Initial Report

of

The Distributed Database Working Group

of

The British Computer Society |

edited by: D. A. Hickman

technical editors: G. Gibbons
J. Shepherd

graphic design: R. E. Deeley

Initial Report
of
The Distfibuted Database Working Group
of

The British Computer Society

Edited by: D. A. Hickman

Technical editors: G. Gibbons
J. Shepherd

Graphic design: R. E. Deeley

Word processing systems by Sigma Data Systems Ltd., Southampton

Published by The Distributed Database Working Group of The British
Computer Society

Printed in England by Ashford Press Autumn 1983

The contributing membership of the Distributed Database Working
Group comprises:

Michael Agnew, LDR Systems;

Maristella Agosti, Universita di Padova, Italy; ¥

Fatima Ahamed, Thames Polytechnic;

Richard Barker, C.A.C.I. Inc.-International;

Mike Bibby, Standard Telephones and Cables;

Steve Bowran, CAP Scientific;

Christian Esculier, Independent Consultant, Paris, France;

Gerry Gibbons, ICL;

Paul Gretton-Watson, SCICON;

Dave Hickman, Independent Consultant, Southampton;

Mike Imber, SCICON;

Roger Johnson, Birkbeck College, London University;

Jim Pimpernell, Logica VTS;

Michael Shave, Liverpool University;

Jeremy Shepherd, SCICON;

Nahed Stokes, Queen Elizabeth College, London University;
and John Webb, ICL.

The views expressed in this repéort are those of the members of
the DDBWG, and are not necessarily the official views of either the

British Computer Society or the members' employers/parent organisat-
ions.

b Maristella Agosti is partially supported by the Italian National
Research Council, Progetto Finalizatto Informatica, under contract no.
81.01548.97.

Acknowledgements

The Group wishes to express its gratitude to the following, who
contributed earlier work upon which we have drawn for this report
and/or provided commentary upon draft versions:

Judy'Chapman, The Open University;

Misbah Deen, University of Aberdeen;

Martin Hammer, Independent Consultant;

Janet Jefferys, John Hoskyns & Co. Ltd.;

Hugh Robinson, The Open University;

and Ed Tozer, DMW Database (U.K.).

EDITOR'S NOTE

This, the first report of the DDBWG, sets out its early findings
in the hope of providing some signposts for those who are contemplat-
ing the introduction of this type of technology. In this area, there
are many questions still unanswered, and probably as many more still
unasked.

It 1is also the Group's intention to make contact with others who
are active in this relatively new area of data processing. To this
end, interested persons are invited to contact the Group through its
secretary, by writing to:

The Secretary,

Distributed Database Working Group,
c/o The British Computer Society,
13, Mansfield Street,

London,

W1iM OBP.

Foreword
Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6 -
Appendix A

Appendix B

CONTENTS

by John McLeod Webb, Chairman of DDBWG 9
Introduction 11
Context
Technical Innovation 17
Needs 20
Suitability 22

Types of Solution

General
(a)
(b)
(c)
(d)
(e)
(f)
(g)

Methodology and Cost

General
(a)
(b)
(c)
(d)
(e)
(f)

25
Queries addressed to specific nodes 29
Queries not specifying nodes 31
Queries across nodes having different regimes33
Periodic Update (Homogeneous Case) 35
Online Update (Homogeneous Case) 37
Update across nodes having different regimes 39
Highly Reliable Service 41

45
Database Definition 47
Data Independence 51
Inter~Node Communications 53
Access Control and Integrity 55

Failure Conditions,. Resilience and Recovery 61
Performance, Re-organisation & Restructuring 65

Special Requirements and Future Directions

General 69
Special User Requirements 69
Developments in Computer Technology 70

Conclusions 73

Glossary of Terms 75

Bibliography 81

FOREWORD

This report provides guidance to those managers and designers who
are faced with design decisions where the options include storage of
master data at several nodes of a network. To this end, it is
addressed specifically to data processing practitioners, rather than
following the more customary pattern for reports of working parties
and groups and looking for its readership towards academics and the
members of standards bodies.

Strictly, the term 'distributed database' should be reserved for
cases where the data is closely co-ordinated between nodes, probably
using system software (i.e. a 'distributed database management sys-
tem') to do so. In practice, at this early stage of development, it
is better to regard the term as referring to a class of technical
topics, including those of locating relevant data at specific nodes,
and of propagating updates across the network. These topics arise
whenever a networked solution is proposed to support major applic-
ations requirements. Increasingly, such networked solutions are
being proposed.

When the Distributed Database Working Group (DDBWG) began its
work early in 1980, it found that almost all distributed database work
was confined to research laboratories, and consisted of limited res-
earch papers and experiments. Since then, the upsurge of interest in
distributed systems of all kinds has caused an increase in distributed
database activities. to a point where early software products are
becoming available from suppliers. These are extensions to existing
software products, and their more advanced features are exploratory in
the absence of widespread user experience.

The growth of distributed database systems during the 1980s will
be strongly influenced by changes in the costs of data communications,
compared to those of other forms of communication. Currently, corp-
orations are heavily dependent upon the use of public mail, telephone
and telex systems to co-ordinate between departments, business locat-
ions and international operations. As far as data processing is
concerned, the best understood type of -solution is that of the central
host installation, supporting central databases and a network of local
and remote terminals.

Where reliable data links of sufficiently large capacity and low
cost are available, and there are no objections on other grounds, such
an 1installation can thus provide its services through the network to
all parts of an enterprise. In current practice, link capacities are
likely to be limited, communication costs high, and other constraints
(such as use of existing local computers, local autonomy and resil-
ience) important. Hence, the handling of distributed data is a very
real issue in the network systems currently being considered or des-
igned. Even for fully centralised systems, distributed database

techniques are found to be valuable in providing for, and controlling,
co-operation between distinct but related databases within a single
installation. The Group intends that this report will enable its
readers to avoid the pitfalls, and to achieve the benefits, of the
distributed database approach.

John McLeod Webb

10

CHAPTER ONE

INTRODUCTION

The Background to Centralised Databases

In the mid-1960s, the first database management systems (DBMS)
became available for implementation on large mainframe computers. It
was anticipated that their introduction would mark the end of the
chaos wrought by piecemeal application development and the beginning
of a new era of controlled and centralised development. The database
approach was seen at that stage mainly as a vehicle for integrating
and rationalising the information needs of the divers wusers within
large organisations. The new approach was not intended for the first
time computer user; rather, it was for users familiar with the prob-
lems and pitfalls of traditional methods of building computer applic-
ations programs.

The high proportion of data duplication was the root of some of
these problems. Data duplication meant that a change to the defin-
ition of a data item was likely to affect many programs and different
records in a variety of files. This explains the vast amount of time
and effort spent on system and program maintenance (which has been

estimated at as high as 46 per cent of programmers' time). Data
duplication also meant that an update would have to be applied»to all
copies of the data, thus increasing processing costs. As these up-

dates were rarely synchronised, a high level of inconsistency existed
at most installations, and much processing was required to keep it to
an acceptable level. High development cost, long lead times, and a
lack of both robustness and flexibility were also common system prob-
lems, Lack of flexibility was especially apparent when it came to
dealing with exceptional situations, ad hoc requests and simple enhan-
cements.

In the context of all these problems, 'databases' were seen as a
panacea. Databases would provide multiple access paths to the same
data, thereby satisfying many different requirements and eliminating
the duplication of both data and processing common to most implement-

ations. Databases would enforce standards, and, within an organis-
ation, provide centralised control over the definition and use of
data. Safeguards would be available to prevent unauthorised or

accidental access to data, and additional facilities would allow
easler recovery from most types of failure.

Moreover, the database management system, acting as a buffer
between applications programs and data, would insulate programs from
changes to the data, thereby reducing maintenance effort. Generally,
databases would offer better and more flexible tools for applications
development, allowing a faster response to ever-changing user require-
ments.

On the basis of this argument, many installations decided on the
use of a DBMS: as their number increased, so did the number of DBMS

11

products on the market. Meanwhile, the database approach, techniques
and implementations were the focus of a substantial research effort,
as demonstrated by the proliferation of publications, conferencés and
seminars on the subject.

Conclusions Upon Centralised Database Usage

The experience of early - and subsequent - users of DBMS has been
reviewed and summarised in various reports, both in the United Kingdom
and abroad. The findings in these reports are not always consistent,
although there is substantial agreement among DBMS users on the most
important points.

One clear fact is that not all DBMS users are committed to a

database approach. Many have used a DBMS package as a sophisticated
file handler in the development of one or more applications, whilst
not attempting to integrate these applications. Among users commit-

ted to a database approach, the original drive towards integration has
been tempered by a new-found realism, based on the fact that integr-
ation 1s not always either practicable or feasible within the time-
scale and resources available. Political and organisational factors
can also prevent full integration, as can others of a technical nat-
ure.

Political difficulties arose when the process of integrating
computer systems across departmental boundaries appeared to threaten
the independence of the individual departments concerned. It was not
surprising, in such circumstances, that some departments resisted the
whole approach or gave it less than wholehearted support.

Even when inter-departmental politics were not an issue, the
development of database applications was often considerably delayed by
the excessive number of people involved in the process. This increas-
ed the time needed for activities such as arranging meetings and
vetting and securing agreement on work done. In other cases, the
length of time and the human resources which would have to be commit-
ted to identifying a company-wide view of information requirements
has, in fact, precluded the completion of such a study -~ especially
since these requirements are rarely static over a long period of time.

Other factors which have worked against the comprehensive integr-
ation of computer systems are the extent of investment 1in existing
applications software and the use of applications packages which are
not DBMS-based, and therefore cannot easily be integrated into the
overall approach. At a technical level, the design of large integr-
ated databases is normally a complex task requiring specialist skills.
Many options are available to the designer, and trade-offs need to be
carefully assessed.

Few designs have been totally free from data duplication. In
almost every case, a certain amount of data redundancy has been intro-
duced for reasons of performance, integrity, and ease of conversion or
programming. Implementation 1s further complicated by the loading
and re-organisation problems associated with large, complex databases

12

- even when specialist software is available to perform these tasks.

In the light of past experience, it seems impractical to develop
computer systems which are more integrated than normal everyday busi-
ness functions warrant. For the same reason, it may be impractical
and costly to make all these tasks interact with each other, regard-
less of the potential benefits to the business. The solution to
business problems which result from poor departmental structure and
poor communication between the departments lies in an implied re-
organisation of the business. Attempting to solve such problems at
only the computer level, by building integrated computer systems, is
likely, in the long run, to prove both a costly and an ineffective
exercise.

Where, however, business problems are contained within depart-
mental boundaries and the interfaces between departments are well-
established and fully functional, separate databases could be devel-
oped to support the various functions. Database design is similar to
many other tasks in that it can be managed more easily when divided
into smaller tasks, which can be carried out independently within
overall guidelines,

Although databases have not in all cases been entirely successful
as vehicles for integrated computer systems, they have met success in
many other ways.

As the experience of many thousands of database users indicates,
they have succeeded in the context of a single function or group of
related functions. By providing file handling capabilities over and
above those supplied by most operating systems, they have fulfilled a
real need for the cross-relation of information which is stored in
different files, and in many cases they have allowed complex applic-
ations to be built more easily.

Databases have also simplified development and maintenance by
providing a high - if varied - level of data/program independence.
Most existing DBMSs support a definition of the data and of independ-
ent user views - those required by particular applications programs or
particular queries.

Another consequence of database technology is the development of
new analysis methodologies, which provide a better framework for
communication between computer staff and non-computer . staff. With
the advent of program generators and complete system builders, it is
likely that these analysis techniques will play an increasing role in
future applications development, whether or not it is DBMS-based.

Looking to the future, some very definite trends are becoming
evident, the most obvious being a commercial tendency towards de-
centralisation.

Another major development is cheaper hardware. The purchase of
a computer no longer requires high level decisions within the company,
simply on financial grounds; neither does it necessarily involve a
central data processing department. The availability of cheap hard-

13

ware, which is compact in size and capable of functioning in a normal
office enviromment, is making it possible for an increasing number of
departments to purchase and install their own computers.

A third pronounced movement is towards the use of applications
packages. The availability of a specific software package is often
the main reason for the purchase of a particular mini-computer or
micro-computer. Packages and, to a lesser extent, program generators
are lessening the dependence of first time users on central data
processing departments for the supply of applications software.

So where does this leave databases? How is it possible to
reconcile the principles of database - which stands for integration
and centralisation - with the current trend on the part of departments
towards going it alone?

The Role of Distributed Databases

This is where the distributed database comes in. Recent devel-
opments in communications are providing the environment for automatic
exchange of information held on separate computers. With present
technology, however, this exchange is only possible in a limited form
and between specific types of hardware and software. A genuine
exchangeability of information across a broad range of hardware and
software can only be accomplished if comprehensive standards for that
purpose are defined in both the communications and database fields.
Work on distributed databases is directed towards the latter.

For the users of a centralised database, a distributed database
will provide the means of decentralising their computer operations in
an orderly fashion, thus increasing computer availability, decreasing
dependence on a central computer, and allowing the processing of the
data to be done at source, where it can be monitored and controlled in
the most effective way.

For those installations using a variety of equipment to run a
spectrum of tasks, distributed database could provide the means to
exchange, extract and consolidate information scattered across various
computers without duplicating the information and processing, and with
a minimum impact on existing systems.

Distributed databases may provide newcomers to the field of
computers with the option of starting small, knowing that ~future
requirements can easily be accommodated - on separate computers if
necessary - without conversion or interface problems.

Basically, a distributed database system will be able to process
a properly formulated request for information by a user at one loca-
tion for information held at a different location. As the volume of
information and the number of locations increase, it becomes impract-
icable for every individual to keep track of who has what information
at any point in time in order to formulate such a request.

Consequently, a second function of distributed database will be

14

to provide some form of 'transparency' - a mechanism through which a
request for (possibly) multi-site information is analysed by the
distributed database management system. As a result of this an-
alysis, requests might be issued to several sites. Individual rep-
lies will then be collated and the result returned to the location
from which the original request issued.

The third task of distributed database will be to cope with the
updating of information held at more than one location, and with the
dependent problems, such as the consistency and integrity of the data.
Related information at several locations must be kept in step. In
some cases, this may involve maintaining exact images. In other
Ccases, the information will need to be brought up to date at periodic
intervals only. Obviously, the shorter the period of inconsistency
allowed the more complex the task of synchronising the updates -
especially when problems of hardware, software, and communications are
taken into account, and when concurrent access and processing are
allowed.

15

CHAPTER TWO

CONTEXT

Technical Innovation

Distributed databases had begun to be used for practical applic-
ations by the beginning of the eighties. To understand why they
should have come into being at this time (and how they have evolved),
it is necessary to review the concepts of data distribution, database
and distributed database, and their feasibility over the past two or

three decades in the context of technological development. The key
is in the data - how it is possible to store, process and transport
it. These three criteria will clarify the major evolutionary steps

along the path from the pre-computer age to the present time.

Before the computer, the medium of data storage was, essentially,
paper. The paper varied in colour, quality, stiffness, formality,
permanence. Nonetheless, from the scribbled note to the identity
card, it was all paper. Such processing of data as was practicable
was done by people. Existing documents (in the broadest sense) were
annotated, or their content merged, wholly or in part, to produce a
new document, possibly with the assistance of a calculating machine
and/or typewriter. Data transportation was achieved by the physical
transmission of documents, or the telephone, telegraph and telex
services.

In this situation, technology could offer little to information
services, which were almost entirely people-dependent. Data required
within an organisation was collected and held in the particular dep-
artment which had responsibility for its processing. Each function
of an enterprise held its own - private - data, which it defined,
collected, elaborated, processed and recorded to allow its own ser-
vices to operate correctly. Data for other functions of the enter-
prise was usually provided as summary results.

With the production of computers on a commercial basis, the first
clear advance became evident. Data was stored on sequential media -
punched card, paper tape, magnetic tape. The processing of numerical .
data was left to the machine. Some tranportation of data was. done by °
tape and printout.

This first step into commercial computing was, as one might
expect, the start of the revolution. Nonetheless, it was character-
ised by poor man-machine communication, very poor machine-machine
communication and the necessity of the computer being in the continual

care of experts. Information systems were, however, transformed.
The computer was a very expensive piece of equipment, both to obtain
and to maintain. It needed a closely controlled environment, since

it generated much more heat than would permit it to function were that
heat not removed. It occupied a lot of space. It had many electro-
mechanical components, which of its nature it used to destruction.
Its advantages were speed, accuracy and the ability to re-accept for

17

further processing data it had previously stored.

These advantages were quite sufficient for 1large enterprising
concerns to find it worthwhile to establish computer centres. The
data was still peculiar to a function, and usually still in the keep-
ing of that function area. The processing of that data was, however,
centralised. The computer centre became the hub of information
processing.

The third clearly identifiable stage was the adaptation of data
storage to direct access methods. Data could now be stored so as to
be accessed with little regard for storage sequence. Processing had
achieved sophistication and was no longer confined to mathematical
processes. The direct transportation of data from machine to machine
became possible.

This was the explosive stage of the evolution. Instead of
forty-eight words of core and an overlay drum whose changes of speed
could actually be heard, 128, 256 - even 512 kilobytes of main store
was no longer unusual. Direct access backing-store attained capac-
ities which were measurable in integral numbers of megabytes.

The natural result of this increase in power and capacity was
that every function of every computerised organisation mechanised more
and more of its workload. The approach was to consign the drudgery
to the machine and keep only the interesting work for the people, in
the belief that the department would be able to store and process all
the data it would need.

Few people will recall when they first knew that there were data
items that were common to several departments, several files, several
systems within their organisation. This knowledge, however, brought
about the next revolution.

Inevitably, several departments within the same - organisation
would hold the same data items. Generally, items with such common
usage were known by different descriptions in different departments.
For example, an employee's company reference number could well have
been referred to as his works number, clock number, payroll number,
personnel reference number, etc., in different departments, and each
might have found this number an essential ingredient of one or more of
their data files.

Further, this number may have been used as a reference point for
recovery of the same data items on various files - in either the same
or different departments. It was not illogical, since all the var-
ious departments' various files were being held and processed in the
computer department, that some rationalisation of such duplicated data
should be enforced. This of itself, however, went nowhere towards
solving the problem of whose name to use for the data item. Logic
again suggested that no friction would be generated if all the names
were retained - and then it would become unnecessary for the depart-
ments to actually know that the files had been merged. Thus, the
database concept - with its essential database management system.

18

Data storage, on line, could now be held in one vast indexed
file, and the capacity of a single backing-store device did not nec-
essarily limit its size. Since the only actual access to the file
was by the DBMS, it could span banks of such devices - and the user
needed only to know that he was being presented with the data he
requested in the form in which he requested it. Data processing was
now at a remove from the user, and he was unlikely to know everything
which affected what he still thought of as 'his' data. This central-
ised control of the data led to data transportation by networking,
packet-switching and other telecommunications techniques.

The database, once established, brought about a change in the way
the organisation was envisaged. It became the data-driven model of
company activity. All data was required to become part of the data-
base - and the organisation began to realize that the most valuable
asset in its data processing department was not the big, expensive
mainframe computer but the data. In general,an organisation cannot
operate without its data. Data is precious. So, data must be
available for the use of the whole organisation and will no longer be
permitted to be a merely departmental asset. As a result, it becomes
the company, rather than the department, which is the owner of the
data.

The next innovation is in one sense the smallest, in another the
biggest: the micro-chip. This is the technological innovation which
has brought about the greatest change in thought and approach, because

of its effect on the cost of computing. It is not only the cost of
manufacture of computers which it has decimated, but also the cost of
environmental control and the cost of maintenance. Waste heat is

still an enormous problem for the computer industry, but the dimens-
ions of the problem have been so reduced as to be almost disregarded
for many purposes.

No longer is it necessary to build an artificially controlled
environment to house computer power - so it is no longer necessary for
a company to house all its computer power in one place. In these
circumstances, the disadvantages of centralisation carry more weight.
Cost-effectiveness no longer demands the mighty central mainframe.
In consequence, the big machine starts to look like a vulnerable,
inelegant dinosaur.

Thirty people will obtain a better response from thirty minis

than from one mainframe. Not all of the users need access to all of
the data all of the time. If the mainframe is down, nobody has a
computer - if one mini is down, the other twenty-nine users may not

even need to find out.

The advantages of the centralised system are not all nullified by
this ability to put the power where it is needed. The data being the
property of and available to the whole company on a single entry basis
is a powerful argument against scattering the power. One particular
advantage of the mini- and micro-computers is the existence of user-
friendly 1languages and control systems which enable non-expert users
to enter and run a high proportion of their own applications. But
what happens when something goes wrong? It is clearly advantageous

19

if the experts still have access.

Fortunately, it is possible to have the best of both worlds.
Computers can be networked, allowing data to be passed between them
and processing to be carried out at remote sites. They can also be
networked in such a way as to have access to data stored in each
other's on-line backing store. Clearly, to gain most advantage from
this type of access, the machines need common methods of access to the
data and a degree of commonality of data structure. In short, to
replace the central database on a single, central machine, they need
to share a distributed database.

In one sense, this brings the wheel full circle. Private data
can be defined and processed locally. Local people can have direct
responsibility for their data, their processing - and their computer.
The great difference from the earlier situation is that the communic-
ation difficulty does not exist, because the local computer is not
isolated. The local computer is now linked to those of all other
departments. Common data is communally available. Data which is of
purely local use can be stored locally and accessed only locally.
Data which is used mainly locally but occasionally elsewhere can be
stored locally and accessed both locally and elsewhere. Data which
is in common widespread use can be replicated on as many nodes as 1is
thought desirable - but it still only needs to be entered at one.

It is possible to follow the complete cycle of development: to
start with a single mini-computer and follow all the evolutionary
stages to the distributed database. It is equally possible to join
the progression at any stage or to omit any stage in the process. It
would not, until the micro-chip, have been financially reasonable to
follow the whole process, but even the biggest fourth generation
mainframe is constructed from similar chips to those used in the
smallest personal computers. We have no reason to think that the
distributed database is the culmination of this computer evolution,
but a next step is not yet visible. What is sure is that many will
find, in the next few years, that the best available solution to their
information system problems is a distributed database system.

Needs

How should an organisation decide if it needs, or would gain
significant benefits from, a distributed database system? Depending
upon the standpoint within the organisation, the features which appear
beneficial or otherwise can be quite different. It is probably best,
therefore, to examine the pros and cons from several different view-
points. Those views represented by the company itself, with its
needs for financial and organisational control; the data processing
department, which needs full information on applications to give the
best advice; the departmental user, who needs to receive and to
transmit data both within and outside the department; and the indivi-
dual user, whose view may be comparatively insular, should illustrate
most of the advantages and disadvantages.

Firstly, the company as a commercial organisation, whether re-

20

tooling from an existing mainframe system or making a major advance
into data processing, will be looking for efficient, cost-effective
and, preferably, cheap computer systems. Reliability of access and
use may also be of great importance, as indeed may data security. A
network of mini- or micro-computers is likely to prove cheaper than a
mainframe of equivalent power, and further nodes could be added with
far less disruption of the existing service.

To the company, the main advantage of a central mainframe machine
would be the co-ordination, standardisation and control of data which
a centralised computer facility affords. Obviously, this is better
exercised with a database system than without one. However, this
advantage also accrues from a distributed database system, especially
where the company dictates that all nodes shall implement the same
local database management system. There is also the fact that only a
general power failure will bring the whole of a distributed system
down, whereas a local fault may render the whole of a centralised
configuration inoperable.

Many companies operate from more than one site, and transfer of
data and results to and from a central facility can cause inefficiency
- an 1inefficiency which is minimised by distributing the processing
power to the data source and passing on only those results which need
to be referenced or acted upon elsewhere. To distribute the comput-
ing power but retain effective control, distributed database appears
to be the best approach currently available.

What then of the data processing (D.P.) department? Being a
service department, it is really looking to the needs of others.
Making the different machines in the company network communicate with
each other can be difficult. Standardising to a common external view
of the data can overcome this difficulty, and this implies the use of
a distributed database management system. Standardising the machine-
machine interface in this way also minimises friction between depart-
ments which need to co-operate, thus making the D.P. department's job
easier. A distributed database system also gives the D.P. department
the opportunity to assist departments with an excess of data for their
own storage capacity to utilise surplus storage capacity at other
nodes.,

Another advantage of the distributed database system, which can-
not be claimed for any other approach, 1is in the possibility of real-
time integrity of the system. Simply, if all nodes are connected by
telecommunication 1links to all other nodes, and their communication
devices have the facility to bypass their own node, and each local
database is replicated at a distant node, then at least two nodes have
to go down before the complete system experiences any deterioration
other than in response time. ‘

The departmental user is concerned with the availability of the
data and processing power necessary to his systems. Local power
appeals to him because it will be available when his department needs
it. With a distributed database, the department has no problem of
gathering and co-ordinating data required for processing elsewhere,
nor of checking that data procured elsewhere has arrived in the dep-

21

artment for processing. The diplomatic control of D.P. standards is
facilitated by the viewpoint that "our computer must talk to their
computers", Also, best use can be made of the departmental node's
storage capacity, as rarely accessed data from other nodes need not be
replicated at the departmental node.

The individual user may not take account of these broad consider-

ations. He wants fast response from his own terminal. He wants
control over his private data - that which is of use only to him and
that for whose condition he is responsible. Data which is of use to

only a single user will not normally be referenced by other users.
Data for which a particular user is responsible becomes available on
the distributed database network as the responsible user updates it.
If he has an occasional requirement for other data from a distant
location, he can access it when he needs to - within privacy 1limits,
he does not have to set up a special prior arrangement with the user
on whose machine the data is held. Also, heavy use of facilities by
other departments at specific times will not cause him any deterior-
ation in response. The nodal structure gives him greater reliability
- other users' problems with hardware (or, indeed, software) will
rarely affect him. He may, however, be unhappy at the necessary
price - the constraints on data structures and access methods arising
from the need for standardisation to permit inter-nodal working.

More general benefits are also likely to accrue. As with each
of the previous stages of computer evolution, the distributed database
concept makes it possible for larger scale applications to be implem~
ented. One area in which this stage is very likely to promote activ-
ity is in the multi-site applications of the companies within a group.
With a distributed database, it is possible for company data and group
data to share a node, only the group data selectively being accessible
to other nodes in the network.

So, which type of organisation needs, or would greatly benefit
from, the distributed database approach? Those who want large mach-
ine power without large machine cost would do well to consider it.
For multi-site operations which have a partial commonality of data,
distributed database would appear to be particularly appropriate.
Organisations wishing to use a site-by-site approach to computeris-
ation might well find distributed database their most suitable philo-
sophy, allowing, as it does, such an operation to be implemented by a
centrally-based systems control team. Those organisations whose
potential users would, by sheer weight of numbers, overwhelm the ports
of any single machine might find a solution to their difficulties in a
distributed database system. So, too, might organisations which wish
to retain unit autonomy and still enjoy the benefits of inter-depart-
mental co~operation. In summary, potential beneficiaries are almost
everyone for whose needs a single smaller fourth generation machine or
micro~-computer is inadequate.

Suitability

The availability of a distributed database system offers an
organisation the opportunity to do much more with its data than it

22

previously found possible. Some of these possibilities enhance the
value of the data: others, however, do not.

The organisation may achieve a database system in which the data
is always available where and when it is required and is always cor-
rect: a system which is reliable, and secure from outside interfer-
ence: a system which recovers quickly when it does occasionally fail
- and perhaps even hides from the user the fact that a failure has
occurred: a system which is easy to use and understand: in fact, an
almost ideal database system from the user's point of view.

Alternatively, it may end up with a database system which is
slow, and corrupts or loses data: a system which often fails and is
easily compromised: a system which takes ages to recover and always
fails dramatically: a system which is difficult to use and impossible
to understand: in fact, from the user's viewpoint, a total disaster.

So, the first decision to be made is whether to have a distrib-
uted database system at all. For some organisations, a distributed
database will bring many advantages, giving its users the potential to
access much more data in many more ways. For other organisations,
the disadvantages might outweigh these advantages. Data access pat-
terns may minimise the advantage gained by having a distributed data-
base, as opposed to a collection of local databases or a central
database, and this is outweighed by the extra cost and complexity of

the distributed database approach. It is important to choose a
distributed database for sound commercial and technical reasons, and
not simply because it is the "New Technology". Let us use two con-

trasting business scenarios to illustrate the advantages and disadvan-
tages of distributed database systems - an air traffic control system
and a branch banking system.

Each of the scenarios requires a highly reliable service, but
their detailed reliability requirements are quite different. In a
branch banking system, the principal reliability requirement is that
no data is lost when the system breaks down,. so that at some future
time the system can be restored to the state immediately prior to the
breakdown. The loss of the whole system would, of course, be fairly
dramatic, but the majority of the processing and data accessing is
carried out on the local nodes, and so the loss of a single node would
be more of a nuisance than a disaster. Recovery could be carried out
by simply re-processing the most recent transactions until the data-
base was again up to date. In contrast to this, a breakdown in an
air traffic control system could cause the loss of the whole system,
producing an unacceptable danger to life. Here, only immediate data
is wuseful, and it is not possible to regenerate the database by re-
processing. There must be a back-up copy of the up-to-date database
immediately available. '

In a distributed branch banking system, the vast majority of the
processing 1is of local data. This results in a 1large saving in
telecommunication costs compared with a central system, as such costs
could be very high for a national system with several thousand branch-
es. However, against this has to be weighed the fact that a distrib-
uted database system implies the availability of local computer syst-

23

ens. This could prove very costly for a large network with many
local branches. In an air traffic control system, all the data needs
to be accessible to all parts of the system at all times, with perhaps
a few minor exceptions. These requirements are most economically
satisfied by a centralised system - a distributed system could be
used, but the cost would be very high to ensure the necessary reliab-
ility and speed of access.

Branch banking transactions tend to be fairly self-contained, and
operate on a small, well-defined subset of the data. The data struc-
ture itself is relatively simple, and the various logical parts of it
are well-defined and geographically separable. This type of data is
well suited to a distributed solution. In contrast, most air traffic
control transactions require access to a large and complex subset of
the data. The data itself is totally integral, with a high structur-
al complexity, and is best modelled by a centralised database.

24

f
f
!
t

CHAPTER THREE

TYPES OF SOLUTION

General

The complexity of users' requirements in the field of distributed
databases varies considerably, the different degrees of complexity

being best illustrated by an example., Take as a model a fictional
international airline (Ruritanian Airways), which keeps aircraft
spares at airports in different parts of the world. Consider the

situation when a Ruritanian Airways aircraft is stranded in London,

‘and has an urgent need for a new engine of a certain type (Type A).

The airline has implemented a distributed database, which carries
details of its spare parts holdings at different airports around the
world, and which can be accessed from each of these airport locations
(as well as the Airways' provisioning offices). The engineers serv-
icing the aircraft have found that they have no engine of Type A at
hand in London, so they need to identify the nearest airport which has
such an engine, and determine the best way to schedule transport for
it.

They might begin their use of the distributed database by asking
a question directed at specific nodes, probably of the order of: "Do
the holdings in Paris or Berlin include an engine Type A?Y. This is
an example of the simplest form of DDB query, and is referred to -as
'Queries addressed to specific nodes'. In other words, the transact-
ion only involves interrogating the database, not updating it, and
nodes which are interrogated are specified by the user.

Now suppose that the engineers have found that there is no engine
of Type A in Paris or Berlin, and they now wish to locate any Type A
engine within Ruritanian Airways' holdings anywhere in the world.
The question to be put to the DDB is then: "Does any holding include
an engine of Type A?". This type of query is referred to as 'Queries
not specifying nodes'. The transaction is still only interrogating
the database, but the node is not now specified - i.e., the node is
transparent to the user.

What if even this worldwide search through the DDB does not find
a suitable engine? This situation has been anticipated, and a recip=-
rocal arrangement has been made with another airline . (Transylvanian
Airlines) to use each other's spare parts when urgently required, and
for Ruritanian Airways to interrogate Transylvanian Airlines' DDB in
such circumstances. -

The situation is now complicated by the fact that Transylvanian
Airlines and Ruritanian Airways have been supplied by different comp=-
uter manufacturers, and their DDBs have quite different architectures
and protocols, implemented on different types of computer. Neverthe-
less, they have designed interfaces between the two DDBs which will
enable them each to interrogate the other, provided that the necessary
authority is obtained. The appropriate enquiry is performed, and an

25

;
3
{
H
!
3

engine of Type A is located in Rome (it might even have been in Lon-
don). This type of enquiry is referred to as 'Queries across nodes
having different regimes'. Like the previous enquiries, it interro-
gates the database without updating it; but, unlike the earlier
enquiries, it has to operate across regimes of different hardware
and/or software.

The engine is next flown from Rome to London, and the engineers
of Ruritanian Airways need to update the DDB of Transylvanian Airlines
in order to account for the removal of the engine from the Rome
holdings. This type of transaction is referred to as an 'Update
across nodes having different regimes'.

If the engineers had found an engine of Type A within the DDB of
Ruritanian Airways, then their own DDB would have been updated, in-
stead of that of Transylvanian Airlines, and in this case we would
have been dealing not with an 'Update across nodes having different
regimes', but with either a 'Periodic update (homogeneous case)' or an
"0n-line update (homogeneous case)', depending upon the urgency with
which Ruritanian Airways treat such matters, but, in either event, it
would be the case where only one DDB is involved.

\-—-——/
POST OFFICE
@ 12-00 CABLEGRAM
\ y - COLLECTION TIME
~._ _ _-7 THIS MATTER IS OF THE
UTMOST URGENCY STOP
11-00
N) COLLECTION TIME DO IT NOW STOP
~e___-—7 —1 HOUR THE BOSS
09:00
e COLLECTION TIME
— 3 HOURS
PERIODIC UPDATE , ON-LINE UPDATE
(No action until collection) " (Immediate action)

In the updating situation, it is necessary to differentiate
between the 'On-line update' and the 'Periodic update' mentioned in
the previous paragraph. Which is implemented in a particular case
would be dependent upon the application. In the case of an airline,
on-line updating techniques would almost certainly be used, since time
is of the essence. In some other applications, however, time delays

26

may not be considered so important. For example, a group of research
establishments with a common interest might well use a DDB to enable
researchers at any member establishment to locate all the papers and
articles on a given topic, regardless of where they might be held.
In such a case, the relatively high cost of on-line updating might not
be justified and periodic updating techniques would then be preferred.

The six different situations described above each pose different
technical problems for the designers of the DDB software. These
design problems, and the issues which they raise, are described in the
following sections, which treat the situations in order of increasing
complexity. At the end of the chapter, a final section, on a 'Highly
reliable service', is added. This is intended purely as an introd-=
uction to the special considerations and techniques which are involved
in those cases where very high levels of reliability are required from
a DDB. Typical examples would be military command and control appli-
cations, medical applications, or those involving the movements of
fissile materials.

27

(a) Queries Addressed to Specific Nodes

PARIS. DO YOU HAVE
AN ENGINE TYPE A

BERLIN NODE
(RURITANIAN DDB)
S VS N

LOCAL | |GENERAL NETWORK
DATA DATA J | S~ TELECOMMUNICATIONS —Z__
LONDON NODE LINKAGE PARIS NODE
(RURITANIAN DDB! (RURITANIAN DDB)

V4 3

ROME NODE PARIS NODE
(TRANSYLVANIAN DDB) (TRANSYLVANIAN DDB)

In this, the simplest example of access to non-local data, the
users at a node are usually able to satisfy their needs for data by
accessing the data held at that local node. However, they may also
require information which is held at a different node, but may only
interrogate the distant node, since updating facilities are implem=-

ented only on a local basis. To allow a simple solution to these
requirements, it is assumed that the access to remote data is not
critical in terms of performance, privacy, or reliability. This

assumption is reasonable where that remote data might be obtained by
some other means, such as a telephone call to the user's counterpart
at the other location. For such non-critical needs, a high degree of
co-ordination of queries is unnecessary; each node can co-ordinate
its own queries. The example is further simplified by the assump-
tions that the nodes support identical data management regimes; that
there are few nodes, and fixed responsibilities for holding data; and
that all applications software is already located at those nodes where

it will be used. Hence, each user can easily remember what remote
data exists, and there are no major obstacles to its being available
on demand.

The obvious approach is for a user to identify another node
explicitly as part of the query whenever he requires access to remote-
ly held data. Where he directs parts of one compound enquiry to
different nodes, he receives separate results: there is no attempt to
re-combine these with each other, or with locally derived data.

Despite the apparent simplicity of this solution, several import-

29

ant design decisions must be made. The user interfaces need to be
aligned across the network, so that a user can express both local and
remote queries in the same way. The underlying processes have to
translate the logical node identifiers into host machine identities,
and notify failure conditions to the applications software for the
users' benefit. Queries may contain criteria for selecting relevant
data, and such selection could take place either at the remote node
concerned or on return of potentially relevant data to the user's
node. ’

The same choice applies to the summarising of received data.
Although it is clearly more efficient in terms of data transmission to
select and summarise the data at the remote node where it is stored,
that approach splits the query processing between nodes, and is likely
to be rejected in favour of processing at the user's node in the
circumstance where retrieved data volumes are low and communications
traffic is not critical.

The same input and output types are likely to be used at several
locations, which suggests a need for a data dictionary at each node,
particularly where users' error rates are high. This facilitates
control of input formats and validation rules and supply of standard
output formats, and also caters for local variations in those formats
to suit users' preferences. The dictionary contents concerned with
data integrity and compatibility would have to be centrally defined,
as could defaults for presentation of the data, but users would be
able to adjust the appearance of screens and reports as required.

It is, of course, feasible to remove any of the simplifying
assumptions, such as the presentation of separate results from each
node. However, any increased capability has to be supported by
applications or systems software, and the assumptions specified above
demonstrate how many of the problems of distributed data handling can
be avoided by choosing a limited set of system requirements.

30

(b) Queries Not Specifying Nodes

DOES ANYBODY HAVE
AN ENGINE TYPE ‘A

BERLIN NODE
(RURITANIAN DDB)

— .

LOCAL | | GENERAL WETWORK
||| para DATA) | S TELECOMMUNICATIONS —Z_
2 LONDON NODE LINKAGE PARIS NODE

{RURITANIAN DDB) (RURITANIAN DDB)

pa)\
ROME NODE PARIS NODE
(TRANSYLVANIAN DDB) (TRANSYLVANIAN DDB)

This example also addresses the basic requirement, to give each
user read-only access to data which is held at one or more distant
nodes. A major new feature is added, namely that users do not have
to know and identify the logical node from which they wish to retrieve
data on each occasion. Where this constraint is applied only to end-
users, the applications software can be designed to use knowledge of
the exact distribution of the data in order to contact relevant nodes
for data on behalf of the end-user. Where the constraint 1is also
applied to system designers and programmers, the systems software is
forced to perform the functions involved in locating data and making
its distribution across nodes transparent to both end-users and appli-

cations software. Clearly, someone ultimately has to know and con-
trol the data distribution, in order to perform database administr-
ation.

The simplifying assumptions are retained, particularly that of
performance of remote accesses not being critical. If such perform=
! ance were to be critical, then the necessary overhead of obtaining
| data through the network might be found onerous, because delays in
? answering queries which involved data held at locations remote from

the user would become evident.

Since the wuser submitting a query is not aware of whether that
query involves local and/or remote accesses, there must be some facil-
ity for analysing it into sub-queries against individual nodes. Even
without critical performance constraints, that process has to choose a
reasonable sequence of retrievals, so as to avoid unnecessarily large

31

data transfers across the network. This analysis can take place at
the user node, for simplicity of control; at a central node, to
reduce the workload on other nodes; or everywhere, by broadcasting
the entire enquiry. The last approach is best suited to the situ-
ation where each node can readily identify and respond to that part of
the query which is appropriate to itself.

32

(c) Queries Across Nodes Having Different Regimes

DOES ANYBODY HAVE
AN ENGINE TYPE A

BERLIN NOOE
{RURITANIAN DDB)

LONDON NOOE
{RURITANIAN DDB)

~ s .E . NETWORK
—X " TELECOMMUNICATIONS ~Z_.
LINKAGE

PARIS NODE
(RURITANIAN DDB)

s X

(TRANSYLVANIAN DOBI

\

PARIS NODE

ROME NODE _ (TRANSYLVANIAN DDB)

In this case, users are to be given access to data held at remote
nodes under different data management regimes. A common example of
this 1is where outlying user nodes are on smaller machines supporting
only conventional file structures, whereas one or more large machines
on the network support a full DBMS. Alternatively, more than one

major DBMS may be in use, with a requirement to share data resources
across the mnodes concerned. Large systems may have both multiple
DBMS types and conventional files. It is impractical to expect end-
users to interface differently with each node, according to its reg-
ime. Equally, it is highly desirable that a uniform interface to

both local and remote nodes be available to programmers.

Although the distribution of data across identical nodes can be
made almost transparent to users, distribution across different nodes
is 1likely to be visible at least to programmers and quite possibly to
end-users as well. This visibility can take the form of constraints

on the range of data objects and structures which are handled by the
interfaces between nodes. A good example of this in a business
context 1is the supply of current selling prices from a central node,
and the return of sales statistics by outlying nodes, all other data
being local to particular nodes. In general, transparency of data
distribution and data management regime is a matter of degree, depen-
dent upon the effort invested in extending the interfaces between

local processes. For example, a design limitation may be that any
data which a DBMS has to make available to other nodes must be held in
a form directly equivalent to serial and indexed files. However,

such a constraint affects the service received by local DBMS users,

33

who presumably make most use of their local data.

The fundamental decision to be made is the level at which the
data management differences are to be reconciled. Where existing
machines are being linked into a network, high priority is likely to
be placed on retaining the existing user interfaces, which will ref-
lect local data management regimes at programming interfaces and
(indirectly) at end-user interfaces. In these circumstances, a sub-
query which needs access to data on a different regime has to be
transformed into an equivalent expression in terms of that other data
model. Where simpler nodes are sending sub-queries to a main DBMS
node, only the latter should handle the transformations, with the
option of re-directing sub-queries to outlying nodes for data not held
centrally. This approach avoids overloading smaller nodes by the
need to transform queries to a central standard, particularly where
the data is already available without such transformation.

The chief alternative is for all queries to be expressed in terms
of a single standard data model. Where this model is independent of
all regimes used for storage, a high degree of flexibility is gained,
at the cost of having to transform every sub-query twice in each
direction. Where one of the storage regimes is adopted as the stand-
ard, a choice remains of whether it is applied only to sub-queries
between the regimes, or it will form the basis for expressing queries
at the end-user level, at all nodes. In the latter case, transform-
ations are needed for local sub-queries upon any nodes which do not
adhere to the standard.

Transformations have to cater not only for a correspondence of
data objects and action requests, but for correspondence of exception
conditions also. Simple conditions, such as 'no data for that key
value' may be directly comparable, whilst more complex ones are likely
to be meaningless under a different regime. The obvious course is to
group finer distinctions within broad categories, when failures or
other conditions are to be reported across regimes. The concept of
currency 1is particularly difficult to map between regimes, and re-
inforces the need to express sub~queries at as high a level as poss-
ible, above the peculiarities of the individual regimes concerned.
Where it is available, use of a high-level query facility is valuable
for avoiding user involvement in the differences of data models.
Ideally, wuniform dictionary and directory facilities should also be
employed in support of query processing, but for many combinations of
regimes such portable software is not available. In its absence,
either multiple sets of the control data must be maintained in para-
llel across the network, or a central version must be shared with
other nodes.

34

—n

{d) Periodic Update (Homogeneous Case)

The requirement addressed here is that of making occasional
updates which involve more than one site, as well as accommodating
queries. As this is the first case dealt with in which updates, as
well as queries, are involved, an extra constraint is imposed on the
facilities which must be provided by the system, to permit temporary
storage of updates at the local node.

The periodic update facility raises a number of fresh issues.
First, the question of when a periodic update service becomes an on-
line wupdate service. A service which imposes a time delay of a few
minutes between submission and execution of an update would be regard-
ed by some users as on-line, and by others as periodic. For this
reason, no firm line is set between a periodic update service and an
on-line wupdate service: it is assumed that the threshold lies some-
where in the region of five minutes. The question may, to a 1large
extent, be linked to the forms of transmission allowed. Clearly, the
absence of a continuous teleprocessing link will imply periodic (as
opposed to on-line) update, but the converse will not always obtain.

In most cases, the existence of a continuous teleprocessing link
will allow the system designer the option of providing an on-line
update service if he so wishes. In a minority of cases, where data
rates are very low (as may, for example, be the case in aerospace or
telemetry applications), even a continuous link will only enable
periodic update.

The question of whether it is necessary to broadcast the updates
throughout the network will depend on the number of sites involved in
individual transactions, and on the message load imposed on the net-
work by the use of the technique. The risks of network congestion
and long response-times have to be balanced against the more complex
system design work involved in the direction of updates to specific
nodes. For practical purposes, in most cases where the update ser-
vice is periodic, updates will be directed to specific nodes, rather
than being broadcast.

The question of how database integrity is preserved concerns the
speed with which any loss of integrity can be detected and corrected.
Techniques such as two-phase commit protocols, which minimise the risk
of loss of integrity, may need to be backed up by periodic consistency
checks, designed to determine whether database integrity has been
preserved.

A typical solution to the user's requirement will be one in which
he can execute multi-site query transactions at will, but if he wishes
to update data at a remote node, he needs to store the updates in his
local node until they can be processed in batch mode. An update
processing routine then operates either at regular intervals or on a
queue-driven basis.

35

(e) On-line Update (Homogeneous Case)

WE (LONDON NODE) OWE
TRANSYLVANIAN AIRWAYS
(ROME NODE!} ONE
ENGINE TYPE A

BERLIN NODE
(RURITANIAN DDB)

<> Yl rl

LOCAL | |GENERAL NETWORK

DATA DATA X TELECOMMUNICATIONS ~Z._.
j LONDON NODE LINKAGE PARIS NODE
; (RURITANIAN 0DB} {RURITANIAN DDB)
] . .
! ROME NODE PARIS NODE

(TRANSYLVANIAN DDB) {TRANSYLVANIAN DDB8)

For applications where some or all of the data must be consistent
at all times, a system such as that described in section (d) of this
chapter is inadequate. The period between updates has to be reduced
to the time between processing of transactions causing changes in the
i data. A transaction can require updates to be carried out at a
% number of nodes. From the viewpoint of the applications programmer,
’ it is simpler if he does not know the number of copies of data and
their locations. However, such provision of replication and location
transparency implies a degree of complexity usually found only in
systems 1like those described in section (g) of this chapter. Con-
sequently, this section assumes that neither replication nor location
transparency is provided.

Since the system provides no transparency, the applications prog-
rammer must control the updating process: this raises several quest-
ions pertaining to updates across the system, and further important

) issues in the synchronisation of updates and the handling of nodes
| which are currently off-line.

) The alternative approaches are to transmit updates to either all
nodes or only specific nodes, the choice being dependent largely on
the control structure. If local nodes have details of data distrib-
ution, then the update of specific nodes can be carried out. If data
to be updated is held at most nodes, it may be simpler to broadcast
the update to all nodes and allow those which hold the relevant data
to make the appropriate changes. If details of location are held
centrally, then the update can be transmitted to the central node for

37

S S R S

forwarding to relevant nodes. If each update must be carried out
simultaneously across all sites, it is necessary to lock the relevant
records at each node. This is complicated, and adds substantially to
the complexity of the control system.

A further problem which must be considered is the node which is
currently off line. There is a variety of reasons for a node being
off line: it may be due to a communication failure, leaving the node
operational but isolated; the node may be closed down due to a local
fault in either hardware or software; night-time closing may be local
routine. Most solutions to this problem utilise a log file held at
one or more nodes to resynchronise the node when it is restarted.

38

gt

(f) Update Across Nodes Having Different Regimes

DEBIT ONE ENGINE TYPE ‘A’
TRANSYLVANIA (ROME) HOLDINGS
DEBIT COST- RURITANIAN

(LONDON] HOLDINGS BERLIN NODE

{RURITANIAN DDB)

? LOCAL | |GENERAL NETWORK

“ _DATA DATA |—S"TELECOMMUNICATIONS —2Z..

f LONDON NODE LINKAGE PARIS NODE

§ {RURITANIAN DDB!} (RURITANIAN DDB)

| ROME NODE PARIS NODE
(TRANSYLVANIAN DDB) (TRANSYLVANIAN DDB)

This case extends that of section (c) from query handling to
update processing, across different regimes of data management. As
for queries, there has to be a known correlation between the data
objects, between the actions for data manipulation, and between the
resulting conditions, for such updating to be feasible. The more
similarity there is between the regimes, the more detailed the cross-~
regime interface can be. For instance, updates across databases
conforming to the CODASYL data model are in principle far easier to
specify than those across, for example, a CODASYL and a relational
data model. : :

The most robust form of solution is one which translates all
incoming update requests, regardless of origin, into a standard form
which is independent of the various data models on the network. In
this form, each request is analysed (by application code or a distrib-
uted DBMS) into sub-requests upon local and remote nodes. These sub-
? requests are transformed by the nodes concerned, and processed in
‘ terms of the data management routines at those nodes. The results
are transformed back to the standard format, returned to the origin-
i ating node, and there combined with local results into a single reply.
This is again transformed for presentation at the local user inter-
face. Since the transformations are applied to all update requests,
not just to sub-requests upon other regimes, the overheads could be
crippling, or require dedicated processors to support a 'plack box'
transformation service at each interface.

39

Although high-level query packages provide some ready-made pro=-
tection from differences in data management, generalised update pack-
ages are rare, particularly for use across differently implemented
data management regimes. Nevertheless, it may be possible to adopt
the syntax and extend the semantics of a standard query facility, to
express update requests in a uniform manner across a network. Since
the variety of data needed for control of data integrity, availabil=-
ity, and privacy is much greater than for queries, the number of data
dictionaries and directories which can provide active support of
update processing across multiple machines is very small. Those
supporting such capabilities are being developed from central diction-
ary/directory functions, primarily for use on homogeneous networks.

Use of a single shared dictionary/directory imposes such over-
heads upon the already heavy data traffic of updating across nodes
that availability of those functions at each node is almost a necess-
ity. Hence, a different dictionary and directory capability is
likely to be required for each regime, together with the means of
keeping their contents in step across the network. In principle, the
latter function would be performed by the distributed update capabil-
ity, but this would only be possible where the dictionary/directory
software conformed to the network standard for expressing update
requests.

Performance is clearly a major issue for multi-regime updating.
Consider the process of analysing a user's update request into sub-
requests. A particular kind of decomposition may be optimal for one
data management regime, but unacceptably inefficient for another.
This shows that, where performance is a significant factor, agreement
of standard syntax and semantics for sub-requests does .not provide
more than token transparency of differences between nodes. The
analysis process at each node has to take account of the different
needs of the nodes to which sub-requests are to be sent before gener-
ating those sub-requests. Since a single update request cannot
sensibly be decomposed into two different sets of sub-queries, some
inefficiencies are, in practice, inevitable. The important thing is
to choose those inefficiencies which will least affect the overall
service provided to the users.

40

"
¥

(g) Highly Reliable Service

A highly reliable service in a distributed database implies that
a high reliability must be provided by the separate components of the
DDB. It also implies that availability levels must be high, and that
the risk of loss of integrity must be very small. Specifically, the
hardware at each node must have high reliability; the risk of mess-
ages being lost by the network must be very low; concurrency must be
maintained; and deadlock situations must be detected and resolved.
In addition, it is important that the DDB provides a reliable service
in situations in which a number of nodes have failed. Where this
problem is of prime importance, special techniques may be needed.

DDB technology does not as such provide techniques for improving
the reliability of the hardware at individual nodes. It is possible,
by the application of reliability theory, to calculate the availabil-
ity of the network for a given purpose, where availability is express-
ed as:

MTBF
MTBF + MTTR
where MIBF 1is "mean time between failures' and MTTR is 'mean
time to recovery', provided that information on network connectivity,
node reliability and link reliability is available. However, al-
though considerations of reliability at individual nodes are import-
ant, they are not generally regarded as part of DDB technology.

The risk of loss of a message by the network is a function of the
reliability of individual nodes and links, and of the network routing
techniques used. Network routing techniques fall into two groups,
probabilistic and deterministic. Probabilistic techniques are
claimed to be more efficient at finding the best route through the
network, but they have the disadvantage that a very small, but finite,
risk of a message being lost by the network message routing software
does exist. Deterministic routing techniques, although they may have
efficiency drawbacks, are more suitable for DDB applications requiring
high reiliability since they do not involve this risk. However, they
do not entirely eliminate the risk of a message being lost at some
point due to the possibility of node or link failure.

The risk of message loss is most threatening during the process-
ing of an update, as such a loss could result in a loss of database
integrity. Recovery from this situation can be very difficult,
particularly in an environment in which updates are being actioned in
rapid succession. Many designers of DDBs have chosen an approach
which 1is based on a 'commit protocol' to minimise risks which arise
during the updating process.

A commit protocol is-a high-level protocol which is concerned
purely with the preservation of database integrity. It is independ-
ent of lower level protocols which are concerned with the delivery of
messages. The purpose of a commit protocol is twofold. Firstly, it
ensures that all sites involved in the processing of a multi-site
transaction agree on whether or not to process the transaction. Sec~
ondly, it reduces to an absolute minimum the time period (or 'window!')
during which the failure of a link or node can result in loss of

41

database integrity.

The most commonly used commit protocol is the "two-phase commit

protocol’. In the first phase of its operation, each site involved
in the transaction is queried as to whether it can commit its part of
the transaction. Each then enters a 'ready' state, prepared to

either commit or abort the transaction on the decision of a previously
selected 'transaction co-ordinator’. In the second phase, the trans-
action co-ordinator transmits its decision, and all the sites then
either commit or abort. The technique carries high overheads, espec-
ially in large networks, so to optimise performance specific variat-
ions have been implemented. The most important of these are the
'linear' and 'centralised' two-phase commit protocols.

In the linear two-phase commit protocol, sites involved in the
transaction are ordered into a sequence, and the commit proceeds with
the messages along the sequence. Each site enters the ready state as
it passes the transaction to the next, the last site in the sequence
becoming the transaction co-ordinator, and so initiating the commit or
abort decision, which is then relayed through the sequence in reverse
order.

The centralised two-phase commit protocol uses the site which
originates the transaction as the co-ordinator, and this site trans-
mits both the alerting and the commit/abort messages. Comparison of
the two approaches indicates that the linear protocol requires fewer
messages, but the centralised technique obtains better response times
for large numbers of sites.

For certain types of network topology, the two-phase commit
protocol can be replaced by the more specialised 'safe-talk protocol’,
which eliminates the final acknowledgement message of the commit
phase, showing a saving of twenty-five per cent of messages over the
two-phase commit protocol. Other protocols are being researched, and
it is as yet uncertain which will prove the most efficient for partic-
ular requirements.

In DDBs, the techniques used to ensufe the maintenance of data-
base integrity during concurrent access by a number of transactions

are collectively referred to as concurrency control. Three main
approaches to concurrency control - locking, time-stamping, and major-
ity consensus methods - have been developed. Certain optimisation

techniques have also been developed, mainly with a view to reducing-
the high overheads associated with the locking process.

The use of locks on data items was originally developed for use
with centralised DBMSs, and has subsequently been extended for use
with DDBs. The most commonly used method is 'two-phase locking',
which requires that each transaction obtains locks on required data
before processing it, and that a transaction does not obtain any new
locks after it has released a lock. Various two-phase locking tech-
niques have been developed. One - 'primary site' - relies on a
central lock controller to manage the locks; others involve distrib-
uting the locks with the data. Where the data is replicated, it is
possible to designate one copy as the primary copy, and to lock this

42

copy only.

- [;M@ - mﬁ-ﬂ@ {1

LOCKING (Data item P is locked to transaction A,
Q to B - item R is not locked)

Time-stamping involves the association of a unique time-stamp
with both each transaction and each data item. Database concurrency
is maintained by only permitting the updating of a data item by a
transaction bearing a later time-stamp. Time-stamps can also be used
to synchronise reading and writing operations. They can involve high
storage costs, but, when data items have not been updated for a per-
iod, their timestamps may be dropped, without risk to concurrency.

f@/

5 g -
- @@a S NN -
S

TIME-STAMPING

orm OO

The majority consensus (or voting) algorithm relies on a count of
'votes' from individual nodes to decide whether a data item should be
updated. Its main advantage is its resilience against the failure of
individual sites. However, its complexity is a drawback, and it has
not yet been used in the more important DDBs.

43

MAJORITY CONSENSUS (VOTING)

A deadlock situation arises when two or more transactions cannot
be completed because each is waiting for some other transaction within
the same cycle to release some resource. A common technique for
detecting deadlock cycles in centralised DBMSs is to use a 'transact-
ion-wait-for' (TWF) graph. A deadlock cycle is normally broken by
forcing one of the contributing transactions to abort, then resubmitt-
ing it when the other transactions in the cycle have been executed.

In a DDB, deadlocks can be detect-
ed by each node maintaining a copy
of the TWF graph. Since this in-
volves large overheads in exchang-
ing data between sites to keep the
graph up to date, other techniques
have been developed. One is the
use of a global TWF graph, which
is held at a designated site: oth-
er.techniques rely on concurrency
control methods to resolve dead-
locks: in still further cases,
total reliance is placed on the
DBMS software at individual sites
to detect and resolve global dead-
locks.

DEADLOCK

44

CHAPTER FOUR

METHODOLOGY AND COST
General

Having looked at the concept of distributed database, considered
contexts in which this approach to data management might be adopted,
and suggested a number of specific types of model of such systems, we
can now examine more deeply some of the essential features of distrib-
uted database design.

The design of a DDB system can be seen to have the same object-
ives and many of the same problems as that of a centralised DBMS, but
the data for a DDB system is held at a number of separate nodes. So
the main characteristics of the database approach (such as data indep-
endence, data sharing, minimum redundancy in stored data, data integ~
rity, data consistency, etc.,) do apply, with the difference that each
node can own and be responsible for its own data, and with the added
problems of distribution, synchronisation over a communication net-
work, and possible lack of homogeneity among nodes.

In this chapter, we will discuss techniques which are essential
in the construction and use of a distributed database, under the
following headings:

(a) Database definition,

(b) Data independence,

(c) Inter-node communications,

(d) Access control and integrity,

(e) Failure conditions, resilience and recovery,

and (f) Performance, re-organisation and restructuring.

45

(a) Database Definition

Readers may well be familiar with the ANSI/SPARC model of a
database, which utilises three levels of database definition - a
conceptual (or community) level, which defines the logical structure
of the overall database, independent of any particular application or
user view; an external (or individual) level, which defines a subset
of the database as seen from one viewpoint (there will be a number of
such viewpoints); and an internal (or storage) level, which defines
the form in which the data is actually held. These three levels can
be identified in both distributed and centralised databases, but, in
the general case, a DDB must also take account at each level of a
further dimension - the autonomy of its constituent nodes.

EXTERNAL
LEVEL

CONCEPTUAL
LEVEL

INTERNAL
LEVEL

THE LEVELS OF -DATABASE DEFINITION

Global is the term used for functions with a centralised view of
the data (e.g., a global query is a query asking for pertinent data
from other nodes), 1local being that for functions which refer to just
one node. This terminology helps to identify and describe various
aspects of the architecture of distributed database definition, as in
the following definitive terms.

A Global Conceptual Schema defines the structure of the overall
integrated DDB, independent of any one application or node. This
schema may be held at one designated node, or copied at each constit-
uent node of the network. In the latter case, 1it is necessary to
ensure that the copies remain consistent, as well as maintaining data
consistency.

A qubal External Schema is a subset of the integrated DDB as

47

seen from one viewpoint (e.g., a sales manager's viewpoint). The
same viewpoint may be held .at different nodes. For instance, if each
node corresponds to a subsidiary company of a corporation, then the
sales manager of each company may be able to access the corporate DDB
to obtain information about the corporate sales situation. The
'view' seen by each sales manager would be the same.

A Local Conceptual Schema is an application-independent defin-

ition of the database available at a site. Local databases will
often have been created before the integrated database is set up, and
will not necessarily be subsets of the overall system. For example,

a local database might contain data about local public services, which
is of neither interest nor relevance on the global scale.

A Local External Schema is a subset of a local database as seen
from one viewpoint. This, for example, could be a sales manager's
view of his own company (as distinct from the parent corporation).

Similar comments can be made about internal schemas. "Wiew' is
sometimes used as a synonym for 'schema', but it is preferable to use
'view' for a set of occurrences (e.g., the actual data seen by a sales
manager on different occasions) and 'schema' for the definition of a
view.

It 1is clear that a DDB system needs more levels of description
than a single database. Unfortunately, there is no DBMS or DDBMS
known to this group which enables either a user or the database admin-
istrator to make the clear distinction between levels of interest and
locality which is implied by the examples above. However, the exam-
ples do illustrate the necessity of introducing a method of describing
connections between data from the different local databases, if there
is to be global use of the totality of the data. A number of differ-
ent architectures for this have been proposed.

Person File
NAME AGE HAIR COLOUR |
SMITH | 25 LBROWN] SMITH 25 - BROWN
~ NODE A —'_
[sones | 32 Jeono | JONES 32 | _|_|stono
N i
] EVANS 40 I BLACK
[evans | 40 [BLack :1:
—NODE B WEBB 40 BROWN
WEBSB 40 | BROWN ' 1
_ | e
NODE A | NODE B
Horizontal Partitioning Vertiical Partitioning

48

One matter to be considered is the criterion for the distribution
of data - is it to be held at the node of origin, or at the node of
greatest use (however this is defined)? Given that data is to be
partitioned, is horizontal partitioning (such that a node will hold
complete records, but not a complete set of records) or vertical
partioning (so that a node will hold a complete set of certain fields
- attributes -~ of the records, but no complete records) to be pref-
erred?

Some decisions involve the operational performance of the data-
base as much as its definition. Problems which arise in this area
are the required or desired extent of replication, whether constituent
nodes will all use the same DBMS for their local databases (an homo-
geneous DDB) or whether the DDBMS must also convert global queries
from one type of DBMS to another (a heterogeneous DDB).

A further necessary definition - that of a Mapping - is: the
process whereby data or data manipulation commands are translated from
one structure or view to another. Mappings are particularly pertin-
ent to DDBs, their essential basis being an adequate knowledge of the
source and object structures involved.

A data dictionary can be used to store the various schemas, as
with a centralised database, but its importance is even greater in a
distributed context, as it becomes a fundamental tool of documentation
for the administration of the DDB system. Just as for schemas and
data, a distinction can be made between a local data dictionary, which
relates only to its local database, and the global data dictionary,
which relates to the total DDB. The global data dictionary can draw
much of its data from the various local data dictionaries. Homonyms
and synonyms, for example, are likely to be especially common in a
DDB, and must be resolved at the global level.

49

(b) Data Independence

A principal objective of any database management system, whether
centralised or distributed, is to make it possible to alter the data-

base without affecting the applications programs. The degree to
which this goal is achieved varies greatly, as performance or fail-
safe factors may constrain the system. Here, three aspects of data

independence are discussed, the distributed database features being
emphasised within each. :

A primary requirement is that data access by programs should not
be dependent upon database organisation. A centralised database
system strives to shield the applications programs from the organisat-
ion of the database such as use of randomisation methods, data type
conversion, new indexes, et cetera. The necessity is the same in a
DDB, and, as the above topics are already well documented, they are
not further discussed here.

A common feature of both centralised and distributed database
systems (though less complex in the centralised case) 1is location
transparency, that is that the application has no knowledge of the
physical location of data. In the distributed case, the application
should not be required to know even the nodal location of data. This
transparency is achieved through use of a directory which holds the
locations of all the sections of the database. The three main types
of directory basis can be described as centralised, local, and replic-

ated master.

‘ (R |
. i / @
R2 D .’
—> —>
R3 B
R4 M
USER AT A NODE
SEES A SINGLE FILE S \

DIRECTORY

LOCATION TRANSPARENCY

A centralised directory implies that all nodes, other than that
at which the directory is resident, must enquire of it the location of
data to be accessed. A local directory basis means that if data to
be accessed is not at the local node, a search for that data must be

51

made at other nodes. This can be very costly in communication terms,
unless the communications network provides efficient broadcast facil-
ities. The replicated master directory approach involves replicating
the master directory (or the centralised directory) across all nodes,
with the effect of fast response times and 1little communications
traffic for directory enquiries. However, it is costly in storage
terms and requires careful version control.

Above, a simple allocation of record types to nodes is assumed.
However, as explained above, more complex rules for distributing data
are possible, resulting in partitioning or replication. The third
type of independence required is therefore independence from the
particular scheme of partitioning or replication in use.

52

(¢c) Inter-Node Communications

The nodes in a distributed database system require to communicate
with each other. The communications network which is used to support
this requirement should not be seen as part of the distributed data-
base system. Rather, the communications network should be seen as a
separate system, providing a service both to the distributed database
management system and to any other software requiring inter-computer

communications.
DOBMS DOBMS - DOBMS
COMMS , COMMS]
SOFTWARE SOFTWARE - COMMUNICATIONS
SYSTEM
PHYSICAL CONNECTION
L | l T §
i
NODE ‘A’ NODE ‘B’

SEPARATION OF COMMUNICATIONS FROM DDBMS

Since the communications network is considered to be a separate
system, the techniques required to construct such a network are not
described here. However, some of the general issues are introduced.

The main requirements that a distributed database system will
have for a communications network are that it can transmit messages
between any nodes, and that the transmissions are reliable and error
free. A further important aspect is whether the communications are
required in a homogeneous or a heterogeneous machine environment.

Communications networks available have progressed from old-fash-
ioned inflexible topologies (e.g., star or hierarchical networks) to
ones where connectivity is permitted between all nodes - essential for
a DDBMS. There are two main reasons for this advancement: firstly
the ability of national telecommunications administrations (e.g.,
British Telecom) to provide extensive public data network (PDN) facil-
ities, and secondly the advent of layered network architectures.

The PDNs are based on digital transmission techniques and replace

the analogue circuitry of the original telephone systems. These
digital networks, wutilising packet or circuit switching techniques,

53

offer the advantage of higher transmission rates with reduced error
occurrences. Computer manufacturers have shown their support for the
PDNs through the introduction of products capable of being connected
to the networks.

The major manufacturers have begun to implement layered network
architectures with very full functionality, e.g., IBM with Systems
Network Architecture and UNIVAC with Distributed Communications Arch-
itecture. The lower layers cover the transport of data over commun=-
ications links. The higher layers are concerned with supporting the
applications programs specifically by managing and providing formatt-
ing of the messages to be exchanged. This high degree of functional-
ity is, however, only readily available in homogeneous networks.

Perhaps more significant is the advancement being made towards
international standards for communications networks applicable to a
heterogeneous environment, e.g., the International Standards Organis-
ation with its basic reference model for Open Systems Interconnection
(03I). This describes a framework for a seven-layer architecture
based on existing and rapidly developing standard protocols. The
CCITT recommendations X21, HDLC and X25 fit into the lower three
levels of the OSI model: however, much work is yet required at the
higher levels of this model.

54

(d) Access Control and Integrity

Problems of access and integrity which occur in a DDB concern the
privacy, integrity and consistency of the database, and concurrent
access to it. There are also indirect problems, such as deadlock,
which result from using certain sychronisation methods in attempts to
prevent some of the problems mentioned above.

Security of Access

. In organisations where information is kept, there is always a

risk that data will get into the wrong hands. A security control
mechanism is necessary to ensure that confidentiality is maintained.
Privacy is the right to restrict access to data. Authorisation is
the right to view restricted object types (applications programs, view
tables, data). To obtain unauthorised information is an access
violation, of which four types have been identified, viz. theft of
media, interception of communication lines, violation of computer
security, and decoding the radiation produced by computers and commun-
ications equipment into information being processed. The privacy
problem exists in a centralised DBMS, but it is more serious in the
distributed situation, as data is stored in more than one location and
is accessed from many different places.

The mechanisms used in a system to prevent access violation and
to maintain privacy within it are referred to as security control,
three important aspects of which are the where, the how, and the cost.

Security control can be centralised, with authorisation checking
performed at a single node, or distributed, with checking performed at
each node. In the distributed case, the process for authorisation
checking of requests could be at the user end, with requests checked
at initiation, or at the data end, with authorisation checked at each
access to the database. Authorisation records can be held at either
the user end or the data end. Security may be checked as a separate
process, or may be integrated with the data access procedures. A key
criterion for choosing between strategies is whether the system aims
to improve execution efficiency or to increase site autonomy. Check-
ing authorisation at the user end should save on communication time,
and so increase execution efficiency, whilst checks at the data end
increase nodal autonomy within the network and imply one mechanism per
node. -

Methods of security control are dependent on the type of viol-
ation prevention required. There are many forms of safeguard against
access violation, which can be implemented at different levels in the

system. The first is simply to prevent intruders logging in to the
system by the use of passwords. Inside the system, there can be
software safeguards at conceptual and external schema levels, such as
logical security constraints and access control tables. Logical

security constraints allow the user to view restricted statistical
data (e.g., mean wage, number of employees) but not single elements

55

(e.g., a particular employee's wage). Access control tables prevent

unauthorised users from viewing particular restricted data. At the
internal (storage) level, privacy transforms may be used to encode
data into an unintelligible form. This method can also be used in

the prevention of effective interception of communication lines.

— Authorisation
Checking with l

User or Data

DATABASE

DIRECTORY

AR

SOME OPTIONS FOR STORING AND APPLYING AUTHORISATION RULES

L Authorisation
Rules with
User or Data

When weighing the cost of security control mechanisms, the user
must consider the effect an information leak would have on the organi-
sation. This should put the value of protecting restricted inform-
ation into perspective. Having then analysed the threat, the organi-
sation can implement relevant security mechanisms. Communication
costs should be low if authorisation checks are made at transaction
initiation, as in the user end type of system. However, this requ-
ires that authorisation records are held at the user's node. In
fact, authorisation records will normally be held at many such nodes,
in which case storage costs are incurred, due to replication of these
records. Alternatively, authorisation records may only be kept local
to the data. With this method, high communication costs would be
incurred if security checks are made as a separate process. A data
end security check affords the possibility of saving in storage of
authorisation records, but the user pays in execution time and commun-
ication costs between nodes. The main cost incurred by installing
logical security constraints is an increase in execution time, as
every query must be checked for validity.

56

Consistency, Integrity and Concurrency

The consistency constraints of a system are defined by rules and
descriptions in the conceptual schema. There are three factors which
threaten the consistency of a database: user update errors (which can
introduce inconsistent data); concurrency conflicts (which can induce
improper sequences of operations to be executed); and site crashes
(which can prevent the completion of update transactions). When
consistency is maintained at all nodes, it is said to be strong, but
when the possibility exists that one of the nodes in the system is
temporarily inconsistent, the consistency of the system is weak.

A system is said to be concurrent if it is able to execute more
than one transaction in parallel. The objectives of concurrency are
to increase throughput, improve response time and achieve better
system utilisation. The price paid for allowing concurrency into a
system is the high probability that inconsistencies will enter the
databases unless preventative measures are taken. Concurrency con-
trol mechanisms are used to co-ordinate concurrent accesses to the
database in a single DBMS, multi-access system. In a distributed
system, the control mechanisms at each node must be extended to take
account of the updates being processed at all the other nodes.

Transaction 1 Database Shows Transaction 2

READ RECORD ‘A 52 | — 52 |
L 5| 52| reap recorp
y/
ADD 21 (TO RECORD IN =
WORKING STORAGE) 73
REWRITE RECORD ‘A
{(FROM WORKING STORAGE '_—) 73
TO DATABASE)
N4 ADD 10
62 | REWRITE RECORD A’
62 E] {TRANSACTION 1
' UPDATE LOST)
LOST UPDATE
Three types of concurrency error can occur in a system. Lost

update describes the situation in which two transactions read and
alter the same field in a database record in such a manner that the

57

overlap of transaction execution causes the record to be effectively
altered only once. A dirty read results when a transaction reads the
output from an incomplete transaction, 'seeing' a database state which
could not be observed in a system which has no concurrent transact-
ions. Inconsistent reads are caused by related data records being
read by one transaction whilst another updates them, the first trans-
action not seeing consistent record values.

Transaction 1 Database Shows Transaction 2
RECORD A’ RECORD B’
MONTHLY INCOME ANNUAL SALARY
105 1260

1
READ RECORD ‘A’

ADD 10
REWRITE RECORD ‘A’

READ RECORD A" — 115 FOUND

i |
1 |
15 : READ RECORD 'B' — 1260 FOUND
' ! {TRANSACTION 2 SEES
t ! INCONSISTENT BALANCE
: ' . AND TOTAL BALANCE!}

READ RECORD ‘B’ i |

ADD 120 1 1

REWRITE RECORD ‘B ! |
15 1380

INCONSISTENT READ

Database integrity is the guarantee that all data values are
correct in respect to the transactions processed To maintain integr-
ity, users and applications should not be allowed to introduce incon-
sistencies or errors into the system as a whole. - Factors which allow
errors and inconsistencies into the system also hinder the maintenance
of integrity in a distributed database management system.

Co-ordination Techniques

Consistency, integrity and concurrency are all inter-related.
Concurrency improves execution time and reduces redundancies in the
System, but also increases the problems of integrity and consistency.
A mechanism to control concurrency also assists in the maintenance of
consistency and integrity. Two-phase locking, majority consensus and
time-stamping are techniques on one or more of which concurrency
control mechanisms are usually based. The two-phase methods are used

il in mechanisms to prevent inconsistencies in a system. However, they
| can encourage states of deadlock in the system. Mechanisms which use
5 time-stamping are detection-type algorithms. Majority consensus

techniques include global locking and majority vote methods.

In global locking techniques, the site initiating the update

58

transaction alerts all other nodes to prepare to update the data
affected. Each node replies whether it is clear, or already process-
ing a concurrent update. If all nodes holding a copy of the data are
ready, then all copies are locked and the transaction is executed at

each node, If any of the nodes is busy, the transaction is rejected
or delayed. Although this method maintains consistency, it allows
few updates to be executed concurrently. The advantage of this
technique 1is that all copies of data are updated together. It is

cost-effective if the ratio of reads to updates is high.

The primary and secondary update mechanism assumes full replic-
ation, and is a centralised method. One node is allotted the role of
primary updater, Each update is received by this node, which updates
its database and then informs the other nodes (known as secondary
nodes) of the update. At the secondary nodes, updates can be logged

and run periodically. The main disadvantage of this method is the
delay in updating at secondary nodes. It can be modified into a
dynamic system for back=-up purposes., If the primary node fails, a

secondary node assumes the role of primary: then, when the original
primary returns, the new primary informs it of its new secondary
status and missing updates.

In the majority vote strategy, a transaction is initiated by
informing each node holding a replica of the required data. If a
majority of these nodes accepts the update, then it is executed and a
version number is assigned to the data. Version numbers are monoton-
ically increasing to aid detection of updates lost at any node.
Where a node fails and restarts, the database version number held by
the majority of current nodes rules and the failed node is reset. A
node outside the majority may request to update, but, before it is
authorised to initiate the transaction, the node must join the major-
ity by catching up on updates.

The majority read update technique again uses the method of
version numbers to check for lost updates. Updates are executed
sequentially and are accepted only if the version number on an update
is one greater than that of the previous update. Node failure and
loss of updates are highlighted by version number. This and the
majority vote algorithm aim to maintain consistency and integrity in a
distributed database management system, but they do not allow for
parallel processing, so the concurrency capability is lost with these
two methods. A

Deadlocking

Techniques which use locking protocols to maintain integrity and
consistency in a distributed database management system can encourage
system deadlocks. A deadlock occurs when two or more processors are
prevented from further processing because each is holding a resource
needed by the other(s). The ideal system would have a deadlock
prevention mechanism. As backup to preventative mechanisms which have
not been proved to fail safe, many deadlock detection algorithms are
available. Should a system detect a deadlock, it must be reset.
Three phases are then required - prevention, detection, and resol-

59

ution.

To prevent deadlock, the pre-ordering of resources or the use of
time~stamping of updates can be used. These methods will reduce
concurrency on the system, and so increase execution time. Wait-for
graphs are used to detect cycles of processes waiting for each other.
This method requires large amounts of storage and high communications
reliability for the graphs to be credible. To resolve deadlocks,
roll back procedures are used to restore the system. A log is requ-
ired to record all committed updates, this too requiring a significant
amount of storage.

There have been many simulations of distributed database manage-
ment systems built so that the effects and frequencies of deadlocks
could be studied. One of these projects concluded from both the
simulation and observations measured on an operational database that
"deadlocks are rare creatures", which raises the question of the
necessity of their prevention. It may be cheaper to check the system
for deadlocks periodically, or when the system appears to be in a wait
state.

60

(e) Failure Conditions, Resilience and Recovery

Failure Conditions

In a state of the art DBMS, set in a modern computer operating
environment, much of the development effort has been put into both
resilience to failure and recovery from failure. Where data is
shared between users on a single computer, it is obviously vital that
both the number of failures and the effects of such failures as they
occur are minimised. Where data is shared between potentially far
larger numbers of users on a multi-computer system incorporating
varied hardware, DBMSs and other components, the problems are proport- -
ionately greater. However, many of the techniques currently in use
may be extrapolated to the distributed database situation. The
closest parallel is found in virtual machine operation environments
which cope with concurrent use of a variety of file handlers and
DBMSs, giving shared data access to many users.

The types of failure which a distributed database system must
handle range from human error by terminal users, through those of the
communications and terminal sub-systems, database management, operat-
ing systems and other software sub-systems to failures of memory,
processors, and other hardware devices. Many failures are to be
expected on a regular basis, e.g., mistyping, occasional loss of data
over long communications lines, errors in applications programs -~ even
main store memory and discs are now becoming significant when consid-
ering the likelihood of failure. This has happened during a period
which has seen their inherent reliability improve but the number of
such components within a system dramatically increase. As an examp-
le, a O96Kb machine with 64Mb of disc backing store of ten years ago
might now be replaced by a 16Mb machine with 18000Mb of backing store.
Foreseeable failures should result in only a local loss of service,
and that service should quickly be restored. Other, 1less expected,
failures may well result in a more widespread loss of service. None-
theless, the inherent flexibility of a multi-node system should enable
the effect to be kept to one node.

In a distributed database system, the types of failure which are
most difficult to handle are those which occur during the life of a
transaction which includes update processing on more than one node.
A subsequent recovery process has to ensure that data at each node is
returned to the state it was in immediately prior to the commencement
of the transaction. This process, known as a 'multiple sub-system
roll-back', relies upon the integrity of the data being maintained by
some form of lock, and on each node having sufficient 'intelligence!'
to take part in such a co-ordinated roll-back operation. The intell-
igence takes the form of copies of the data, reflecting its state
before the transactiong integrity locks; detailed knowledge of sys-
tem activity at the time of failure; and knowledge of which other
nodes or sub-systems are involved in this particular transaction.

61

Resilience

Resilience to failure normally comes from some form of built-in
redundancy. Instead of a single component carrying out a function,
two (or more) components are used - duplexing or multiplexing.
Should failure occur within any one component, the function may be
continued by the other. In simple systems, the failed component is
replaced or repaired when the system is next quiescent. More advan-
ced systems have the capability of recovering the failed component and
restoring fully duplexed operations without closing the system. Exam-
ples of this kind of duplexed technique are duplexed disc/tape files,
duplexed devices, multiple copies of software, and alternative commun-
ication routes.

However, there is no satisfactory substitute for producing sys-
tems whose probability of failure is small. This goal involves every
stage from design to quality control on finished hardware and software
systems. Even so, for some years to come we must continue to expect
powerful DBMSs to produce errors in their less widely used facility
areas. This is understandable, as a complete DBMS system may contain
over a million instructions. In both hardware and software systems,
it is often advisable to remain within the well-proven nucleus and not
"holdly go where no man has gone before'. '

Probably the most important resilience feature in a distributed
database is the provision of alternative routing methods to nodes,
closely followed by the replication of data.

Some systems currently in their experimental stage are working on
the premise that components such as processors will have occasional
intermittent failures. A set of identical processors could each
carry out the same elementary function in parallel, the most frequent-
ly occurring result being taken. This approach enables manufacturers
to use cheaper, individually less reliable, components to give a
system with inherently very reliable characteristics. Similar app-
roaches may well be useful in distributed database, where several
nodes may be able to process any one transaction.

Recovery

All recovery systems rely on taking preventative measures in
anticipation of failure. The simplest method is the taking of backup
copies of data, so that in the event of failure, the data is restored
and all work subsequent to the copy is re-processed. Another tech-
nique is the recording of before-images of data as part of the wupdate
process. When a failure occurs, the database is rolled back, 1i.e.
the recorded before-images are re-applied, in reverse sequence, until
the database has once more become consistent. Subsequent transact-
ions can then be re-actioned. This process would usually only invol-
ve those transactions which were being actioned at the moment of
failure. The converse of this method is the recording of data after-
images as part of the update process. After a failure, an earlier
copy of the database is re-instated and then rolled forward, by the
application of transaction after-images since the copy, until consist-

62

ency is threatened. From this point, subsequent transactions are re-
processed. This approach, again, would usually be expected to invol-
ve only those transactions which were in process at the time of the
failure.

A more complex variation on this method is the use of delayed
updates. Changes are stored until the completion of the causative
transaction, then copied to an after-image file and to the database.
Recovery is again effected by the roll forward technique. A combined
before-image/after-image technique 1is of particular importance in
distributed situations where a single transaction may update several
separately located database components. On failure, transactions in
process would be rolled back, but the failure may have occurred when
the after-images generated by a transaction have been completed but
have not all been applied. A roll forward action is then necessary:
to restore a current, consistent situation. This technique would be
based on a two-phase commit protocol.

In a distributed situation, each node should have a DBMS which is
capable of both the roll back and roll forward functions, irrespective
of the particular mechanisms implemented. A two-phase commit strat-
egy or similar technique (usually under the control of the node init-
iating the transaction) is then used to co-ordinate the sub-systems.
Each node must notify the controlling node when after-images have been

secured to its log file. When all have done so, the transaction is
deemed complete (known as the 'commitment point'); each node is then
asked to commit the update to its database. When this task is comp-

lete, locks are released, and the next transaction can be processed.

Failures prior to the commitment point are recovered by a roll
back operation, and those after this by a roll forward operation.
This well-proven technique has one major drawback. Each transaction
can involve a very large number of short messages to co-ordinate the
system in case of failure, and these can result in unacceptable per-
formance.

63

(f) Performance, Re-organisation and Restructuring

Performance

With existing technology, performance in a distributed database
could be unacceptable, particularly in a system having a high propor-
tion of transactions which update data on more than one node. Com-
ponents which contribute to performance include all sub-systems in-
voked to complete the job in hand, as well as any ancillary processes
triggered by the job, such as recovery or the gathering of statistics.
Many factors which are usually important become insignificant, where
response-time is concerned, when compared with network transfer time
and inter-site locking overheads.

To determine the significance of a component to the job in quest-
ion, it 1is necessary to know the time it is expected to take to
complete its function, the likely queuing time, and the number of
times it is used within the job. Potential bottlenecks can then be
identified and removed, until response time is acceptable. Commonly
identified bottlenecks include network transfer time; resource locke-
ing (i.e. database locks across the network); recovery actions to
cope with locking and other problems; sub-system co-ordination activ-
ities (e.g., the handshakes required within the two~-phase commit
strategy); updating replicated data on other sites (which probably
exists as backup or to improve performance when data is subject only
to enquiries); and dictionary/directory accesses (where the diction-
ary used to control remote data access is not held locally).

Normal considerations, such as central processor utilisation and
disc transfers, tend to take an important but secondary place. Until
inter-site communication performance improves by at least an order of
magnitude, such considerations as encryption, protocol conversion
(both communication and data aspects) and other inter-node management
functions should aim to ensure that the task is performed adequately,
rather than putting excess effort into tuning for performance.

Techniques to optimise performance include those used by state of
the art conventional DBMSs and communications techniques, such as
replication of data which is used frequently for retrieval purposes
only; clustering of data on frequently used access paths; indexes;
data pre-loaded into main store (or virtual store) and parallel proc=-
essing. The techniques of most value will be those which minimise
utilisation of inter-site communication devices (such as parallel
lines and message compression) and those which reduce the effect of
resource locking ({(such as careful data design and application access
sequences). Some of the techniques will reflect the type of data
manipulation language in use. Those which relate to groups of rec-
ords, or to tables, will offer far superior performance to those which
reference record occurrences only one at a time.

Since performance could well be the factor which makes or breaks
a distributed database, designers must be able to predict the perform-
ance of such a system with reasonable accuracy, so that users can be
told what to expect. This is no easy task. Most suppliers have

65

performance figures which vary between poor and barely adequate,
unless backed up by intensive use of sizing specialists. The ideal
situation would be one where the results of data and function analysis
may be used to generate an optimum distribution design and prediction
of the resultant performance within the business constraints. Given
performance prediction, the next requirement is for the variety of
alternative storage and access techniques expected from comprehensive
DBMSs, to permit tuning of the system to the required response time,
throughput and resource utilisation.

Most current sub-systems have built-in monitoring facilities to
give statistics such as number of transfers, average resource utilis-
ation, and delays awaiting resources. It should be possible to
relate the details from all sub-systems, to give a total picture and
identify bottlenecks in a manner which relates to the original perfor-
mance predictions. The system can then be re-sized and re-tuned to
achieve an improved compromise.

There are systems in operation which re-tune certain aspects of

the system in an heuristic manner. One such system, for example,
dynamically re-locates data from one node to another depending upon
recent and predicted usage. Suppliers of distributed database sys-

tems may well be advised to design their initial offerings in such a
manner as at least to collect the data necessary for administrative
action or the later addition of heuristic tuning.

Re-Organisation

State of the art .database technology has the concept of a.concep-
tual schema and an internal schema. A conceptual schema is the one
to which an application program would relate (via an external schema),
and typically defines records (or tables), sets, data items and symb-

olic keys. An internal schema, however, relates to methods of data
storage (hashed, clustered, sequential, etc.,) and to access methods
(through pointers and indexes). Changes to either storage or access

methods are the subject of re-organisation activity, which may be
triggered by poor performance or database full conditions.

Re-organisations within a distributed database fall into two
categories, those within the scope of a single node, and those which
affect more than one node. In a single node, the problems are basic-
ally no different from those of re-organising a centralised database.
Such a re-organisation would normally involve logically unloading the
data, sorting it into a sequence dictated by the loading characterist-

ics of the new internal schema, and then reloading it. One would
normally plan such an activity carefully, to reduce the impact on
users and ensure the integrity of the data. A medium-sized database

might well take a long weekend to re-organise, so performance predict-
ions are again important, particularly as a database may well have
large numbers of users who could be disrupted. It is often possible
to copy data to be re-organised and use the copy in 'retrieval only'
mode to supply a limited service whilst re-organisation takes place.

Re-organising data over more than one node may be done for a

66

variety of reasons. It may be decided to replicate frequently used
data onto another site, which need present no particular problems

apart from that of bulk data transfer. It may be necessary to dis-
seminate data from one node across several, to remove a bottleneck or
cater for the node having reached its maximum capacity. These and

other inter-node problems need new tools.

Restructuring

Often, re~organisation and restructuring are confused, as some
suppliers find it convenient to provide utilities which combine them.
Restructuring involves changes to data which are needed to reflect
changes to the conceptual schema, and often require changes to applic-
ations programs. Examples include such relatively simple situations
as adding new record types, tables, sets, or data items, and more
complex ones, where, for example, a record type may be split into two
or more new record types to support some new application area. Some
changes can be performed in situ, but the data may have to be unloaded
and manipulated prior to reloading within a new conceptual (and inter-
nal) definition. In a distributed database, the problems are very
similar to those of re-organisation.

Dynamic Re-organisation and Restructuring

The scenario is discussed, in academic and international circles,
of a database, distributed or centralised, with a conceptual and/or
internal definition which changes relatively frequently. At each
change, instead of stopping and changing all the data and programs to
reflect the new definition, it is envisaged that the data would be
dynamically re-organised (or restructured) when next accessed. Prog-
rams could similarly use old external views to access data which is
now held in a manner reflecting new definitions. The papers current-
ly available suggest that the subject is not adequately understood at
this time to consider within the already complex situation of a dist-
ributed database.

67

CHAPTER FIVE

SPECTAL REQUIREMENTS AND FUTURE DIRECTIONS
General

The preceding chapters have discussed distributed database syst-
eéms as currently implemented or under development. This chapter
addresses factors which may result in special solutions being quickly
developed or which may affect longer term trends. Such factors will
primarily be developments in technology, or user requirements which
cannot be satisfied by current solutions.

Developments in technology and changes in user requirements are
necessarily linked. As computer hardware becomes cheaper and more
powerful, and as digital networks become more readily available, user
expectations will increase. As the general awareness of users regar-
ding the capability of computers increases (through personal comput-
ers, computer education, and so on), new and more diverse applications
will be considered.

This chapter moves from special user requirements to developments
in computer technology. The user requirements section does not attempt
to 1identify requirements of relevance only to a single application,
but rather those which are likely to have a wider influence on future
developments.

Special User Requirements

Broader, unconventional applications of computer technology are
presently being explored. The growth of DBMSs has been, and that of
distributed database systems is being, based on a range of typical,
proven requirements which tend to correspond to conventional data
processing situations. However, some of the areas into which there
is a pressure for expansion have clear implications for distributed
database technology.

Much is heard of the electronic office. A distributed database
could well provide an inter-site link for an organisation's word
processor based document system, with immediate access and retrieval
facilities available to authorised sites whenever a new document is
collated or an earlier one updated by word processing techniques.

The use of facsimile and graphical input would also gain value
from the use of distributed systems, such probable usage having impl-
ications for the need of development of high bandwidth communications
systems and larger capacity storage devices to cope with the bit-
streams generated. The same techniques would facilitate the storage,
distribution and retrieval of speech and pictures.

Where a distributed system supports a diversity of users, there

will be pressure to permit on-line additions and alterations to its
schema. Particular integrity problems arise from a need to define

69

and immediately utilise a new record type. Again, simultaneous re-

organisation may be impractical across a distributed system. Such a
situation could arise from differences of time =zone, for example,
within the organisation. The solution here may be for the distrib-

uted database management system to recognise more than one simultan-
eous version of the schema, some data being stored according to each
version.

In process control applications, although relatively small quant-
ities of stored data may be involved, changes to data occurring on one
computer may have to be distributed rapidly to other computers in the
system. Further, the fact that a change has occurred to the data
may have to be signalled to an application-level program in the recip-
ient computer.

Government legislation or other pressures from society may affect

requirements upon distributed database systems. Requirements for
protection against unauthorised access could especially affect the
design of communications facilities. For instance, legal require-

ments for individuals to be able to find out what data is stored about
them, and to record objections or amendments, may well be enacted
within a country. Also, privacy laws may result in restrictions on
data transfer across national boundaries, and distributed database
systems affected may be required to guarantee compliance.

Military requirements are 1likely to have some impact on the
direction of developments. Much basic research on distributed data-
bases in the U.S.A. 1is funded from military sources. Whilst much of
this 1is general in nature, military requirements must inevitably be
taken into account. In the forefront of these are surviveability and
interoperability. Surviveability is the requirement to continue to
provide a service following the destruction or loss of part of the
total system. Research in this area will yield benefits for availab-
ility and resilience in commercial systems. Interoperability is the
requirement to exchange or share data with other systems. Research
in this area is likely to improve understanding of the problems of
heterogeneous, federated systems.

A requirement to make best use of hardware resources always
exists. The requirement is greatest for the resource which is relat-
ively most expensive. With the cost of memory and processing - units
falling rapidly, communications are likely to be the most expensive
resource in many situations. Optimising the use of communications
will 1lead to the need for query optimisation, for optimising the
number of replications and the locations of data in a network, and for
efficient communications protocols.

Developments in Computer Technology

The cost and availability of computer hardware is the fundamental
factor influencing the development of distributed databases. The
increasing cheapness of computers and storage devices has led to the
widespread introduction of computers into organisations, often in a
haphazard and poorly co-~ordinated manner. Even small departments can

70

now afford to buy their own computers. The result is that corporate
data is spread across a number of separate computers, often of differ-
ent types. Since the data is often logically related, and of inter-
est to more than one department, this inevitably leads to pressures
for exchange or sharing of data.

In the short term, cheap solutions which involve copying entire
files from computer to computer and reformatting on an ad hoc basis
are adopted. As the problems of inefficiency and inconsistency
become apparent, the pressures for a better solution will grow and
heterogeneous distributed database software will be required.

This situation has interesting parallels with the development of
database management systems. Initially, individual applications were
allowed to hold their own files independently, but within a single
computer. However, the problems outlined above also occurred in this
case, with the resultant requirement for databases.

Whilst the cost of hardware in general continues to fall, some
items of equipment will always be relatively more expensive than
others. Although departments may be able to afford their own comput-
ers, some 1items of equipment will always be too expensive for single
installations to justify. Such equipment might well include mass
storage devices, content addressable file stores, large database mach-
ines, and so on. Given the low cost of 16 and 32 bit micro-computers
which will soon be powerful enough to perform functions originally
associated with mainframes, even items such as tape drives could
become relatively too expensive for some users. In this situation,
there is a clear case for sharing any type of data storage device
between computers, and these should be under the control of the dis-
tributed database management system. Future distributed database
management systems will therefore be required to cater for a range of
device types and capabilities within a network.

Communications is a critical factor in the development of distri-
buted databases. Protocols for ensuring data integrity generate a
high message load for a communications system. Where fast response
times are required, a communications system will be required to deli-
ver messages very quickly. High speed local area networks are becom-
ing available, which should be able to meet many requirements, but the
capacity of distributed database systems to saturate networks should
not be under-estimated. For databases distributed across geographic-
ally dispersed sites, data communications is much more likely to prove
a limiting factor. The difference in communications capacity between
local area networks and long haul networks is likely to impose a
requirement on the distributed database management system for two
levels of integrity protocol. The long range protocol might provide
lower integrity for a lower cost in message traffic, or might complete
updates remotely following transaction completion at the initiating
site.

The two levels of protocol could also create a requirement for

two levels of distributed database. A local distributed database
would span the local area network, and also form a single node within
a long range distributed database. From the viewpoint of the long

71

range distributed database, the local distribution would normally be
irrelevant, and should not be visible.

A significant factor in the ease of implementation of heterogen-
eous databases 1is likely to be the International Standards Organis-
ation's Basic Reference Model for Open Systems Interconnection.
Whilst standardisation of communications will be beneficial, it is not
clear that the current ISO model is entirely consistent with distrib-
uted database requirements at the upper (application, presentation and
session) levels.

72

CHAPTER SIX

CONCLUSIONS

This initial report has outlined some of the background to the
subject, indicating where there is a need for a distributed database
and which kinds of data and processing requirements are best suited to
the distributed database approach. It presented various types of
solution, in ascending order of complexity. It then reviewed the
methods used to achieve the solutions, and considered some of the
technical issues involved.

The distributed database approach is a result of the convergence
of the earlier disciplines of database and data communications. At
the time of writing this report, there are relatively few examples of
either customised solutions or standard products which can vouch for
its future potential. Hence it is reasonable to ask whether DDB is

mature enough to be considered practical now. Is it important for
the future of data processing, and when (if ever) will it come into
widespread usage? How will it develop in such directions as ease of

implementation and efficient operation?

What forms will that development take? Much progress has al-
ready been made in the area of standard components, such as those for
data access between machines irrespective of geographic sSeparation.
This progress will yield a range of distributed database management
systems (DDBMS) and supporting software. The earlier examples are
naturally limited in their handling of recovery from failures, and in
their ability to operate across different machine regimes, but some
progress in these areas also is expected. Standards for DDB are
unlikely to appear in a usable form for several years yet. Instead,
compatibility will initially be achieved through a combination of
similar data management regimes, plus data communications standards.
Since the latter are usually employed at a low level (e.g., ISO layers
1 to 4), and data management applies at a middle level (records,
tuples), the upper (application) levels will still have to be supplied

by the user organisation in most cases. Some suppliers will adapt
their applications packages to enable multiple instances of those
packages to co-operate between computer sites. Even then, some

constraints will still apply in terms of performance and ease of
control. One important phenomenon which will impact DDB performance,
and shape its development, is the availability of high capacity data
links (i.e. 1 Mbit/second upwards).

There are significant pitfalls along the path of DDB implement-
ation, and this report has explained several of these, together with

approaches for avoiding them. Perhaps the most noteworthy difficul-
ties are those affecting user authority and procedures, software
construction, performance and exception handling. The report has

therefore emphasised the care and planning effort required to ensure
success whatever the form of solution.

There are also opportunities - to co-ordinate business operations

73

R Y e e

more closely between sites, to reduce the costs of several kinds of
communication, and to decrease dependence on particular ADP resources.
Distributed databases are emerging from the experimental stage into
the practical stage. There is a growing awareness on the part of
government and commercial organisations that fragmented data process~
ing solutions are inadequate, and that a coherent approach is required
in future. The Working Group is confident that in the next few years
the state of the art will advance rapidly, the efficacy of distributed
databases will be demonstrated, standards will be proposed, and a
variety of software tools for distributed data management will become
widely available. As these changes occur, distributed database meth-
odology will become an integral aspect of most organisations' data
processing activities. Naturally, each organisation will proceed at
its own pace. Some organisations are already constructing or operat-
ing their own DDB systems. The Group hopes that this initial report
will be of value to those who are considering whether to do likewise.

T4

APPENDIX A

GLOSSARY OF TERMS

ACCURACY A database is accurate if its user data is correct, comp-
lete and timely in relation to the real world.

BLACK BOX A unit whose inputs and outputs are well-defined but whose
internal mechanisms are not known.

CODASYL Conference On Data Systems Languages - a voluntary organisa-
tion with the objective of designing and developing techniques
and languages to assist in data systems analysis, design and
implementation.

COMMIT PROTOCOL A means of ensuring that a given update is applied
fully, or not at all.

COMMITMENT UNIT A quantity of processing by an application program
to take the database from one state of integrity to another.

CONCEPTUAL SCHEMA Defines the overall logical structure of a database
independently of any particular application view, or of the stor-
age mechanisms used.

CONCURRENCY CONTROL Mechanism which ensures that all changes made to
a database during a transaction's processing are not visible to

other concurrent transactions until the transaction's changes are
committed.

CONNECTIVITY The extent to which individual data elements in a data-
base are bound together.

CONSISTENCY A database is consistent if its user data and system
data are in accordance with the rules and descriptions (i.e.
consistency constraints) contained in its global schema and dist-
ribution schema.

CONTROL Control is centralised if the control information is held at
one node only. Control is decentralised when the information is
held at each node. -

DBMS see database management system.

DDB see distributed database.

DDBMS see distributed database management system.

DML see data manipulation language.

DATABASE ADMINISTRATION The responsibility for maintaining the data-
base within an organisation.

DATABASE MANAGEMENT SYSTEM The software which manages a database.

75

DATA DICTIONARY A dictionary describing the data stored in a data-
base, and containing all relevant information about that data.

DATA INDEPENDENCE The independence of different views of the data in
a database, allowing one view to be changed without disturbing
the other views.

DATA INTEGRITY The protection of the data in a database against loss
or damage resulting from failure during operation of the system.

DATA MANIPULATION LANGUAGE The interface language used by the appli-
cation programmer to communicate with the database from the host
language.

DEADLOCK A problem which can arise whenever two or more contending
processes wish to exercise exclusive control over common res-
ources.

DETERMINISTIC ROUTING The determination of a route according to a
set of rules.

DISTRIBUTED DATABASE A single database whose parts are distributed
across multiple computers connected by a communications system.

DISTRIBUTED DATABASE MANAGEMENT SYSTEM A generalised utility for
servicing the requests of application programs for global ext-
ernal objects - and hence ultimately for storage schema objects
at some local site(s).

DISTRIBUTION SCHEMA A definition of the location of global schema
objects over the sites of a distributed database.

EXTERNAL INTERFACE A capability to transfer data and/or commands
across a boundary of the system (e.g., to/from a machine or other
network).

EXTERNAL SCHEMA Sum definition of all of the various types of exter-
nal record in the external view of the database (i.e. the content
of the database as it is seen by a particular user).

GLOBAL Affecting the whole system.

GLOBAL ACCESS CONTROL SCHEMA A description of the global privacy
constraints.

GLOBAL EXTERNAL SCHEMA An application-orientated view of the global
schema for use by one or more application programs.

GLOBAL RELATIONSHIP A logical association between data types whose
instances may reside at multiple nodes.

GLOBAL SCHEMA A description of the logical structure of the totality
of data comprising a distributed database.

76

HANDSHAKE A pair of messages, where the second message is a direct
response or acknowledgement from the recipient to the sender of
the first.

HETEROGENEOUS A heterogeneous system accommodates different DBMSs at
its nodes, irrespective of whether the schema content and hard-
ware are the same or different.

HOMOGENEOUS A homogeneous system uses the same DBMS at all its
nodes, irrespective of whether the schema content and hardware
are the same or different.

ISO see International Standards Organisation.

INCONSISTENCY A database is inconsistent if two or more pieces of
data in that database simultaneously hold values that cannot be
mutually reconciled. A special case of inconsistency occurs
when two copies of the same data item have different values.

INTEGRITY 1Integrity of a database implies that all data values are
correct in respect to the transactions processed. A database
may not be up-to-date, but when all transactions have been proc-
essed, the database will accurately reflect the real world situ-
ation.

INTERNAL SCHEMA A definition of the way in which data is stored in a
database. It describes the internal organisation of the data,
rather than the view of any particular user.

INTERNATIONAL STANDARDS ORGANISATION An organisation which co-ord-
inates the formulation and ratification of standards in a wide
range of areas, including computing.

MAPPING A mathematical term for a set of rules by which the repres-
entation of a group of objects can be changed to another form.
Thus, centigrade temperatures may be mapped onto the fahrenheit
scale - or a relational data model may be mapped onto an entit-
y/set data model - in both cases with neither loss nor gain of
information.

NETWORK Two or more computers connected together by communication
lines.

NODE A place in a network to and from which messages can be sent.
At each node there is usually a simple hardware device to handle
the messages. To this device can be connected one or more comp-
uters (or users) that originate and receive messages.

ON-LINE An activity carried out whilst its originator waits for its
completion.

PACKAGE A group of computer programs written to carry out a partic-
ular function, e.g. payroll, and intended to form a 'standard
problem solution' - obviating the need for each user to derive
his own programs.

7

PACKET—SWITCHING A technique in which a message is broken up into a

series of pieces - 'packets' - which are then transmitted to the
recipient independently over a network and re-assembled at the
receiving site. The process of message fragmentation and re-

assembly is internal to the packet-switching system and is invis-
ible to both sender and recipient.

PARTITIONED DATA Partitioning is the division of data in a file into

a series of pieces.. There are two ways of doing this: first,
by data value - for example A-D, E-K, L~R, S-Z in separate files:
second, by data type - for example names and addresses on one

file and salary information on another. Combinations of the two
techniques are possible.

PORT The physical socket on a computer to which a communications
line can be connected.

PROBABILISTIC ROUTING Dynamic determination of the 'best' next step
of the route, based on accumulated statistics.

PROGRAM GENERATOR A program which, from information provided in
prescribed form by a user, can create, wholly or partially,
another program.

PROTOCOL A precisely defined set of rules governing the way in which
information can be transferred between two parts of a computer
system, e.g., two computers in a network or two collaborating
programs.

REAL WORLD The relevant parts of the environment within which we
exist. The actual existence of those facts, or pieces of data,
which are to be recorded and modelled within the database - for
example, a warehouse and its contents exist in the 'real world!?',
while a database may record 'location' and 'stock balance’'.

REPLICATED DATA Data held at more than one place in a database,
either centralised or distributed.

RESILIENCE The ability of a system to recover from a fault without
loss of any information. :

SCHEMA A set of rules which defines the structure of a database, or
of some particular aspect of it.

TWF see transaction wait for graph.

TRANSACTION A discrete instruction issued by a user, e.g. add new
Customer, 'tell me how many we have in stock?'.

TRANSACTION WAIT FOR GRAPH A technique used to ensure that two
transactions being processed simultaneously by a computer do not
prevent each other from continuing, thereby stopping any further
progress on either transaction. See also DEADLOCK.

78

TWO-PHASE COMMIT PROTOCOL A technique for ensuring that all copies

of the same piece of data in a distributed database are simultan-
eously updated. The first phase ensures that all DBMSs have
received the update; the second phase is the issuing of the
authorisation to carry out the update, when all involved have
acknowledged.

TWO-PHASE LOCKING The way of ensuring that concurrent access con-

USER

flicts do not occur under a two-phase commit protocol. All
DBMSs 1lock all relevant records before any DBMS commences updat-
ing; no records are released until all DBMSs have successfully
completed updating.

FRIENDLY A characteristic of systems which have been designed
to suit the convenience of the user of these systems - rather
than making the user amend his way of working to suit the conven-
ience of the system developer. Assessment of user friendliness
remains highly subjective.

79

APPENDIX B
BIBLIOGRAPHY

M. Adiba, C. Delobel: The problems of the co-operation between diff-
erent DBMS. IN: Architecture and models in data base management
systems. G.M.Nijssen (Ed.); North-Holland Pub. Co., 1977, pp. 165-
186.

M. Adiba, J. C. Chupin, R. Demolombe, G. Gardarin, J. le Bihan: Iss-
ues in distributed data base management systems: a technical over-
view. IN: Proc. 4th Int. Conf. on very large data bases, West
Berlin, Germany, Sept. 13-15, 1978, pp. 89-110. (Also IN: 1Issues in
data base management. H.Weber & A.I.Wasserman (Eds.); North-Holland
Pub. Co., 1979, pp. 127-153).

BCS: The British Computer Society Data Dictionary Systems Working
Party Report. IN: SIGMOD Record, v.9, no.4, pp. 2-24,

A. F. Cardenas, M. H. Pirahesh: Database communication in a heterog-
eneous data base management system network. IN: Information Sys-
tems, v.5, pp. 55-79.

G. A. Champine, R. D. Coop, R. C. Heinselman: Distributed computer
systems: impact on management, design and analysis. North-Holland .
Pub. Co., 1980.

C. J. Date: An introduction to database systems (3rd Ed.). Addison-
Wesley, 1981.

R. A. Davenport: Design of distributed database systems. IN: The
Computer Journal, v.24, no.1, pp. 31-41.

C. Delobel & W. Litwin (Eds.): Distributed databases. North-Holland
Pub. Co., 1980.

I. W. Draffan & F. Poole (Eds.): Distributed databases. Cambridge
University Press, 1980.

J. N. Gray: A discussion of distributed systems. IBM Research
Report RJ2699, 1979.

IS0/0SI: Data processing - open systems interconnection - basic ref-
erence model (ISO/TC97/S5C16). IN: Computer Networks, v.5, no.2, pp.
81-118.

B. G. Lindsay, P. G. Selinger, C. Galtieri, J. N. Gray, R. A. Lorie,
T. G. Price, F. Putzolu, B. W. Wade: Notes on distributed databases.
IBM Research Report RJ2571, 1979.

H. Lorin: Aspects of distributed computer systems. Wiley, 1980.

E. I. Lowenthal: A survey - the application of data base management

computers in distributed systems. IN: Proc. of 3rd Int. Conf. on
very large data bases. IEEE, 1977, pp. 85-92,

81

J. Martin: Design and strategy for distributed data processing.
Prentice-Hall, 1981.

F. J. Maryanski: A survey of developments in distributed data base
management systems. IN: Computer, Feb. 1978, pp. 28-38.

M. Miller: A survey of distributed data base management. IN: In-
formation and Management, v.1, 1978, pp. 243-264.

National Computing Centre: Trends in distributed computing systems.
NCC Publications, 1978.

PACTEL (PA Computers and Telecommunications): Distributed database
technology. NCC Publications, 1979.

T. A. Rullo (Ed.): Advances in distributed processing management,
v.1. Heyden, 1980.

B. Yormark: The ANSI/X3/SPARC/SGDBMS architecture. IN: The

ANSI/SPARC DBMS Model. D.A.Jardine (Ed.). North-Holland Pub. Co.,
1977.

82

