Esame di CONTROLLO DIGITALE

Durata della prova: 2 ore.

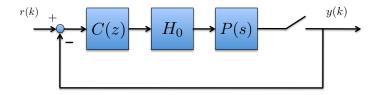
Quesito 1.

- 1. Si riporti la relazione matematica tra la \mathscr{L} -trasformata di un segnale a tempo continuo w(t) e la \mathscr{Z} -trasformata della sua versione campionata $\tilde{w}(k)$.
- 2. Si consideri il periodo di campionamento $T = \pi/20$ secondi e sia W(s) la funzione di trasferimento di un sistema LTI. Sapendo che W(s) è una funzione razionale strettamente propria i cui poli, tutti semplici, sono $p_1 = 0$, $p_{2,3} = \pm j10$, $p_{4,5} = \pm j30$, si calcolino i poli della funzione di trasferimento del sistema a tempo discreto ottenuto per tenuta e campionamento dal precedente. Si dica se la funzione di trasferimento del sistema a tempo discreto ottenuto per tenuta e campionamento può avere poli multipli.
- 3. Sia w(t) la risposta impulsiva del sistema LTI considerato al punto precedente. Si dica se w(t) è limitata. Si dica se la sua sua versione campionata $\tilde{w}(k)$ è limitata. Si dica se il sistema discreto che ha $\tilde{w}(k)$ come risposta impulsiva è BIBO stabile. Si dica se il sistema discreto che ha $\tilde{w}(k)$ come risposta impulsiva è semplicemente stabile.

Quesito 2. Si consideri l'interconnessione in Figura, con T=0.001 secondi, e

$$P(s) = \frac{10(s-1)}{(s+5)(s+0.5)}.$$

Si progetti un controllore standard PD o PI a tempo continuo utilizzando le tecniche basate sul margine di fase in maniera che il sistema in catena chiusa soddisfi le specifiche $t_r = 0.1$ secondi, e $m_p = 1/40$. Si calcoli la corrispondente funzione di trasferimento $\tilde{C}(z)$ discreta utilizzando il metodo MPZ.



Soluzione.

Quesito 1.

1. Sia

$$W(s) = \mathscr{L}[w(t)]$$

la trasformata di Laplace di w(t) e

$$\tilde{W}(z) = \mathscr{Z}[\tilde{w}(k)]$$

la trasformata Zeta del corrispondente segnale campionato con periodo T.

La funzione $\tilde{W}(z)$ calcolata in $z=e^{sT}$ è la ripetizione periodica di W(s) traslata di $j\Omega=j\frac{2\pi}{T}$, moltiplicata per il coefficiente di normalizzazione 1/T. In formule:

$$\tilde{W}(e^{sT}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} W(s - j\Omega k)$$

2. I poli p_i della funzione di trasferimento a tempo continuo vengono mappati dall'operazione di tenuta e campionamento in e^{p_iT} . Pertanto, funzione di trasferimento del sistema a tempo discreto ottenuto per tenuta e campionamento ha poli in

$$p_1^{(d)} = e^{p_1T} = 1, \quad p_{2,3}^{(d)} = e^{p_{2,3}T} = e^{\pm j\pi/2} = \pm j, \quad p_{4,5}^{(d)} = e^{p_{4,5}T} = e^{\pm j3\pi/2} = \mp j.$$

A prima vista si sarebbe tentati di dire che la funzione di trasferimento del sistema a tempo discreto ottenuto per tenuta e campionamento può avere poli multipli in quanto le coppie $p_{2,3}^{(d)}$ e $p_{4,5}^{(d)}$ coincidono e dunque si potrebbe pensare che tale funzione di trasferimento ha un polo semplice $p_1^{(d)}$ e due poli complessi coniugati doppi in $p_{2,3}^{(d)}$. In realtà non è così. Per convincersene basta pensare a come si calcola la funzione di trasferimento del sistema a tempo discreto ottenuto per tenuta e campionamento: dopo l'espansione in fratti semplici, il campionamento e la trasformata Zeta, non c'è modo che i poli diventino multipli se non lo erano fin dall'inizio.

Volendo sviluppare i dettagli denotiamo ora con $\tilde{W}(z)$ la funzione di trasferimento a tempo discreto ottenuta per tenuta e campionamento da W(s); si ha

$$\tilde{W}(z) = \frac{z-1}{z} \mathscr{Z} \left[\mathscr{S}_T \left[\mathscr{L}^{-1} \left[\frac{W(s)}{s} \right] \right] \right]$$

Dalle informazioni che abbiamo su W(s), possiamo dire che $\frac{W(s)}{s}$ ammette l'espansione in fratti semplici del tipo

$$\frac{W(s)}{s} = \frac{A_0}{s} + \frac{A_1}{s^2} + \frac{B}{s - p_2} + \frac{\bar{B}}{s - p_3} + \frac{C}{s - p_4} + \frac{\bar{C}}{s - p_5}.$$

Dove A_0 , A_1 , $B \in C$ sono opportuni numeri complessi. Dunque si ha

$$\begin{split} \tilde{W}(z) &= \frac{z-1}{z} \mathscr{Z} \left[\mathscr{S}_T \left[\mathscr{L}^{-1} \left[\frac{A_0}{s} + \frac{A_1}{s^2} + \frac{B}{s-p_2} + \frac{\bar{B}}{s-p_3} + \frac{C}{s-p_4} + \frac{\bar{C}}{s-p_5} \right] \right] \right] \\ &= \frac{z-1}{z} \mathscr{Z} \left[\mathscr{S}_T \left[A_1 t + A_0 1(t) + B e^{p_2 t} + \bar{B} e^{p_3 t} + C e^{p_4 t} + \bar{C} e^{p_5 t} \right] \right] \\ &= \frac{z-1}{z} \mathscr{Z} \left[A_1 T k + A_0 \delta_{-1}(k) + B (e^{p_2 T})^k + \bar{B} (e^{p_3 T})^k + C (e^{p_4 T})^k + \bar{C} (e^{p_5 T})^k \right] \\ &= \frac{z-1}{z} \left[A_1 T \frac{z}{(z-1)^2} + A_0 \frac{z}{z-1} + B \frac{z}{z-e^{p_2 T}} + \bar{B} \frac{z}{z-e^{p_3 T}} \right. \\ &\quad + C \frac{z}{z-e^{p_4 T}} + \bar{C} \frac{z}{z-e^{p_5 T}} \right] \\ &= A_1 T \frac{1}{z-1} + A_0 + B \frac{z-1}{z-e^{p_2 T}} + \bar{B} \frac{z-1}{z-e^{p_3 T}} + C \frac{z-1}{z-e^{p_4 T}} + \bar{C} \frac{z-1}{z-e^{p_5 T}} \end{split}$$

Pertanto, risulta evidente che anche se alcuni dei poli e^{p_iT} coincidono (nel nostro caso sappiamo, in particolare che $e^{p_2T}=e^{p_5T}$ e $e^{p_3T}=e^{p_4T}$) la $\tilde{W}(z)$ non può presentare poli multipli.

Quello che è successo in questo caso è che il periodo di campionamento non è sufficientemente piccolo da permettere di distinguere le due sinusoidi che compongono i modi del sistema e così la sinusoide a frequenza più alta viene riportata in banda dal campionamento e genera un modo discreto uguale a quello generato dalla sinusoide a frequenza più bassa.

3. La risposta impulsiva è combinazione lineare dei modi del sistema e di un eventuale impulso il cui combinatore è non nullo se e solo se la funzione di trasferimento è propria ma non strettamente propria. Nel nostro caso, W(s) è strettamente propria e quindi la corrispondente risposta impulsiva è combinazione lineare dei modi del sistema che sono un gradino, due sinusoidi e due cosinusoiodi. Tali funzioni sono limitate, pertanto anche una qualunque loro combinazione lineare è limitata, in particolare quindi w(t) è limitata. La sua sua versione campionata $\tilde{w}(k)$ è ovviamente limitata essendo ottenuta per campionamento di w(t). Certamente, $\tilde{w}(k)$ ha una componente a gradino discreto pertanto la funzione di trasferimento del sistema di cui $\tilde{w}(k)$ è risposta impulsiva ha un polo in 1. Pertanto, tale sistema non è BIBO-stabile. Attenzione, che tale ragionamento non si può ripetere per i modi oscillatori in quanto il campionamento riporta alla stessa frequenza discreta i due modi oscillatori che hanno frequenze continue diverse e quindi i due modi potrebbero cancellarsi: per esempio, si vede facilmente che nel segnale

$$w(t) = 1(t) + \sin(10t) + \sin(30t)$$

(che ha le caratteristiche per essere la risposta impulsiva di W(s)) i modi oscillatori si cancellano tra di loro con il campionamento e la versione campionata di tale w(t) è un puro gradino discreto.

Riguardo alla semplice stabilità essa dipende dalla struttura interna del sistema e quindi non può essere dedotta dalla risposta impulsiva. Sulla base della risposta

impulsiva, si può dire solamente che è possibile che il sistema sia semplicemente stabile. In altre parole i modi presenti nella risposta impulsiva sono compatibili con la semplice stabilità ma non si può escludere che vi siano nel sistema modi instabili che non sono presenti nella risposta impulsiva.

Quesito 2.

Per prima cosa traduciamo le specifiche assegnate nel dominio del tempo in specifiche sulla pulsazione di attraversamento desiderata ω_a^* e sul margine di fase desiderato m_{φ}^* :

$$m_{\varphi}^* = 1.04 - 0.8 m_p = 1.04 - 0.8/40 = 1.04 - 0.8/40 = 1.04 - 0.02 = 1.02,$$

$$\omega_a^* = 2/t_r = 20.$$

Consideriamo ora $P_0(s) := e^{-\frac{sT}{2}}P(s)$ e calcoliamo modulo M e fase φ del controllore alla pulsazione di attraversamento:

$$M := \frac{1}{|P_0(j\omega_a^*)|} = 2.08,$$

$$\varphi := m_{\varphi}^* - \pi - \text{Arg}[P_0(j\omega_a^*)] = 1.02 - \pi - (-\omega_a^*T/2 + \text{Arg}[P(j\omega_a^*)]) = -0.85 \text{ rad.}$$

L'angolo φ è negativo, pertanto possiamo permetterci di ritardare e quindi possiamo utilizzare un controllore PI.

La funzione di trasferimento del PI continuo è

$$C'_{PI}(s) = K_P \left(1 + \frac{1}{sT_I} \right)$$

Devo imporre

$$C'_{PI}(j\omega_a^*) = Me^{j\varphi} = M\cos(\varphi) + jM\sin(\varphi)$$

da cui

$$K_P = M\cos(\varphi) = 1.37$$

e

$$-\frac{K_P}{\omega_a^* T_I} = M \sin(\varphi)$$

ossia

$$T_I = -\frac{K_P}{\omega_a^* M \sin(\varphi)} = -\frac{1}{\omega_a^* \tan(\varphi)} = 0.04$$

Dunque

$$C'_{PI}(s) = 1.37 \left(1 + \frac{25}{s}\right) = 1.37 \frac{s + 25}{s}$$

Infine, il controllore $C_{PI}(z)$ discreto si ottiene con l'approssimazione MPZ:

$$C_{PI}(z) = K_D \frac{z - e^{-25T}}{z - 1} = K_D \frac{z - 0.97}{z - 1},$$

dove

$$K_D = T \cdot K_P \cdot 25/(1 - e^{-25T}) = 1.37.$$