( ) := argmin
′
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i-th optimization subproblem
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Distributed optimization algorithm

( ) = −

( ) = 0 , "∈ C

C

( + 1) = ( )−
∑

∈C
( ) ( )

( ) , ( ) ∈ C



60

i-th optimization subproblem

Distributed optimization algorithm
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Distributed optimization algorithm

{σ( )}, σ( ) ∈ { , . . . , "}
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Assumption

Convergence of the algorithm
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Results
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Convergence to the global optimum
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Convergence of the algorithm
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Simulation
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Figure 5. Power distribution losses resulting by the execution of the proposed algorithm. A edge-disjoint hypergraph, yielding

optimal convergence speed, has been adopted. The dashed line represent the minimum losses that can be achieved via centralized

numerical optimization.

In Figure 5 we plotted the result of a single execution of the algorithm in the edge-disjoint

gossip case. One can see that the algorithm converges quite fast, reducing losses to a minimum

that is extremely close to the best achievable solution. The results achieved by the proposed

algorithm on this testbed are summarized in the following table.

Losses before optimization 61589 W

Fraction of delivered power 3.11 %

Losses after optimization 50338 W

Fraction of delivered power 2.55 %

losses reduction 18.27 %

Minimum losses Jopt
50253 W

Fraction of delivered power 2.54 %

losses reduction 18.41 %

The minimum losses Jopt
is the solution of the original optimization problem (11), has

been obtained by a centralized numerical solver, and represent the minimum losses that can

be achieved by properly choosing the amount of reactive power injected by the compensators

(and retrieved from the PCC). The difference between this minimum and the minimum achieved

by the algorithm proposed in this paper is partly due to the approximation that we introduced

when we modeled the microgrid (assuming large nominal voltage UN ), and partly due to the

assumption that θ is constant across the network. Further simulative investigation on this testbed

showed that the effect of this last assumption is largely predominant, compared to the effects of
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Future research
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Conclusions

The consensus algorithm is an instance of a completely distributed 
design. This is an extreme design paradigm.

 It is intrinsically robust to external changes and highly self-adaptive so 

that a limited initial configuration and tuning effort is necessary.

None or limited information about the global structure of the system is 
necessary to the units.

Graceful performance degradation.

Importance of the interaction network topology.

66


