Game theory for information engineering

Leonardo Badia
leonardo.badia@gmail.com

Duopolies

An interesting application of NE

Cournot duopoly

\square Cournot (1838) anticipated Nash's results in a particular context: a special duopoly.
\square In the Cournot model, we have two firms (called l and 2) producing a good in quantities q_{1} and q_{2}. Let $Q=q_{1}+q_{2}$.
\square The cost to produce q is the same for both firms and equals $C(q)=c q$ (with constant c)
\square When the good is sold on the market, its price is $P(Q)=a-Q$. (with constant $a>c$)
\square More precisely, $P(Q)=(a-Q) h[a-Q]$.

Cournot duopoly

\square If the firms chooses q_{1} and q_{2} simultaneously, can we predict their optimal production?
\square I.e., is there a Nash equilibrium of the game?
\square Both firms $i=1,2$ have a single-move strategy represented by q_{i} and $S_{i}=[0, \infty)$; actually, any $q_{i}>a$ is pointless, we can put $S_{i}=[0, a)$.
\square The payoff of a firm is simply its profit (revenue minus cost):

$$
u_{i}\left(q_{i}, q_{j}\right)=q_{i}\left[P\left(q_{i}+q_{j}\right)-\mathbf{c}\right]=q_{i}\left(a-q_{i}-q_{j}-\mathbf{c}\right)
$$

NE of a Cournot duopoly

\square Is there any $\operatorname{NE}\left(q_{1}{ }^{*}, q_{2}{ }^{*}\right)$?
\square For each player i, q_{i}^{*} must satisfy:

$$
q_{i}^{*}=\max _{q_{i}} u_{i}\left(q_{i}, q_{j}^{*}\right)
$$

\square We solve for $q_{i} \in[0, \infty): \max _{q_{i}} q_{i}\left(a-q_{i}-q_{j}{ }^{*}-c\right)$

NE of a Cournot duopoly

$$
q_{i}^{*}=\max _{q_{i}} q_{i}\left(a-q_{i}-q_{j}^{*}-c\right)
$$

\square The solution for both is $q_{1}{ }^{*}=q_{2}{ }^{*}=(\boldsymbol{a}-\boldsymbol{c}) / 3$

- The profit for both is $u_{1} *=u_{2} *=(a-c)^{2} / 9$

Monopoly solution

\square In case of a single firm (monopoly) the optimum production would be (set $q_{2}{ }^{*}=0$) :

$$
\max _{q_{1}} q_{1}\left(a-q_{1}-c\right)
$$

$$
q_{m}=(a-c) / 2
$$

\square In which case the profit is

$$
u_{m}=(a-c)^{2} / 4
$$

Trust case

\square The two firms could compare their NE, which achieves profit $u *=(a-c)^{2} / 9$, with the following alternate solution.
\square They could cooperate as it were a monopoly.
\square The produce half of q_{m}, so they could share $u_{\mathrm{m}}=(a-c)^{2 / 4}$. Hence, the profit is higher.
\square In other words, produce less than the equilibrium so the price is higher and therefore the revenue is increased.

Why is it not a NE?

\square Each firm has an incentive to deviate from such a strategy ($q_{1}=q_{\mathrm{m}} / 2$ is not best response to $q_{2}=q_{\mathrm{m}} / 2$ and vice versa)
\square As the price is high, unilaterally increasing the production level will raise the revenue (while at the same time decreasing that of the other firm).
\square At the same time, this decreases the price, so this deviation goes on as long as there is no longer incentive in betraying the trust.

Bertrand duopoly

\square Bertrand (1883) argued against Cournot model that firms choose prices, not q_{j} s.
\square Now, we have an entirely different game. Strategies are prices p_{i} and $p_{i} \in S_{i}=[0, \infty)$
\square E.g., assume people buy $q_{i}=a-p_{i}$ from the firm with cheaper price and 0 from the other (if the $p_{i} s$ are equal, share q_{i} between them)
\square Cost is C (q) = c q (as in Cournot case, $a>c$)
\square Competition leads to lowering the price.
\square NE of this game is $p_{1}{ }^{*}=p_{2}^{*}=c$

Bertrand duopoly

\square Similarly to Cournot's, Bertrand equilibrium is clearly not the best outcome for the firms.
\square In fact, they could agree on a higher price and share the market. The price can be pushed up to $(a+c) / 2>c$.
\square However, this is not a NE as each of the firm has a (selfish) incentive to deviate, i.e., decrease price, so as to conquer the market.
\square This process is indefinitely repeated as long as the price is c.

Bertrand duopoly

\square Economic-wise, Bertrand equilibrium is nice for the customers. But, is it realistic?
\square Possible explanation: goods are not perfect substitute.
\square Let $q_{i}=a-p_{i}+b p_{j}$ (with constant $b<2$)
\square Note: this is yet another game!
$\square b$ is a sort of exchange rate between goods.
\square Again, it can be shown that there is a Nash equilibrium:

$$
p_{1}^{*}=p_{2}^{*}=(a+c) /(2-b)
$$

Application examples

How GT models familiar problems

Wireless multi-hop routing

- Assume sources s_{1} and s_{2} want to send a packet to destinations d_{1} and d_{1}.
- s_{1} and s_{2} are the players. d_{1} and d_{2} are passive.
- d_{1} cannot be covered by s_{1}, so s_{1} must relay the packet through S_{2}.

Wireless multi-hop routing

\square Delivering a packet yields a utility of 1 .
\square Forwarding a packet implies further cost $c<$ l (energy and computation expenditure).
\square The payoff is utility minus cost.
\square Strategies are \{(D)rop, (F)orward \}

Wireless multi-hop routing

\square The same holds for the Forwarder's Dilemma.

Each source is tempted to drop the packet of the other source. Both packets are discarded. Hence the dilemma.

Wireless multi-hop routing

\square As in the Prisoner's Dilemma, the Wireless multi-hop problem has a NE where both users do not cooperate.

The Forwarder's Dilemma

\square The resulting bi-matrix is very similar to the Prisoner's Dilemma.
\square Hence the name "The Forwarder's Dilemma."

Joint forwarding

- In this game, a single source s sends a packet toward destination d , through relays r_{1} and r_{2}.
- To correctly receive the packet at d, both r_{1} and r_{2} must forward. If so, they gain payoff 1 .
- Again, strategies are \{ (D)rop, (F)orward \}. The latter has cost c .

Joint forwarding

\square Here, cooperation may have an incentive.
$\square r_{1}$ can have non-zero payoff only if chooses F.
\square Also F seems to be a good choice for r_{2}.
\square Is this the only option?

Joint forwarding

\square Here, it seems logical that both nodes cooperate to achieve a common goal.
\square However, no strict dominance can be found.

back to Joint forwarding

$\square(F, F)$ is not the result of IES, but it is a NE (thus: the users have an incentive to cooperate).
\square But also (D,D) is a NE. So, what do they do?

Jammin'

\square Source s wants to access some resource (transmission opportunity, computation) available at destination d (passive).
\square Jammer j is only interested in disturbing s.
\square There are two accesses (A,B) to this resource.
\square Both players can access only one at a time.

Jammin'

\square Assume they both have the same positive payoff P if they succeed, $-P$ if they fail.
\square This game becomes identical to the "Odd/Even" game.
\square Unfortunately, it means also no clear solution.

Dominance, efficiency

further comparisons

Strict/weak dominance

\square For brevity, we write thereafter

$$
S_{-i}=\left(S_{j}\right)_{j \neq i}=\left(S_{1}, S_{2}, \ldots, S_{i-1}, S_{i+1}, \ldots, S_{n}\right)
$$

\square Recall that S_{i}^{\prime} strictly dominates S_{i} if $u_{i}\left(S_{i}{ }^{\prime}, S_{-i}\right)>u_{i}\left(S_{i}, S_{-i}\right) \quad$ for every S_{-i}
\square We say that S_{i}^{\prime} weakly dominates S_{i} if
$u_{i}\left(S_{i}{ }^{\prime}, S_{-i}\right) \geqq u_{i}\left(S_{i}, S_{-i}\right) \quad$ for every S_{-i}
$u_{i}\left(S_{i}{ }^{\prime}, S_{-i}\right)>u_{i}\left(S_{i}, S_{-i}\right) \quad$ for some $S_{-i}(*)$
\square Without (*), we say that $S_{i}{ }^{\prime}$ dominates S_{i}

Dominance/Nash equilibrium

\square A strategy that (strictly, weakly) dominates every other strategy of a user is said to be (strictly, weakly) dominant.
\square Lemma
If every user i has a dominant strategy $s_{i}{ }^{*}$ then $\left(s_{1}{ }^{*}, \ldots, s_{i}{ }^{*}, \ldots, S_{n}{ }^{*}\right)$ is a Nash equilibrium.
\square It directly follows from the definition of NE
\square The reverse statement is false (only sufficient condition, not necessary)

Do not eliminate weakly dom.

\square Enlarge the Odd/Even game with a third strategy "Punch the opponent" (P).
$\square \mathrm{P}$ is weakly dominated, yet it is a NE.
\square If we eliminate it, we lost the only NE.

Pareto efficiency

\square A joint strategy s is Pareto dominated by another joint strategy s^{\prime} if
$u_{i}\left(s^{\prime}\right) \geq u_{i}\left(s^{\prime}\right) \quad$ for every player i
$u_{i}\left(s^{\prime}\right)>u_{i}\left(s^{\prime}\right) \quad$ for some player i
\square A joint strategy s not Pareto dominated by any joint strategy s^{\prime}, is said to be Pareto efficient.
\square There may be more than one Pareto efficient strategy, none of which dominates the others.

NE vs. Pareto efficiency

\square Pareto efficiency is different from NE:
\square Pareto efficiency: no way (in the whole game) a user can improve without somebody else being worse
\square Nash equilibrium: no way a user can improve with a unilateral change

- The outcome of the Prisoner's Dilemma is not "efficient!"

These strategies are
Pareto efficient

(F, F) is the only Nash equilibrium

NE vs. Pareto efficiency

\square Pareto inefficient Nash equilibria arise as we assume players are only driven by egoism.
\square To estimate the inefficiency of being selfish (or distributed) one can compare Nash equilibria with Pareto efficient strategies.
\square To this end, assume that a joint strategy s has a social cost $K(s)$.
\square For example, $K(s)=\sum_{j} S_{j}, K(s)=\max _{j} S_{j}$

Price of anarchy

\square The price of anarchy is the ratio between the social costs in the worst NE s^{*} and in the best Pareto efficient strategy (i.e., social optimum)

$$
A=K\left(s^{*}\right) /(\max K(s))
$$

\square If the best NE is considered, it is sometimes spoken of price of stability.
\square For certain classes of problems, there are theoretical results on the price of anarchy.

Minmax choices

A useful approach for optimization

Maxmin

\square Consider a "two-"player game (i vs - i)
\square We define $f_{i}: S_{i} \rightarrow \mathbb{R}$ as $f_{i}\left(s_{i}\right)=\min _{s_{-i} \in S_{-i}} u_{i}\left(S_{i}, S_{-i}\right)$
$\square s_{i}{ }^{*}=\arg \max _{s_{i} \in S_{i}} f_{i}\left(s_{i}\right)$ is a security strategy (maxminimizer) for i (may not be unique)
\square We say that $w_{i}=\max _{s_{i} \in S_{i}} \min _{s_{-i} \in S_{-i}} u_{i}\left(S_{i}, S_{-i}\right)$ is the maxmin or the security payoff of i.
\square A security strategy is a conservative approach allowing i to achieve the highest payoff in case of the worst move by $-i$.

Minmax

\square Similarly, $F_{i}: S_{-i} \rightarrow \mathbb{R}$ as $F_{i}\left(S_{-i}\right)=\max _{S_{i} \in S_{i}} u_{i}\left(S_{i}, S_{-i}\right)$
\square Value $z_{i}=\min _{S_{-i} \in S_{-i}} F_{i}\left(S_{-i}\right)=\min _{S_{-i} \in S_{-i}} \max _{S_{i} \in S_{i}} u_{i}\left(S_{i}, S_{-i}\right)$ is called the minmax for player i.
\square If i could move after $-i$, the minmax would be the minimum payoff which is guaranteed to player i.

Example 7

player B

	L	C	R	$f($ min $)$
	5, -	3, -	4, -	3
	2, -	6, -	1,-	1
F (max)	5	6	4	

$\square \operatorname{maxmin}_{\mathrm{A}}=3$. Player A can secure this payoff by playing the security strategy T .
$\square \operatorname{minmax}_{A}=4$. Knowing with certainty what B will play guarantees at least this payoff to A.

Minmax, maxmin, NE

\square We can prove:
(1) For every player $i, \operatorname{maxmin}_{i} \leq \operatorname{minmax}_{i}$
(2) If joint strategy s is a Nash equilibrium, then for every player i, minmax $_{i} \leq u_{i}(s)$
\square The first relationship is obvious. The second follows from every player not desiring to deviate from the NE.

Example 7

\square As previously observed, $\operatorname{maxmin}_{A}<\operatorname{minmax}_{A}$.
\square Moreover, there are two Nash equilibria:
$\square(T, L)$ where $u_{A}=5>\operatorname{minmax}_{A}$
$\square(\mathrm{D}, \mathrm{C})$ where $u_{A}=6>\operatorname{minmax}_{A}$
\square Check for B!

Example 8

player B

\square Here, there is one NE (D, L). For both players, maxmin = payoff at the NE, so it must be: $\operatorname{maxmin}_{i}=\operatorname{minmax}_{i}=u_{i}(\mathrm{NE})$

Example 9

\square In general, the Lemma does not guarantee a NE.
\square Here, $\operatorname{maxmin}_{i}=\operatorname{minmax}_{i}$ for each player i

Example 9

\square However, there is no NE.

