The model

\includegraphics[width=8cm]{reed.eps}
The reed is assumed to be a \fbox{lumped linear system} rather than a vibrating bar ($\omega_r$ very high with respect to playing frequencies).
$
\left\{ \begin{array}{lr} \displaystyle
\mu_r \left( \ddot{x}_r +g_r\dot{x}...
...r=\dot{x_r}=0 & \hspace{.5 cm}\mbox{if } \; x_r\leq 0 \\
\end{array}\right.
$


In normal playing conditions:
$\omega_r \simeq 2\pi\cdot3000$ [rad/s] (resonance frequency)
$\omega_r/g_r \simeq 3$ (quality factor)
$k_r=\mu_r\omega_r^2 \simeq 1.25 \cdot 10^7$ [Pa/m] (stiffness)
$H \simeq 4\cdot 10^{-4}$ [m] (rest position)
(are all embouchure-related parameters).

Subsections

2000-09-12