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Unleashing the potential of digital pathology data by training
computer-aided diagnosis models without human annotations
Niccolò Marini 1,2✉, Stefano Marchesin3, Sebastian Otálora1,2, Marek Wodzinski 1,4, Alessandro Caputo5,6, Mart van Rijthoven7,
Witali Aswolinskiy7, John-Melle Bokhorst 7, Damian Podareanu8, Edyta Petters9, Svetla Boytcheva 10,11, Genziana Buttafuoco6,
Simona Vatrano6, Filippo Fraggetta 6,12, Jeroen van der Laak 7,13, Maristella Agosti3, Francesco Ciompi7, Gianmaria Silvello 3,
Henning Muller 1,14 and Manfredo Atzori1,15

The digitalization of clinical workflows and the increasing performance of deep learning algorithms are paving the way towards
new methods for tackling cancer diagnosis. However, the availability of medical specialists to annotate digitized images and free-
text diagnostic reports does not scale with the need for large datasets required to train robust computer-aided diagnosis methods
that can target the high variability of clinical cases and data produced. This work proposes and evaluates an approach to eliminate
the need for manual annotations to train computer-aided diagnosis tools in digital pathology. The approach includes two
components, to automatically extract semantically meaningful concepts from diagnostic reports and use them as weak labels to
train convolutional neural networks (CNNs) for histopathology diagnosis. The approach is trained (through 10-fold cross-validation)
on 3’769 clinical images and reports, provided by two hospitals and tested on over 11’000 images from private and publicly
available datasets. The CNN, trained with automatically generated labels, is compared with the same architecture trained with
manual labels. Results show that combining text analysis and end-to-end deep neural networks allows building computer-aided
diagnosis tools that reach solid performance (micro-accuracy= 0.908 at image-level) based only on existing clinical data without
the need for manual annotations.
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INTRODUCTION
The digitalization of clinical histopathology workflows, along
with the advancements of deep learning, is paving the way to
Computer-Assisted Diagnostic (CAD) tools that can learn from
clinical data without human intervention1, although several
challenges remain.
Histopathology is the gold standard for cancer diagnostics2. It

involves the examination of tissue sections to identify microscopic
manifestations of diseases. Tissue samples are collected via
biopsies or surgical resections and then prepared to undergo
microscopic examination by a pathologist. The manual analysis is
a time-consuming task lasting up to one hour per image3.
However, heterogeneous tissue morphologies, arbitrary selection
of the tissue regions to analyze in detail and subjective evaluation
of findings4 generally lead to a low inter-pathologist agreement
on the diagnosis5–7.
The processing and analysis are usually performed with limited

digital assistance in clinical practice, even though digital
pathology is becoming increasingly common8. Digital pathology
involves acquiring and managing digitized tissue specimens,
called whole slide images (WSI). Whole slide scanners usually
acquire images with a high optical magnification of x20–40,
resulting in a spatial high-resolution of 0.25–0.5 μm per pixel. WSIs
are generally stored in a multi-scale format, allowing pathologists
to visualize different details of the images during the analysis,

from the lowest to the highest magnification levels. Pathological
findings, including observations from WSI analysis, are usually
described in a pathology case report. Even though synoptic
reports (including specific data about the patient in a structured
format) are expected to become increasingly common9, semi-
structured free-text reports are still the standard in clinical
settings10. Semi-structured reports include several fields, such as
the type of tissue specimen, the findings identified during the
analysis, an early diagnosis and the patient’s anamnesis. The
number of hospitals digitizing WSIs is increasing11–13, allowing
the collection of thousands of images and diagnoses.
Computational pathology is a recent domain centered on

computer-assisted diagnosis tools to analyze digital pathology
images automatically. Convolutional neural networks (CNNs) have
emerged as the state-of-the-art method to solve several
computational pathology tasks, reaching high performance.
However, despite an increasing number of methods, applications,
and scientific findings, the full potential of digital clinical
pathology data is still not reached and several challenges are still
open. First, CNNs usually need large datasets for training models
that can deal with the high data variability of clinical practice14.
Second, fully supervised approaches, that provide the highest
performance in computational pathology, require pixel-wise
annotations15 that are challenging to obtain in medical contexts
as they are resource- and time-consuming16,17. Third, WSIs are
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challenging to manage and fit into memory, even with modern
hardware18,19, since they are usually very large. Thus, splitting the
WSIs into patches is a common and required practice, sometimes
leading to biases due to the loss of spatial relationships between
the patches. Finally, WSIs can be highly heterogeneous in stain
variations due to the lack of standardization in tissue preparation
and acquisition across images and centers20,21. Stain heterogene-
ity leads to low model generalization on data acquired from
heterogeneous medical contexts that may include different stain
variations than those included in the data used to train the
models.
In recent years, weakly supervised learning approaches have

emerged to target some of these challenges16,22–24. Weakly
supervised learning approaches use global (weak or image-level)
annotations instead of local (pixel-wise) annotations. Global
annotations usually refer to the whole image, even though they
are usually derived from a specific and small sub-region of the
image. For instance, a WSI would likely be labeled as containing
“cancer”, even if the cancerous tissue is present only in 1–2% of
the entire image. Therefore, weakly supervised CNNs require
training datasets bigger than fully supervised approaches to reach
comparable performance.
On the other hand, global annotations present the potentially

groundbreaking advantage that they can be inferred from reports,
often provided together with WSIs. Nevertheless, up to now,
medical experts were needed to extract weak labels from the
report in most cases.
Campanella et al.16 achieved excellent cancer classification

performance (AUC= 0.986), relying on weak annotations and
weakly supervised methods. They trained a CNN with a Multiple
Instance Learning (MIL) framework to classify WSIs into two classes
(cancer vs. non-cancer) with a dataset including over 30,000 WSIs
of prostate, breast, and skin tissue slides. Despite the high
performance, this work only partially highlights the potential of
digital pathology data due to two main reasons. First, the weak
labels were manually provided by pathologists, after a time-
consuming WSI analysis, or automatically retrieved, thanks to the
structured nature of the Laboratory Information System (LIS),
where the reports are stored with predefined and structured fields
that allow to retrieve the concepts in the diagnosis easily.
Unfortunately, most LISs do not have a structured nature and
deal with noisy and heterogeneous free-text reports. Therefore,
the global diagnosis for the images can, in most cases, only be
inferred from the pathology reports with the intervention of
medical experts. The manual annotation of reports is faster than
pixel-wise annotation of images but it is still time-consuming
procedure, thus limiting the usability of clinical workflow data to
train models at a very large scale. Second, Campanella et al.
considered only two classes. The binary setup might be due to
the study’s novelty or the methodology used to perform the
annotations. However, it still does not correspond well to the
potential of clinical digital pathology workflows, where several
classes and diagnostic perspectives are presented in the report
paired to a tissue slide.
This paper proposes and evaluates an approach to alleviate the

limitations preventing fully exploiting digital clinical pathology for
training-assisted diagnosis tools. The proposed approach includes
a Natural Language Processing (NLP) pipeline to automatically
analyze free-text reports and a computer vision algorithm trained
with weak annotations to classify images. The NLP pipeline
automatically extracts semantically meaningful concepts from
free-text diagnosis reports to be used as weak labels for training
an image classifier. The implementation of the approach can be
changed and modified, allowing to adopt different techniques
that vary depending on the characteristics of the problem to solve
and on the state-of-the-art algorithm advancement. The approach
is tested on digital pathology colon data, completely bypassing
the need for human and unleashing the potential of data acquired

in clinical workflows. To demonstrate the reliability of automati-
cally generated weak labels for training, the image classifier is
compared with the same image classifier architecture, trained
using manual weak labels.
Figure 1 describes the two components of the pipeline.
The extraction of meaningful concepts from pathology reports

relies on the Semantic Knowledge Extractor Tool (SKET). SKET is an
unsupervised hybrid knowledge extraction system that combines a
rule-based expert system with pre-trained machine learning
models to extract labels from free-text reports.
Image classification relies on a Multiple Instance Learning

(weakly supervised framework) CNN. The CNN is trained with the
weak labels provided by SKET. The proposed CNN makes
predictions at patch-level (multiclass) and aggregates them using
an attention pooling layer22,23, to have WSI-level predictions
(multilabel). The CNN produces multilabel predictions reflecting
the pathology report nature: the analysis of the images may
highlight several findings in the same sample. Usually, in scientific
literature, the analysis of WSIs with multiple instance learning
involves binary16,24,25 or multiclass22,23,26 classification, often with
the most dangerous findings (e.g. cancer) identified as weak
labels. Adopting a network that makes multilabel predictions
allows to better approximate the nature of tissue samples.
The proposed approach is trained using colon WSIs and reports

provided by the Catania cohort (Azienda Ospedaliera Cannizaro
and Gravina Hospital Caltagirone ASP, Catania, Italy) and the
Radboud Medical University Center (Radboudumc, Nijmegen, The
Netherlands) and tested on private and publicly available
datasets using five classification classes. The hospitals provided
the reports and the WSIs without any manual data curation or
expert supervision, thus representing an ideal scenario for testing
the proposed approach.
Colon is chosen as a use case due to its high impact on society

and the difficulty of diagnosing it. Colon is the fourth most
commonly diagnosed cancer in the world27 with a 75% increase
predicted by 2040 for both genders and a broad range of ages28.
The diagnosis of colon cancer is problematic because it requires
the identification of malignant polyps27 (agglomerations of cells
protruding from the colon surface) and can include several classes,
namely adenocarcinoma, high-grade dysplasia (HGD), low-grade
dysplasia (LGD), hyperplastic polyp and normal.

RESULTS
Data
A total of 15,601 colon histopathology images (4419 paired with
the corresponding report from clinical workflows and 11,888
from publicly available datasets) were used in this work, with
focus on five classes. A detailed description of data is provided
in Table 1, while the Method section provides further details on
data characteristics.

Weak labels for images can be extracted from free-text
diagnostic reports
High quality semantically meaningful concepts (usable as labels
for whole slide images) can be extracted from diagnostic reports
without human interaction, allowing to replace manual annota-
tions created by experts on large scale datasets and to drastically
reduce time and effort required for data annotation.
The performance of SKET (the tool targeting label extraction) is

evaluated on 3769 diagnostic reports corresponding to the data
used to train and validate the CNN (1704 from Catania, 2065 from
Radboudumc).
Experts manually labeled the reports for ground truth creation

purposes, according to the five classes described above. The task
is a multilabel classification problem, because each report can be
annotated with one or more classes.
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Table 1 reports the class distribution of the reports (the upper
part includes the weak labels provided by SKET, the central part
includes the manually annotated weak labels) for both hospitals.
Dataset class imbalance reflects a realistic scenario, where
certain conditions (e.g., normal samples) occur more often than
others in clinical routine. Free-text reports are not curated before
the execution of SKET. In order to deal with multilingualism,
reports in Italian (Catania) and Dutch (Radboudumc) are
translated to English using the pre-trained MarianNTN29 neural
machine translation models, a Transformer-based30 encoder-
decoder architecture with six layers in each component. SKET is

evaluated using micro-accuracy and weighted macro F1-score.
On the Catania data, SKET achieves a 0.933 micro-accuracy and a
0.867 weighted macro F1-score; on the Radboudumc data, SKET
achieves a 0.950 micro-accuracy and a 0.883 weighted macro F1-
score. The results — further described in the “SKET limitations”
paragraph, Methods section — show the effectiveness of SKET
on both datasets.
By automatically analyzing pathology reports to extract weak

annotations, SKET saves an important amount of time in
annotation effort. An expert requires 30 seconds on average to
annotate a diagnostic report (as the average time evaluated

CNN

Attention Network

WSI Predictions

[0.7,0.0,0.2,0.1,0.0]
[0.8,0.1,0.1,0.0,0.0]
[0.2,0.6,0.1,0.1,0.0]

[0.007,0.001,0.002,0.001,0.0004]
[0.001,0.002,0.004,0.001,0.0001]
[0.005,0.003,0.001,0.001,0.0002]

Loss 
 (WSI Predictions, Weak Labels)

a

Patch Classifier

Weak Labels

Named-entity Recognition

Entity Linking

Data Labeling

Entity Mentions

Linked Concepts
Medical Ontology

Annotation Classes

Image Classification Pipeline

Input data
Free-Text ReportsWhole Slide Images

b

Images Spitting in Patches

Backpropagation

c
Textual Report Analysis Pipeline

Fig. 1 Overview of the analysis pipeline. a Input data from the clinical workflow (pink background) including WSIs (left) and the
corresponding free-text pathology reports (right). b Image Classification pipeline (green background) includes WSI pre-processing and image
classification. The WSI pre-processing involves the image splitting into patches from magnification x10, with a size of 224×224 pixels to fit the
pre-trained ResNet34 architecture. The image classification involves a CNN, trained using a Multiple Instance Learning algorithm. The CNN
includes a frozen ResNet34 backbone (convolutional layers with ImageNet weights) that produces feature vectors with 512 elements per
patch; an embedding layer to reduce the feature vector to 128 elements; a classifier that produces predictions at patch-level; an attention
network, that learns to identify relevant patches and aggregates the patch-level predictions to have a global WSI-prediction. c The textual
report pipeline automatically analyzes pathologist reports, to identify meaningful concepts to be used as weak labels for the CNN.
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during the report annotation process), whereas SKET annotates
more than three reports (3.19) per second. Therefore, SKET saves
95.7% of the time required for a pathologist to annotate a
report. Projecting the time to annotate data on a number of
reports comparable to Campanella et al. (over 30'000 WSIs, the
largest WSI dataset ever used) and assuming that the human
expert never stops, the time needed would be to over 250 h of
human work (without breaks), while the NLP pipeline needs
about 2.5 h.
The weak labels automatically extracted by SKET from the

diagnostic reports of Catania and Radboudumc hospitals match
the manual ground truth labels with high accuracy. Besides,
SKET drastically reduces the time required to perform report
annotations.

The CNN trained with automatically generated labels obtains
high performance on private data WSI-level classification
The CNN trained with weak labels automatically generated from
reports is highly effective for multilabel WSIs classification. The
CNN is evaluated at WSI-level using an internal test partition,
including WSIs from Catania and Radboudumc with human-
created report annotations.
The CNN is trained with a MIL framework, based on multiclass

patch-level predictions and an attention network to aggregate the

multilabel predictions at the WSI-level. It classifies five classes
(cancer, high-grade dysplasia, low-grade dysplasia, hyperplastic
polyp and normal). The CNN is trained using concepts extracted
from diagnostic reports by SKET as weak labels, so without any
human pixel-wise annotation.
The CNN, trained with the automatically extracted weak labels,

is compared with a CNN including the same architecture but
trained using manually created weak labels on the same images.
The Wilcoxon Rank-Sum test (p value < 0.05) is adopted to verify if
the performance difference is statistically significant.
The CNN reaches micro-accuracy= 0.908 ± 0.005 (respectively

0.911 ± 0.004 on Catania and 0.906 ± 0.005 on Radboudumc), macro
weighted F1-score= 0.769 ± 0.018 (respectively 0.797 ± 0.011 on
Catania and 0.744 ± 0.020 on Radboudumc) and there is no
statistically significant difference between using automatic and
manual (ground truth) weak labels for training.
The relevance of the result is related to the multilabel nature of

the WSI classification problem and to the absence of human
involvement into the training process. Figure 2b shows the ROC
curve for WSI-level classification on private data.
Single class classification performance shows results for all the

classes, with AUC over 0.92 for each class, except low-grade dysplasia,
0.85. The performance obtained on data from Catania is slightly
higher compared with the one obtained in Radboudumc data.

Table 1. Overview of the dataset composition.

Class

Source Cancer High-grade dysplasia Low-grade dysplasia Hyperplastic polyp Normal Total images

Training dataset: automatic weak labels (SKET)

Catania 422 464 630 251 462 1704

Radboudumc 189 119 434 493 1000 2065

Total 611 583 1064 744 1462 3769

Training dataset: manual weak labels (ground truth)

Catania 379 454 529 181 438 1704

Radboudumc 188 94 453 428 1048 2065

Total 567 548 982 609 1486 3769

Private testing datasets

Catania 52 44 54 23 79 227

Radboudumc 50 23 92 62 219 423

Total 102 67 146 85 298 650

Public testing datasets

GlaS36 91 0 0 42 133

CRC37 69 0 0 71 140

UNITOPATHO31,32

(sections)
0 1370 5804 545 950 8669

UNITOPATHO31,32 (WSI) 0 46 184 41 21 292

TCGA-COAD33 50 0 0 0 0 50

Xu38 355 0 0 0 362 717

AIDA34 31 4 1 65 101

IMP-CRC35 268 547 271 1086

Total 11888

The dataset includes colon images and reports from digital pathology workflows (Catania and Radboudumc) and publicly available datasets. The dataset is
split into training (upper part) and testing (lower part). The training dataset is labeled using automatically extracted weak labels provided by SKET (upper part)
and the ground truth of manually annotated weak labels (central part). The training partition includes data from Catania and Radboudumc, used to train the
CNN with a 10-fold cross-validation approach and evaluate the approach comparing its performance after training with automatically extracted labels and
manually-created labels. The test partition (lower part) includes data from Catania and Radboudumc and data from public datasets. Public datasets are in
some cases labeled with different classes than those employed in this work. In such cases, classes are mapped to the five considered ones via aggregation. The
task proposed in the paper is a multilabel classification problem, therefore the sum of the rows can differ from the total number of images. Furthermore, SKET
weak labels can include mislabeled samples, therefore the sum of the rows can differ between the automatic and the manually-created weak labels, whereas,
the total number of images is the same.
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Catania patches

AIDA patches

Catania patches

Catania and Radboudumc WSIs

Public images

a b

Fig. 2 Quantitative evaluation of the classification models at patch- and WSI-level. a Confusion matrices of the CNN models that reach the
highest performance in the patch-level classification. The matrices include the raw and the normalized values. The matrices are reported for
Catania (upper part) and AIDA (lower part). The AIDA dataset includes a class called dysplasia, instead of high-grade and low-grade dysplasia.
The ground truth and the predictions are mapped into the dysplasia class. b ROC curves of the CNN models for the patch-level classification
(Catania), the WSI-level classification (Catania) and the image-level classification (publicly available data). In the latter sub-Figure, the
predictions are aggregated to match the different annotations across publicly available datasets.
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The CNN trained with automatically generated labels
generalizes well on publicly available datasets
The CNN trained with weak labels automatically generated from
reports demonstrates the capability to generalize well on
heterogeneous images, from various medical centers.
The publicly available test partition includes 11,888 images

collected from seven publicly available datasets. The test partition
includes WSIs (UNITOPATHO31,32, TCGA-COAD33, AIDA34, IMP-CRC35)
and cropped sections of WSIs (GlaS36, CRC37, UNITOPATHO31,32,
Xu38). Sections of WSIs are treated as WSIs, since they are provided
with labels referring to the whole image. The images collected from
publicly available sources may be annotated with slightly different
labels; therefore the predictions made by the model are aggregated
to match the original labels (as shown in Table 1).
The CNN reaches good performance on publicly available

datasets (F1-score over 0.72 for each the binary problems and over
0.58 for each of the multiclass problems, Table 2). The
performance obtained in some publicly available datasets is
comparable to the results on the private data test set.
The obtained results are encouraging, as they show that the

CNN can generalize – albeit with slightly lower performance than
for private data – to external heterogeneous datasets, guarantee-
ing competitive performance on external datasets. More details on
the data and on the class matching performance are provided in
the Method, ‘Publicly available datasets class matching’ section.

The CNN trained with automatically generated labels is robust
to automated report labeling errors
Despite some limited performance difference, the CNN trained
with weak labels automatically generated from reports shows
robustness to errors introduced by such an automatic extrac-
tion process.
To validate this outcome, the CNN predictions of the models —

trained with automatic and manual weak labels, respectively —
are evaluated on those WSIs used to train and validate the CNN
that are mislabeled by SKET. A mislabeled sample includes one or
more classes generated by SKET that do not correspond to the

multilabel ground truth. SKET mislabeled 25% of the WSIs (421 of
1704) from Catania and 15% of the WSIs (306 of 2065) from
Radboudumc (i.e. a mislabeled sample means that at least one
label related to a sample is not well predicted). The results are
summarized in Table 3. The results show a limited difference in the
average values of the CNNs trained with automatically and
manually generated weak labels, for both micro-accuracy and
weighted F1-score.
The difference is not statistically significant on the Catania data,

while it is for Radboudumc with p value= 0.019 for micro-
accuracy and p value= 0.019 for weighted F1-score, respectively.
Thus, the noise introduced by SKET limitedly affect the training

process of the CNN on Radboudumc data while the performance
obtained by training the CNN with automatic labels is as
effective as the one obtained with manual labels on the Catania
data, demonstrating robustness of the CNN-based approach to
mislabeled WSIs.

The CNN trained with automatically generated labels leads to
moderate patch-level classification
The CNN trained with weak labels automatically generated from
reports reaches moderate performance on the patch-level
classification.
Patch-level classification is a challenging task, considering that

the model was trained without any pixel-wise annotation,
optimizing image-level predictions via Multiple Instance Learning
instance-based framework.
Table 4 and Fig. 2 summarize the results. Table 4 includes the

performance obtained at patch-level, using pixel-wise annotated
patches from the test partition of the Catania dataset and the
AIDA34 datasets.
The model obtains moderate performance (i.e. by definition

κ-score39 between 0.40 and 0.60) without any information
about the single patches used during the training: Cohen
κ-score= 0.432 ± 0.027 on the Catania test partition (58,286
patches) and Cohen κ-score= 0.482 ± 0.018 on the AIDA
publicly available images (43,036 patches). There is no

Table 2. CNN performance overview.

Performance at WSI-level (private data)

Dataset Micro-accuracy
(SKET labels)

Micro-accuracy
(GT labels)

Weighted F1-score
(SKET labels)

Weighted F1-score
(GT labels)

Catania 0.911 ± 0.004 0.918 ± 0.006 0.797 ± 0.011 0.807 ± 0.020

Radboudumc 0.906 ± 0.005 0.909 ± 0.008 0.744 ± 0.020 0.758 ± 0.025

Private data 0.908 ± 0.005 0.912 ± 0.006 0.769 ± 0.015 0.779 ± 0.019

Performance on publicly available images

Dataset Accuracy (SKET labels) Accuracy (GT labels) Weighted F1-score
(SKET labels)

Weighted F1-score
(GT labels)

GlaS36 0.745 ± 0.059 0.745 ± 0.065 0.717 ± 0.050 0.750 ± 0.066

CRC37 0.876 ± 0.014 0.856 ± 0.024 0.878 ± 0.019 0.855 ± 0.024

UNITOPATHO31,32 (single sections) 0.549 ± 0.025 0.543 ± 0.026 0.590 ± 0.015 0.591 ± 0.020

UNITOPATHO31,32 (WSIs) 0.750 ± 0.022 0.770 ± 0.025 0.723 ± 0.024 0.764 ± 0.023

TCGA-COAD33 0.862 ± 0.051 0.868 ± 0.093 0.925 ± 0.029 0.927 ± 0.056

Xu38 0.717 ± 0.053 0.728 ± 0.038 0.677 ± 0.084 0.725 ± 0.041

AIDA34 0.743 ± 0.046 0.760 ± 0.030 0.744 ± 0.047 0.752 ± 0.026

IMP-CRC35 0.706 ± 0.035 0.678 ± 0.048 0.707 ± 0.033 0.682 ± 0.048

Results for the performance of the CNN on WSI-level classification task for the Catania and Radboudumc datasets (upper part) and for the classification of
images from publicly available datasets (lower part). The performance at WSI-level is evaluated with micro-accuracy and weighted F1-score. For each
classification type, the average and the standard deviation (of the models involved in the k-fold cross-validation) are reported for each metric, including
cumulative results for each dataset. The performance is reported for the CNNs trained using the automatically generated weak labels (SKET labels) and the
manually created ground truth weak labels (GT labels).
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significant difference between the results obtained using
manual annotations and automatically generated annotations
for training the CNN.
Figure 2a shows the confusion matrices of the CNN in patch-

level classification and the ROC curve for all the presented tasks.
The reported confusion matrices (raw and normalized values)
refer to the model with the highest performance in patch-level
classification. On the Catania data, the model classifies cancer
and normal very effectively (over half of the samples are well
classified), whereas it shows lower performance for the other
classes, especially for the high-grade dysplasia class. Note-
worthy, the misclassification mostly involves similar classes. For
example, several high-grade dysplasia patches are misclassified
with cancer and low-grade dysplasia, two classes including
deformed glands, a tissue morphology present also in high-
grade dysplasia patches; hyperplastic polyp patches are
misclassified with low-grade dysplasia or normal, two classes
including well-shaped glands, a tissue morphology present also
in hyperplastic polyp patches. In particular, since a hyperplastic
polyp is considered a not dangerous abnormality in the short-
term40, the two classes are aggregated into one in some works41.
On the AIDA data, the model classifies most of the classes with
good performance. The results are relevant because they show
that the model reaches high performance in normal patches
classification, which represents the most represented condition
in digital pathology workflows, especially in screening analysis.
The ROC curve for patch-level classification of Catania data (first
sub-Fig. 2b), shows the good performance reached in cancer and
normal tissue classification.

Correspondence of the CNN latent space to meaningful
classes
The latent space of the CNN trained with weak labels auto-
matically generated from reports shows a good separation
between normal tissue and cancer morphologies
The CNN learns a feature representation of the data that allows

to separate regions including tissue morphologies, which are
linked to different classes. Figure 3 shows the patches in the latent
space of the Catania and Radboudumc test partition (upper part)
and of the publicly available datasets (lower part).
The latent space includes a two-dimensional representation of

the samples (the output of the CNN embedding layer, 128
elements per patch) and is created with t-distributed stochastic
embedding (t-SNE)42. For both the data sources, the left part of

Fig. 3 includes dots representing the patches, while the right part
shows some randomly selected patches corresponding to the
dots. Each dot is colored with the predicted class: red (cancer),
green (high-grade dysplasia), yellow (low-grade dysplasia), blue
(hyperplastic polyp) and black (normal).
In both datasets, the patches predicted with the same class are

projected in the same specific region of the space, even though
overlapping exists in the border. The fact that the classes
involved in this paper show similar morphologies may explain
regions overlapping. For example, classifying the hyperplastic
polyps and normal involves identifying well-shaped glands, while
dysplasia is characterized by the deformation of glands and the
neighboring stroma.
On private data latent space, it is possible to identify a region,

on the right, including poorly defined glands and infiltrated
stroma, linked to cancer patches (red); while on the left, it is
possible to identify a region including healthy tissue, such as well-
defined glands. A large variety of glands morphologies is placed
between these two macro-regions, from poor definition (the green
region, including high-grade dysplasia patches) to well-shaped
glands (the blue region, including hyperplastic polyp patches).
Remarkably, the same structure can be identified in the latent
space of the public data, despite the heterogeneity: two macro-
regions with cancer and normal patches and smaller regions with
patches including different gland morphologies, linked to
dysplasias or hyperplastic polyps.
Furthermore, another point to stress involves the fact that the

regions are stain invariant, since it is possible to identify
heterogeneous stains in the same region. This characteristic may
be explained considering the CNN pre-training (presented in
Method) includes a H&E-invariant CNN training43.

CNN attention model identifies relevant tissue regions
The highest attention values of the CNN trained with labels
automatically extracted from reports are in regions which are
relevant to the predicted classes.
Currently, the attention network represents the state-of-the-

art pooling layer used to aggregate the predictions at the patch-
level to have predictions at WSI-level22. The network weighs the
patches for each class so that the ones with the highest values of
attention contribute more to global predictions. In Fig. 4, the
weights assigned by the network to the patches of the internal
test partition are visualized as heatmaps. The heatmap analysis
shows that the regions where the attention model focuses most
for each class include patches annotated with the corresponding
class by pathologists in pixel-wise annotations. Therefore, the
attention network gives greater importance to regions including
relevant patches, leading the CNN to predict the correct global
diagnosis.

DISCUSSION
This paper presents an approach to limit the need for human-
made annotations to train computer-assisted diagnostic tools in
digital pathology. The approach includes two components,
represented by SKET and a CNN, allowing to automatically extract
meaningful semantic concepts from pathologist reports and to

Table 3. Results of the CNN on the five classes WSI classification task on the SKET mislabeled samples, considering both the models trained with
automatically and manually labeled WSIs.

Dataset Micro-accuracy (SKET labels) Micro-accuracy (GT labels) Weighted F1-score (SKET labels) Weighted F1-score (GT labels)

Catania 0.817 ± 0.037 0.831 ± 0.022 0.579 ± 0.032 0.599 ± 0.039

Radboudumc 0.835 ± 0.008 0.851 ± 0.014 0.571 ± 0.027 0.627 ± 0.036

Table 4. Results for the performance of the CNN on the five classes
patch-level classification task. The performance is evaluated with
Cohen’s κ-score, reporting the average and the standard deviation of
the models involved in the k-fold cross-validation. The performance is
reported for the CNNs trained using the automatically generated weak
labels (SKET labels) and the manually created weak labels (GT labels).

Performance at patch-level

Dataset κ-score (SKET labels) κ-score (GT labels)

Catania 0.432 ± 0.027 0.413 ± 0.029

AIDA 0.482 ± 0.018 0.475 ± 0.008
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use them as weak labels for high-resolution clinical pathology
images, without any human supervision.
The approach is evaluated by training on private data (colon

reports and WSIs provided by hospitals) and testing on an unseen
subset of the private data and on external publicly available data.
Private and publicly available data are highly heterogeneous,
collected from nine different sources. Private data include over
3,700 WSIs with the corresponding reports in two languages
(Italian and Dutch), while publicly available data include 11,888

images. The results show that it is possible to use clinical free-text
reports and images to train computer-assisted diagnostic tools
without any supervision, in the context of digital pathology. By
applying well-established and reproducible methods, the pro-
posed approach provides a solid baseline at WSI-level in highly
heterogeneous private and publicly available datasets. This study
has a remarkable implication: no human intervention is needed to
annotate free-text clinical pathology data to train computer-aided
diagnosis systems. This result has three main consequences.

Fig. 3 Qualitative model evaluation. The graphs include the feature embedding produced by the CNN, projected in two dimensions with t-
SNE, for data coming from the private test partition (Private data, above) and the publicly available datasets (Public Data). The embeddings are
represented as dots on the left side of the Figure, to show the class distribution, and as randomly selected patches on the right side of the
Figure. The classes are: cancer (red), high-grade dysplasia (green), low-grade dysplasia (yellow), hyperplastic polyp (blue) and normal (black).
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The first consequence is a potential breakthrough in the digital
pathology domain. Since it is possible to overcome the need for
human intervention to annotate images and reports, it is also
possible to exploit exascale datasets coming from heterogeneous
pathology workflows, unleashing the full potential of digital
pathology. The fact that the presented approach does not need
any human annotation removes all the constraints related to data
annotation when free-text diagnostic reports are available,
allowing the collection of massive clinical datasets (including
hundreds of thousand WSIs) for training computer-aided diag-
nosis systems on a variety of concepts presented in routine
reports. Data processing without curation shows that it is possible
to exploit data from several centers, overcoming the limitations of
standardization in image format, text report format, and image
processing systems. Increasing the number of centers can improve
the performance of the algorithms in terms of capability to deal
with image heterogeneity, allowing researchers to collect big
datasets to train robust tools with limited effort and triggering a
virtuous circle in the computational pathology domain.
The second consequence is related to the developed computer-

assisted diagnosis models that can (after further improvement of
the performance) reduce the time needed for human experts to
analyze digital pathology images. As mentioned above, the
analysis of WSIs is a time-consuming procedure, including
identifying and evaluating specific regions of interest within the
tissue. The adoption of computer-assisted diagnosis models

trained on clinical data in clinical workflows may help the
pathologists in both tasks. The models can help identify possible
regions of interest, thanks to the weights generated by the
attention model, reducing the workload of pathologists and
allowing them to focus on specific regions. The models can also
evaluate the tissue within the identified regions of interest
independently on their size (since they can classify single patches
extracted from the images, cropped portions of WSIs or the entire
WSI). Soon, computer-aided diagnosis systems trained on clinical
data might thus help to reduce the workload of medical experts,
allowing them to focus on the most crucial or uncertain findings
and helping healthcare systems to increase the quantity and the
quality of the diagnosis.
The third consequence of this work is that it paves the way to

develop models that can more easily generalize to other clinical
settings in the future, thanks to the application of the framework
to larger cohorts of hospitals for training, considering the slightly
lower, but still competitive, performance obtained in the publicly
available datasets. Domain generalization (i.e. developing models
that can perform good predictions on datasets different from
those used for training the models) is one of the main factors
preventing the translation of computational pathology algorithms
to clinical settings. Increasing the size and the heterogeneity of
training data can improve the performance and the generalization
of the models, as it increases the variability in terms of tissue
morphologies.

Cancer High-grade dysplasia Hyperplastic Normal Low-grade dysplasia Non-informative

CNN attention network heatmaps Pathologist annotations CNN attention network heatmaps Pathologist annotations

Fig. 4 Heatmaps. A few examples of heatmaps, generated with the attention network’s weights, compared with manual pixel-wise
annotations made by pathologist. Each couple of examples includes a heatmap (on the left) and the corresponding pathologist pixel-wise
annotations (on the right). The highlighted regions within the heatmaps represent the ones where model assigned the highest importance for
the global diagnosis. The comparison of the heatmaps and the annotations shows that the attention network gives greater importance to
regions including relevant patches.
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The models presented in this article show the capability to
generalize, as demonstrated by the results obtained by testing
them on 11,852 images from highly heterogeneous publicly
available datasets, even though the overall performance is lower
than the one obtained on private data (as shown in Table 2).
Despite the fact that the performance on a few datasets can be
considered good (such as cancer classification GlaS, CRC, TCGA-
COAD, AIDA or low-grade dysplasia in UNITO), the overall
slightly lower performance on publicly available datasets can be
explained considering the variability of the acquisition proce-
dure across centers (e.g. the staining variability, the whole slide
scanners), the different meaning given to the classes (high-
lighted in the “CNN limitations” paragraph, method), such as
normal, and the noise in weak labels that can be introduced by
SKET (highlighted in the “SKET limitations” paragraph, Method).
The limitations that can reduce the capability to generalize on

heterogeneous datasets can be solved in the future by considering
the possibility to apply the approach using data from additional
sources for training, including as well different algorithms to analyze
the reports and the images, with several tissues and classes. The
minimal efforts required to train the CNN and the possibility to
endlessly increase the number of heterogeneous training data
suggest that the proposed framework can be up-and-coming for
digital pathology, as increasing training data is expected to improve
performance and the capability to generalize.
This work sets a solid performance baseline for a methodol-

ogy that can be translated to most diagnoses in future digital
pathology. However, the components (such as the pre-
processing algorithms and the data augmentation procedure)
implemented in this paper can be changed and modified,
according to the problem’s characteristics to solve and scientific
advancements. Even though the paper focuses on the
classification of five types of colon findings, the presented
framework is not linked to a specific tissue or set of classes, and
the authors are currently working on replicating the experi-
ments on other tissue types and classes, where the framework
is expected to work similarly (e.g. prostate, uterine cervix, etc.).
Moreover, the proposed approach can be applied to other
medical domains, such as Magnetic Resonance Imaging or
Computed Tomography, and it can adopt different algorithms
to extract the labels and to classify the images.
The overall aim of this work is to present the approach and

the analysis methodology; therefore achieving high classifica-
tion performance through finetuning was not among the
objectives of the study. Performance can be improved by
increasing the number of images/reports or exploiting more
complex architectures, approaches and methods to handle the
stain-variability of the images, as planned for future work.
In conclusion, the presented framework represents a break-

through in the digital pathology domain. The framework paves

the way for increasingly reliable computational pathology tools,
with the critical advantages of being effective, capable of
generalizing and capable of reducing to zero the human efforts
to annotate extreme-scale data acquired in clinical routines. The
code of SKET (https://github.com/ExaNLP/sket/) and MIL (https://
github.com/ilmaro8/Multiple_Instance_Learning_instance_based)
are publicly available.

METHODS
Data from clinical pathology workflows
Data from Catania and Radboudumc hospitals are collected to assess the
possibility to use data from clinical pathology workflow context, where
data are heterogeneous, to train deep neural networks for computer-
assisted diagnostics.
Data from clinical pathology workflows are not curated, allowing the

simulation of the typical digital pathology workflow scenario, where it
is often not possible to query the LIS for specific information about the
WSIs. Therefore, as shown in Table 1, the classes are unbalanced
reflecting another typical condition of LISs. In this case, data mainly
include normal images. Data collected from clinical pathology work-
flows (Catania and Radboudumc) include 4419 colon WSIs and the
associated diagnostic reports. The images are scanned with several
scanners, leading to heterogeneous images. Images from Catania
cohort with two Aperio scanners and two 3DHistech ones (at 20/40x),
while images from Radboudumc hospital with a 3DHistech (at 40x).
Furthermore, the images include different types of tissue samples: from
Catania mainly colorectal polypectomies, biopsies, tissue resections
and margin resections; while from Radboudumc mainly biopsies and
few polypectomies.

Pathology workflows data annotations
While the images used to train and validate the model are labeled with
global labels (image-level annotations) a small subset of data is labeled
with pixel-wise annotations, solely for evaluation purposes.
The pixel-wise annotations are a small percentage of tissue, including

regions with tissue morphologies linked to the classes used as global
labels. In the annotated images from Catania test partition (148/227),
52.73% of the tissue is annotated with one of the five classes presented
in the paper, meaning that the rest of the tissue includes non-
informative tissue or stroma (background is not included in the
percentage). Considering each class, 4.62% (52/148 WSIs with local
annotations) of tissue is annotated as cancer, 23.06% (44/148) with high-
grade dysplasia, 10.57% (54/148) with low-grade dysplasia, 3.01% (23/
148) with hyperplastic polyp and 11.28% with normal.

Data from publicly available datasets
Data from publicly available repositories are collected to evaluate the
CAD algorithms on highly heterogeneous images, to investigate how
well the algorithm generalizes to heterogeneous medical centers.
This part of the data includes 11,888 images (WSIs and cropped sections

of WSIs), collected from seven publicly available datasets: GlaS36, CRC37,
UNITOPATHO31,32, TCGA-COAD33, Xu et al. colon dataset38, AIDA34 and

Table 5. The mapping adopted on the publicly available datasets.

Dataset Our classes Original classes

GlaS36 Cancer, Hyperplastic polyp, Normal Cancer, Benign (Hyperplastic polyp, Normal)

CRC37 Cancer, Hyperplastic polyp, Normal Cancer, Benign (Hyperplastic polyp, Normal)

UNITOPATHO31,32 High-Grade Dysplasia, Low-Grade Dysplasia,
Hyperplastic polyp, Normal

High-Grade Dysplasia, Low-Grade Dysplasia, Hyperplastic polyp, Normal

TCGA-COAD33 Cancer Cancer

Xu38 Cancer, Normal Cancer, Normal

AIDA34 Cancer, High-grade Dysplasia, Low-Grade Dysplasia,
Hyperplastic polyp, Normal

Cancer, Dysplasia (High-grade Dysplasia, Low-Grade Dysplasia),
Hyperplastic polyp, Normal

IMP-CRC35 Cancer, High-grade Dysplasia, Low-Grade Dysplasia,
Hyperplastic polyp, Normal

High-risk (Cancer & High-grade Dysplasia), Low-grade dysplasia,
Non-neoplastic (Hyperplastic polyp & Normal)
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IMP-CRC35. This partition is used to test the computer-assisted diagnosis
algorithms in conditions of very high data heterogeneity. The images are
scanned with several scanners and at several magnification levels, such as
Zeiss MIRAX Midi (GlaS, 20x, 0.465 µm/pixel), Omnyz VL120 (CRC Dataset,
20x, 0.465 µm/pixel), Hamamatsu Nanozoomer S210 (UNITOPATHO, 20x,

0.46 µm/pixel), Hamamatsu Nanozoomer (Xu et al. colon dataset, 40x,
0.22 µm/pixel), Scanscope AT APERIO, Hamamatsu NanoZoomer XR,
NanoZoomer XRL (AIDA, 20–40x, 0.50–0.25 µm/pixel), Leica GT450 (IMP-
CRC, 40x, 0.25 µm/pixel). Furthermore, the subset of TCGA-COAD data is
collected from nine medical centers.

AOEC Radboudumc Public Data
a

d

Private Data

Public Data

b

c

e f
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Pathology reports heterogeneity
Reports are highly-heterogeneous due to language, the report structure,
the text input techniques used and the fact that different pathologists
write the reports in separate timeframes. Language heterogeneity is
related to the fact that reports from Catania are in Italian and the ones
from Radboudumc are in Dutch. Report structure heterogeneity is related
to the fact that reports have different fields. For instance, in Catania reports
the field including the diagnosis refers to the entire WSI, while in
Radboudumc reports the field including the diagnosis refers to the entire
block of images from which the WSI originates. Finally, a further source of
heterogeneity for reports is related to input methods. While pathologists
manually type Catania reports, Radboudumc ones have been obtained
using “speech to text” tools, thus introducing additional noise in the
extraction process. Data are collected from pathology workflows without a
preliminary visual inspection of the images.

Images heterogeneity
Images considered in this work are heterogeneous in terms of sample
type, size and colour. The images from pathology workflows include
different types of samples: colorectal polypectomies, needle biopsies,
tissue resections and cropped portions of WSIs (the latter one only on
publicly available datasets). Tissue resections and colorectal polypectomies
are usually more extensive than biopsies, leading to a highly variable
number of patches, which are more numerous for Catania than for
Radboudumc. The heterogeneity related to different tissue types is
highlighted in Fig. 5a, b. Figure 5a shows a few examples of images
coming from the datasets: the left column includes WSIs from Catania
(three polypectomies), the central one from Radboudumc (three biopsies),
and the right one from public datasets (tissue resection WSIs from TCGA-
COAD and AIDA; cropped tissue sections from GlaS, CRC Dataset,
UNITOPATHO colon dataset and Xu colon dataset). Figure 5b shows how
different types of images lead to a different number of patches per image,
considering data from pathology workflow (upper plot) and from publicly
available datasets (lower plot). The histograms report the number of WSIs,
including a corresponding range of patches.
Data from pathology workflow include an extensive range of patches

mostly come from Catania (red), while data from publicly available
datasets include cropped sections of WSIs (except for TCGA-COAD, AIDA
and IMP-CRC), usually leading to images including a smaller number of
patches (less than 500).
Images are highly heterogeneous in terms of stain variability because they

originated from over ten centers and are acquired with over ten scanners
(four scanners for the private data, seven for the public one) at magnification
20x or 40x. Stain variability is highlighted in Fig. 5a and Fig. 5c. Figure 5a
includes images from the whole dataset. The left and the central columns
include WSIs from digital pathology workflows, showing different shapes for
different types of images. Stain variability related to different acquisition
procedures (particularly scanners and chemical reagents) through medical
centers is highlighted in Fig. 5–f. The Figures present the Hematoxylin &
Eosin (H&E) colour distribution of the images, obtained projecting in two
dimensions the H&E matrix (2 × 3), comparing the distribution of the stain
distributions of both private and publicly available data. Figure 5c shows the
data distribution from the private data, split in training and test partition. The
lack of images selection during the data retrieval leads to a heterogeneous
training partition. Figure 5d shows the distribution of data from the clinical
workflows, split according to the scanner used to acquire the images. The
subfigure shows how different scanners lead to different stain colours, even
though the images come from the same medical center, as for Catania.

Figure 5e compares data distribution from private digital pathology
workflows and publicly available datasets. The choice to have private data
acquired with several scanners allows having overlapping distributions with
the publicly available datasets. Figure 5f shows the distribution of data from
publicly available datasets. Most of the distributions do not overlap,
highlighting the high stain variability within the test partition.

Publicly available datasets class matching
Publicly available datasets are labeled with different classes than those
used to train the model. To have a fair evaluation of the proposed CNN on
public data, the predictions made by the presented CNN are mapped to
the publicly available classes, as shown in Table 5.

Automated extraction of image labels from free-text
diagnostic reports
SKET adopts a combination of pre-trained Named Entity Recognition (NER)
models and unsupervised Entity Linking (EL) methods to extract key
concepts (entities) from the diagnostic reports and to link them to the
reference ontology (https://w3id.org/examode/ontology/). The use of pre-
trained NER models and unsupervised EL methods makes SKET suitable for
weak supervision tasks. SKET consists of three components: (1) Named
Entity Recognition, (2) Entity Linking, and (3) Data Labeling.
To perform Named Entity Recognition, SKET relies on a combination of

pre-trained neural models and rule-based techniques. Specifically, it
adopts and extends ScispaCy models44 (e.g. the “en_core_sci_lg” model),
which provide full NER pipeline for biomedical data, with a large medical
vocabulary, and 600,000 Word2Vec45 word vectors trained on the PubMed
Central Open Access Subset46. In this regard, SKET can be deployed with
any of the core models available at: https://allenai.github.io/scispacy/.
Regarding Entity Linking, SKET employs a combination of ad-hoc and

similarity matching techniques to link the extracted entities to unique
concepts within the reference ontology. Given an extracted entity, SKET
first tries to match it using ad-hoc matching and when it fails SKET employs
similarity matching.
As for Data Labeling, SKET performs a mapping from the linked concepts to

a set of annotation classes. The annotation classes are (i) Cancer; (ii) High-grade
dysplasia; (iii) Low-grade dysplasia; (iv) Hyperplastic polyp; and, (v) Normal.
Although SKET does not include trainable parameters, the ad-hoc

matching techniques have been tuned using data coming from the digital
pathology workflow of the two hospitals. These data include independent
samples (around 200 from Catania and around 200 from Radboudumc),
not used for training, validating or testing the CNN, nor for testing SKET.
The ad-hoc rules developed to match concepts using these independent
samples have also been verified by pathologists. Furthermore, such data
has been used to check the viability of using translation models without
injecting noise into SKET components.

Image pre-processing
The images are pre-processed with the same approach, regardless of the
source. The approach involves splitting the images in patches and
selecting the ones coming from tissue regions, discarding regions from the
background.
WSIs splitting is necessary to the gigapixel nature of WSIs, since modern

GPUs hardware has limited memory and cannot handle large images.
Images are split into patches of 224 × 224 pixels, extracted from
magnification 10x, using Multi_Scale_Tools library47. The patch size is

Fig. 5 Overview of data heterogeneity. a Dataset includes different types of images: Catania partition includes biopsies, colorectal
polypectomies and a few tissue resections (larger tissue samples), while Radboudumc includes biopsies and few colorectal polypectomies.
b The different kind of image leads to a different number of patches per WSI. The upper histogram includes the number of WSIs as a function
of the patches that they include, for Catania (red) and Radboudumc (blue). The fact that tissue resections and colorectal polypectomies are
larger tissue samples than biopsies lead Catania to have larger images than Radboudumc. The lower histogram includes the number of
images/WSIs as a function of the patches that they include, for GlaS (orange), CRC Dataset (yellow), UNITOPATHO (purple), TCGA-COAD
(green), Xu dataset (light blue) and AIDA (celestial). c WSIs are scanned with several scanners, leading to heterogeneity in terms of colour. The
heterogeneity is evaluated by analyzing the H&E matrices distributions, projected in two dimensions with Principal Component Analysis
(PCA). The H&E matrix distributions for patches from training (purple) and testing (magenta) partitions in Catania and Radboudumc data.
d The H&E matrix distributions for patches from pathology workflow, from APERIO PT2 (Catania, lime), APERIO PT2 (Catania, sky blue),
3DHistech PANNORAMIC 250 Flash III (Catania, pink), 3DHistech P1000 (Radboudumc, green). e The H&E matrix distributions for patches from
private pathology workflow (black) and publicly available datasets (white). f The H&E matrix distributions for patches from GlaS (orange), CRC
Dataset (yellow), UNITOPATHO (purple), TCGA-COAD (green), Xu dataset (light blue), AIDA (celestial) and pathology workflow (black).
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chosen considering that the ResNet34 backbone used as CNN requires this
input data size. The magnification level is chosen considering that the WSIs
at 10x allow visualizing the components that correctly identify the
considered classes. Patches coming from background regions are not
considered, since they are not informative for the tissue analysis. The
identification of tissue regions and background regions is performed by
generating tissue masks with HistoQC tool48.

Data augmentation
During the training, data augmentation is applied to the input data, at WSI-
level. The data augmentation pipeline is implemented with albumenta-
tions library49 and it includes three operations: rotation, horizontal and
vertical flipping and colour augmentation. For each WSI, a transformation
pipeline is generated, using the operations with a probability of 0.5. The
pipeline is applied at WSI-level, so that the same combination of
transformations is applied to each patch within a WSI.

MIL algorithm
The CNN is trained using a Multiple Instance Learning (MIL) framework,
trained at instance-level.
MIL16,22,23,50,51 is a weakly-supervised framework that allows facing

problems where data are organized as a bag of instances51,52 and the
information available on the data regards the entire bag, without any local
information about the instances. The framework is based on the MIL
assumption52, which coordinates the relationship between the bag and
the instances. The original MIL assumption asserts that a bag is positive if it
includes at least one positive instance, while it is negative if it does not
include any positive instance. The assumption can be relaxed to be
adopted in problems where the bag is identified by the distribution of its
patches, such as multiclass problems. A MIL problem can be formulated at
two levels51: the bag-level and the instance-level. In both levels, the
component that aggregates the instance features or the instances
predictions is called pooling algorithm. Multiple Instance Learning fits
with the requirements of weakly-annotated WSIs analysis, due to the
characteristics of the images, showing an increasing number of applica-
tions yearly developed and published16. Histopathology image classifica-
tion can be formulated as a MIL problem, where a WSI represents a bag Xn
that includes p patches and the information available on the data regards
the entire WSI, as in the MIL CNN presented in this paper.
The MIL CNN presented in this paper produces predictions for the single

instances. The model includes several components, as shown in Fig. 1: a
pre-trained convolutional backbone (ResNet34), an intermediate fully-
connected layer, a classifier and an attention network. The activation
function between the intermediate layer and the classifier is a ReLU. The
convolutional backbone is pre-trained with MoCo v2 algorithm53

(presented in CNN pre-training section) and it is frozen during the
training. The intermediate fully-connected layer produces smaller feature
vectors, called embeddings from the ResNet features, for each patch within

a WSI. The classifier produces predictions from the patch embeddings. The
attention network is a pooling layer (state-of-the-art algorithm), that
aggregates the predictions for the single patches to have a global
prediction for the WSI22,54. The attention network gives a weight to each
patch, depending on their importance in the global predictions. The sum
of the weight is 1. Considering that the global WSI prediction is not the
sum of the single predictions/embeddings, the attention pooling layers
allow having a learnable function to aggregate the embeddings or the
predictions.
The choice of training a MIL instance-based framework shows

advantages and disadvantages. The most important advantage is that
this kind of CNN can be used in clinical settings, showing to the
pathologist the predictions of the model for each patch. Furthermore
the attention pooling layer may underline some regions of interest for the
pathologist. The most crucial disadvantage is that the model’s perfor-
mance at WSI (bag) level is lower than MIL embedding-based frame-
works51. The research articles involving MIL are constantly increasing,
targeting several critical aspects, such as the pooling layer (Ilse et al.22) and
strategies to identify the most relevant patches to use for classification (Lu
et al.23). Therefore, in the long-term, it can easily allow solving the WSI
classification problem with high performance. Anyway, in the current state-
of-the-art, it is a reasonable, straightforward and promising algorithm to
face the challenges described in the article.

CNN pre-training
The CNN backbone (ResNet34) is pre-trained using MoCo v253, a self-
supervised algorithm, adopted to pre-train CNN to learn features related to
input data.
Pre-training CNN backbones is a standard approach to overcome the

current limitations of MIL algorithms, which require large amounts of
memory, that may easily exceed modern hardware capabilities. Typically,
MIL CNN backbones are pre-trained on ImageNet and then frozen, thus
reducing training to fully-connected layers only. However, ImageNet
dataset includes natural images, so the pre-trained weights are trained to
learn feature that might not be suited to be used on solving computational
pathology tasks. To avoid this drawback, we pre-trained our CNN
backbone (ResNet34) using MoCo v253, a self-supervised algorithm that
allows to pre-train deep neural networks by learning features related to the
input data. The application of MoCo to CNN showed higher performance in
several tasks, compared with the same network using ImageNet weights53.
From a technical point of view, MoCo is a contrastive self-supervised

algorithm, that trains the network to learn similarities and dissimilarities
between input data. Given the unsupervised nature of the algorithm, the
input data do not require to be labeled. The similarity/dissimilarity
relationships between input data are obtained using data augmentation.
Each sample (i.e. a patch) in a batch is augmented, under the hypothesis
that augmented versions are similar to each other and dissimilar to the
other inputs of the batch. Augmented versions of input samples are stored
in a queue, that is used to retrieve dissimilar examples. The data
augmentation pipeline includes several operations, reported in Table 6,
and it is implemented using Albumentation library49. The operations are
applied for each input samples, with a probability of 0.8.
On top of this, during the training of MoCo, a H&E-invariant43

optimization is applied to the CNN, to learn features invariant to stain.
Considering the stain variation across centers, the adoption of this
approach may allow to increase the generalization of the CNN in data
collected from different and heterogeneous centers. The network is trained
with a batch size of 256 and queue including 16,384 samples.

K-fold cross-validation
The CNN is trained and validated using a k-fold cross-validation approach
to demonstrate that the model is robust to the selected training data.
Training data are split into k (in this case k= 10) groups, so that in each

training the data from k-1 groups are used to train the CNN and data from
the other group are used to validate it. The split is made at the patient level
to avoid shared images between training and validation partitions. Finally,
the CNN is evaluated on the test partition, reporting the average and the
standard deviation of the k models.

Hyperparameters
The hyperparameters used to train the model are optimized using a grid
search algorithm55. The grid search algorithm aims to identify the optimal
configuration of CNN hyperparameters. In this case, the optimal

Table 6. Operations involved in the MoCo pre-training.

Operation Parameters

Horizontal and
vertical flipping

–

Random rotations 90, 180, 270 degress

Hue saturation value Hue_limit (−20, 20), Saturation_limit (−30, 20),
Value limit (−20, 20)

RGBShift R_shift (−20,10), G_shift (−20, 10), B_shift
(−20, 10),

CLAHE Clip_limit= 1.0, tile_grid_size= (4,4)

Random brightness Limit= 0.2

Random contrast Limit= 0.2

Gaussian noise Limit (10, 50), mean= 0

Elastic transformation Alpha= 1, sigma= 30, alpha_affine= 30

Grid distorsion Num_steps= 3, distort limit= 0.3

GlassBlur Sigma= 0.1, max_delta= 1, iterations= 1

Optical distorsion distort limit= 0.3, shift_limit= 0.3
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configuration allows the CNN to reach the lowest loss function on WSI
classification, on the validation partition. The grid search involves several
hyperparameters: the number of epochs for training the model (15, after
this number of epochs the model does not reach a lower loss function), the
optimized (Adam; SGD and Adam were tested), the learning rate (10^−3;
10^−2, 10^−3,10^−4, 10^−5 were tested), the decay rate (10^−3; 10^
−2, 10^−3,10^−4, 10^−5 were tested) and the number of nodes within
the embedding layer before the classifier (128; 32,64,128,256 were tested).

Metrics used to evaluate the model
The performance of the model is evaluated at patch-level and WSI-level.
At patch-level, the classification is a multiclass problem and the model is

evaluated using Cohen’s κ-score. Cohen’s κ-score measures the agreement
between raters. It is usually adopted in scientific literature to evaluate the
agreement between pathologists. In this case, it measures the agreement
between the model predictions and the ground truth. The metric varies
between −1 (complete disagreement) and 1 (complete agreement).
Cohen’s κ-score= 0 means agreement by chance.
At WSI-level and image-level, the classification is a multilabel problem

and the model is evaluated using the micro-average of accuracy and the
weighted macro F1-score to tackle the class unbalance. Accuracy is the
fraction of correct predictions (true positives+ true negatives) on the total
number of the predictions and varies between 0 (total wrong predictions)
and 1 (perfect predictions). Being the task proposed a multilabel
classification, the accuracy metric is averaged using micro-accuracy,
working with the single true positives, etc. F1-score is the average
between the precision and the recall. The metric is averaged using the
macro-weighted average, to tackle the class unbalance of the dataset. The
macro-weighted average evaluates the F1-score separately for each class
and uses a weight related to the number of true labels of each class
(support). Furthermore, the single class performance is evaluated using
recall and precision, where the precision measures the ability of the
classifier not to label negative samples as positive ones and the recall is the
ability of the model to classify all the positive samples correctly.

Feature space
The feature space is visualized, reducing the embedding layer’s output
(128 elements) with the t-distributed stochastic embedding (t-SNE) in two
dimensions. The reduction is applied to the patches of the test partition,
where the predictions of the CNN are greater than 0.5.

Software & hardware
The whole pipeline is implemented with several Python libraries.
Pytorch 1.1.0 is used to model, train and test the CNNs. Openslide 3.4.1

and ASAP 1.9 are used to access the WSIs. Scikit-learn 0.23.1 is used to

evaluate the performance metrics of the models. Albumentations 1.8 is
used for implementing the data augmentation pipeline.
All the experiments are executed on a Tesla V100 GPU.

SKET performance and limitations
The SKET pipeline shows high-accurate performance on both Catania and
Radboudumc data, even though the pipeline can still be improved in terms
of report annotations.
Table 7 reports the single-class performances in both Catania and

Radboudumc data.
On Catania data, SKET achieves higher recall values (all the classes over 0.9)

than precision ones (all classes under 0.90). In particular, low-grade dysplasia
and hyperplastic polyp show low precision scores with values equal to 0.75
and 0.68, respectively. We performed a failure analysis to investigate the
situation by checking the samples where SKET labels are wrong. For what
concerns the low-grade dysplasia class, the false positives predicted by SKET
may be linked to the keyword ‘dysplasia’, which is also used for the class ‘high-
grade dysplasia’ and to the adjectives used to describe it (e.g. ‘severe’). For
what concerns hyperplastic polyp, the annotations include several false
positives due to the presence of the following sentence: “margin of resection
on hyperplasia-adenomatous mucosa”. In this case, the concept of hyperplasia
describing the resection margin leads SKET to annotate the sample as
hyperplastic polyp. However, after a revision of the reports by pathologists,
this concept must be interpreted as the absence of hyperplastic polyps.
On Radoudumc data, SKET achieves high precision and recall scores for all

the classes, leading to a F1-score that is over 0.83 for all classes, except for
high-grade dysplasia. The high precision score highlights the ability of SKET
to avoid false positives. The only class that shows low performance in
precision is high-grade dysplasia. The large number of high-grade dysplasia
false positives can be explained by considering the reports mislabeled as
high-grade dysplasia. In most of these reports, the absence of the concept
(e.g., ‘NO high-grade dysplasia’) is explicitly written, but SKET erroneously
identifies the ‘high-grade dysplasia’ keyword as a class and thus mislabels
the report. Another problem is related to the keyword ‘severe’, that can be
used to describe the dysplasia condition (i.e. high-grade dysplasia). However,
the adjective ‘severe’may be used to describe other conditions as well, such
as cancer. On the other hand, the recall scores—although over 0.81 for all
the classes—suggest that SKET misses few relevant concepts.
The different behavior of SKET in the two datasets can be attributed to

the different medical language and style of the Catania and Radboudumc
reports. In this regard, Catania reports include several words and details
that can be misinterpreted by SKET. On the other hand, Radboudumc
reports are more concise and precise. Another important outcome to stress
is the high performance obtained by SKET on normal samples. In addition
to those reports where normal glands are mentioned, this class is also
adopted when none of the entities identified in the reports matches one of
the considered classes. Therefore, SKET annotates reports with ‘normal’
class when it does not identify any of the other classes.
Aside from class-specific problems, SKET can be further improved by

working on a few general-level issues. For instance, SKET can fail when
reports specify the absence of a given concept—suggesting that we need
to improve its ability to detect negations within text. Furthermore, SKET
might fail to split blocks-level reports appropriately, ending up considering
concepts related to different sets of images. Nevertheless, the high recall
achieved for each class in both datasets suggests that SKET identifies
positive examples with high confidence.

CNN performance and limitations
The results obtained, contextualized in the field of colon histopathological
images diagnosis, show: (i) high performance in WSI classification on
Catania and Radboudumc datasets; (ii) the capability to generalize to
unseen data from publicly available datasets; (iii) moderate performance at
patch-level. Such performance can be further improved by increasing the
number of images/reports (for instance by relying on several medical
sources) or through the exploitation of more complex architectures and
approaches, as planned for future work.
As described in the main part of the text, the overall performance on the

Catania test partition is high (micro-accuracy = 0.91) but the situation gets
more complex when looking at single classes. Table 8 reports the single-
class performance in both Catania and Radboudumc data.
The CNN shows high performance on cancer and normal images from

Catania test partition, paving the way to build effective tools for screening
settings in hospitals. However, on the other three classes, the model has

Table 7. Overview of SKET performance, reporting the precision, the
recall and the F1-score of the single classes, in both Catania and
Radboudumc reports.

Class Precision Recall F1-score Support

SKET performance per class (Catania)

Cancer 0.84 0.94 0.89 379

High-Grade Dysplasia 0.90 0.92 0.91 454

Low-Grade Dysplasia 0.75 0.90 0.82 529

Hyperplastic polyp 0.68 0.94 0.79 181

Normal glands 0.87 0.92 0.89 438

SKET performance per class (Radboudumc)

Cancer 0.94 0.95 0.94 188

High-Grade Dysplasia 0.66 0.83 0.73 94

Low-Grade Dysplasia 0.85 0.81 0.83 453

Hyperplastic polyp 0.84 0.97 0.90 428

Normal glands 0.92 0.88 0.90 1048

The support of the class represents the number of true positive cases for a
particular class.
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some limitations. In the Catania dataset, the method shows a precision
over 0.70 for each class, except for low-grade dysplasia (0.61). This problem
derives from the fact that the low-grade dysplasia class is linked to gland
morphology, meaning that it can be easily mistaken for a normal tissue
patch. Similarly, both high-grade dysplasia and hyperplastic polyps exhibit
similar morphologies to low-grade dysplasia, which makes the classifica-
tion problem particularly hard. On top of this, the training dataset includes
249 samples (from Catania cohort) annotated with both high-grade and
low-grade dysplasia. Another motivation for the low precision of low-grade
dysplasia in Catania data relates to the unbalance of the dataset, where

low-grade dysplasia is the most occurring class. Because of this, the CNN
may be prone to overfit on this class, predicting low-grade dysplasia more
often than required. Low-grade dysplasia also shows low recall (0.51),
confirming the prediction. As described in the main part of the text, the
overall performance on the Radboudumc test partition is high (micro-
accuracy= 0.90) but the situation gets more complex when looking at
single classes. The performance on Radboudumc test partition shows a
similar situation to what shown for Catania: the model achieves high
performance in normal cases prediction, but lower performance in the
other classes (F1-score around 0.60 for cancer, low-grade and hyperplastic

Table 8. Overview of CNN performance, reporting the precision, the recall and the F1-score of the single classes for image-level classification, in
both Catania and the publicly available datasets.

Class Precision Recall F1-score Support

CNN performance per class (Catania)

Cancer 0.889 ± 0.042 0.749 ± 0.065 0.809 ± 0.029 52

High-grade dysplasia 0.712 ± 0.081 0.648 ± 0.116 0.681 ± 0.047 44

Low-grade dysplasia 0.595 ± 0.023 0.850 ± 0.066 0.700 ± 0.012 54

Hyperplastic polyp 0.854 ± 0.140 0.513 ± 0.146 0.612 ± 0.102 23

Normal 0.928 ± 0.064 0.982 ± 0.016 0.954 ± 0.034 79

CNN performance per class (Radboudumc)

Cancer 0.826 ± 0.069 0.540 ± 0.105 0.642 ± 0.067 50

High-grade dysplasia 0.896 ± 0.106 0.145 ± 0.053 0.245 ± 0.077 22

Low-grade dysplasia 0.838 ± 0.032 0.613 ± 0.075 0.704 ± 0.043 92

Hyperplastic polyp 0.717 ± 0.085 0.726 ± 0.083 0.713 ± 0.033 62

Normal 0.870 ± 0.012 0.821 ± 0.033 0.844 ± 0.018 219

CNN performance per class (GlaS)

Cancer 1.0 ± 0.0 0.625 ± 0.087 0.766 ± 0.065 91

Normal 0.561 ± 0.068 1.0 ± 0.0 0.717 ± 0.049 42

CNN performance per class (CRC)

Cancer 0.857 ± 0.044 0.896 ± 0.041 0.874 ± 0.011 69

Normal 0.904 ± 0.030 0.859 ± 0.057 0.879 ± 0.019 71

CNN performance per class (UNITO sections)

High-grade dysplasia 0.504 ± 0.050 0.210 ± 0.051 0.293 ± 0.052 1370

Low-grade dysplasia 0.820 ± 0.015 0.641 ± 0.042 0.719 ± 0.023 5804

Hyperplastic polyp 0.279 ± 0.041 0.435 ± 0.077 0.332 ± 0.022 544

Normal glands 0.290 ± 0.026 0.533 ± 0.056 0.375 ± 0.030 950

CNN performance per class (UNITO WSIs)

High-grade dysplasia 0.722 ± 0.173 0.182 ± 0.085 0.279 ± 0.105 46

Low-grade dysplasia 0.789 ± 0.021 0.923 ± 0.027 0.850 ± 0.009 184

Hyperplastic polyp 0.871 ± 0.048 0.590 ± 0.152 0.688 ± 0.107 41

Normal glands 0.560 ± 0.079 0.776 ± 0.064 0.646 ± 0.052 21

CNN performance per class (TCGA-COAD)

Cancer 1.0 ± 0.0 0.862 ± 0.051 0.926 ± 0.029 50

CNN performance per class (Xu)

Cancer 0.685 ± 0.074 0.828 ± 0.058 0.746 ± 0.035 355

Normal 0.785 ± 0.051 0.609 ± 0.132 0.677 ± 0.084 362

CNN performance per class (AIDA)

Cancer 0.682 ± 0.106 0.835 ± 0.046 0.744 ± 0.056 31

Low-grade dysplasia 0.590 ± 0.097 0.50 ± 0.000 0.537 ± 0.044 4

Hyperplastic polyp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1

Normal 0.858 ± 0.013 0.748 ± 0.093 0.796 ± 0.052 65

CNN performance per class (IMP-CRC)

Cancer & HGD 0.570 ± 0.049 0.856 ± 0.044 0.681 ± 0.027 268

Low-grade dysplasia 0.851 ± 0.038 0.713 ± 0.094 0.770 ± 0.048 547

Hyperplastic & normal 0.695 ± 0.072 0.546 ± 0.069 0.605 ± 0.037 271

The support of the class represents the number of true positive cases for a particular class.
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polyp). As mentioned above, this fact is a promising outcome, since it
makes the model suitable for screening purposes. However, the
performance on high-grade dysplasia for Radboudumc data needs to be
improved (F1-score= 0.24). While the precision for the class is high (0.89),
the recall is very low (0.14). Therefore, the model does not identify the
presence of high-grade dysplasia in most of Radboudumc slides. This
limitation can be explained by considering several aspects. The first aspect
involves the low number of high-grade dysplasia cases included in the
training dataset, which makes it the least represented class. The second
aspect involves the large number of cases including cancer and dysplasia
tissues in the test partition. Cancer and low-grade dysplasia show similar
tissue morphologies to high-grade dysplasia. Therefore, the CNN might be
prone to predict cancer and low-grade dysplasia instead of high-grade
dysplasia in Radboudumc partition samples. The third aspect that explains
the limited performance on high-grade dysplasia involves the small
regions including high-grade dysplasia tissue within the WSIs. Most of the
reports manually annotated with high-grade dysplasia include the
keyword ‘focal’—which suggests that the portion of high-grade dysplasia
is limited or describe unclear findings—, or the phrases ‘from moderate to
severe dysplasia’ and ‘from severe dysplasia to carcinoma’—which suggest
that the morphology is not well defined even for pathologists.
In the publicly available datasets, the overall performance shows good

results, but still slightly lower in general, comparing it with the Catania and
Radboudumc test partitions. This problem might be linked to several factors:
the different meaning given to the classes (such as normal or high-grade
adenoma), the low inter-pathologist agreement (even among humans) and
the different acquisition procedures used to digitize the samples.
The class mapping proposed aims to partially alleviate the different

meanings of the classes (e.g. normal and benign) during the evaluation of
the models, allowing to have a fair evaluation of the model on external
datasets. However, even though the mapping allows the evaluation of the
model on external datasets, the features learned by the CNN are not
directly optimized on those classes and concepts (e.g. benign class).
The low inter-pathologist agreement evaluation is a well-known

problem in digital pathology (Cohen’s κ-score = 0.54-67), leading to a
highly variable ground truth. An example of the different meaning given to
the classes may identified in the CNN performance on normal samples.
The heterogenous acquisition procedures across medical centers may

contribute to the slighlty lower performance reached by the CNN on
publicly available datasets, compared with the performance on internal
test partition. In particular, the performance on publicly available datasets
shows lower recall and precision (than the scores achieved for Catania and
Radboudumc), meaning that the model predicts more false positives and
false negatives. The UNITOPatho dataset performance shows both the
problems related to false positives and false negatives. This dataset is
evaluated twice: at regions of interest level and at WSI-level. At regions of
interest level, the precision of hyperplastic polyp and normal tissue is
under 0.3, but at WSI-level the same classes show a precision of 0.87 and
0.56 respectively. Furthermore, the recall reached in the dataset (both the
sections and the WSIs evaluation) is below 0.21, while in the other datasets
the recall is over 0.5. One hypothesis to explain the difference in
performance is that the model is trained and optimized on WSIs and not
on small regions of interest. However, since on GlaS and CRC, the CNN
shows high level of precision, the problem might be linked to other
reasons too, such as fuzzy annotation on the single regions of interest.
The mentioned problems (the different meaning given to the classes,

the high-variable image ground truth and the data heterogeneity) may be
alleviated considering several options. One option may be to adopt a
different CNN architecture, to better distinguish between the tissue
morphologies. The approach presented in this article does not require a
particular computer vision algorithm, allowing using other methods.
Another option may be to include additional images, in particular for the
less represented classes, collecting data including rare conditions, even if,
due to their limited number may include a low tissue variability, reducing
the model capability to generalize on heterogeneous data.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The dataset includes data from private and publicly available datasets. Private data are
collected from Catania cohort (Azienda Ospedaliera Cannizzaro and Gravina Hospital

Caltagirone ASP, Catania, Italy) and the Radboud Medical University Center (Radboudumc,
Nijmegen, The Netherlands). The WSIs are scanned with several scanners: images from
Catania hospital with two Aperio scanners and two 3DHistech ones (at 20/40x), while
images from Radboudumc hospital with a 3DHistech (at 40x). Data from Catania mainly
include colorectal polypectomies, biopsies and few tissue resections, while data from
Radboudumc mainly include biopsies and few polypectomies. We are currently evaluating
together with the clinical partners if it is possible to release the clinical data from a private
data as an open access dataset, according to ethics guidelines of the involve committees
and European and national law. Publicly available data include images from six datasets:
GlaS36, CRC37, UNITOPATHO31, TCGA-COAD33, Xu et al. colon dataset38 and AIDA34, IMP-
CRC29. The images are scanned with several scanners and at several magnification levels,
such as Zeiss MIRAX Midi (GlaS, 20x), Omnyz VL120 (CRC Dataset, 40x), Hamamatsu
Nanozoomer S210 (UNITOPATHO, 20x), Hamamatsu Nanozoomer (Xu et al. colon dataset,
40x), Scanscope AT APERIO, Hamamatsu NanoZoomer XR and NanoZoomer XRL (AIDA,
20–40x). Data are publicly available on a webpage of the organization that collected
them, except for AIDA, Xu dataset and IMP-CRC that are available upon request. GlaS
(https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/). CRC (https://warwick.ac.uk/fac/
cross_fac/tia/data/crc_grading/). UNITOPATHO (https://ieee-dataport.org/open-access/
unitopatho). TCGA-COAD (https://portal.gdc.cancer.gov/projects/TCGA-COAD). Xu et al.
(https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1685-x). AIDA
(https://datahub.aida.scilifelab.se/10.23698/aida/drco). IMP-CRC (https://www.nature.com/
articles/s41598-021-93746-z#data-availability). The list of TCGA-COAD image ids is
uploaded in the Github repository.

CODE AVAILABILITY
The code for SKET (https://github.com/ExaNLP/sket/) and MIL (https://github.com/
ilmaro8/Multiple_Instance_Learning_instance_based) are publicly available. The
model weights of the best MIL CNN are uploaded in the repository.
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