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Abstract—Energy efficient communicationsin ad hocand sen-
sorwir elessetworks is avery important topic. We study the prob-
lem of creating spanning treesof low cost, where low cost can be
viewed in terms of global or local enemy efficiency We refer to
the algorithms and techniquespresentedin the literatur e, and we
show an extensionto them, called TDPC, which takesinto account
both global and local efficiency. We show that thesetechniquescan
be applied to existing algorithms, impr oving the performance,and
addressingboth needs. We show how it is possiblein generalto
cut a trade-off betweenthe two contrasting requestsof global and
local enemy efficiency, by using TDPC with a particular classof
algorithms.

|. INTRODUCTION

In this paper we study ad hoc networks from the point of
view of enegy efficient broadcastand multicast. An ad hoc
network is characterizedy two basicrequirements:reliabil-
ity evenwithout pre-&istinginfrastructureandcompletelydis-
tributednetwork control[1]. Strongconnectity of anad hoc
network can be managedwith appropriatealgorithmswhich
considemproperlythe needto build suchnetworksin low power
ervironments.

We analyzethe problemof network generatiorfor a topol-
ogyof N terminalsin adesignatedrea.We canrepresenéach
userandhis terminalasa point. The network generatiormust
be done (as fast as possible,ideally instantaneouslyyvhen a
particularuser(calledin the following “information source”)
startsa transmissionto other users. We speakof broadcast
(one—to—all)if the communications directfrom the sourceto
all users,or multicast(one—to—mayy) if, in the communication
areaonly asubsebf theuserscalledmulticastgroup,is inter
estedin receving informationfrom the source. However, we
let openthe possibility of using other usersas relays (multi-
hop operation). We assumeo be in a power limited network,
wherewe canspeakindifferentlyof power or energy efficiency,
assumingmplicitly thatwe considertransmissioriime ascon-
stant.

In this situation,we would like to find the lowest enegy
spanningree,rootedat the source thatreachesll the desired
destinationsTheanalysisof this problemin wirelessnetworks,
which canbe found in [2], [4] and[5], is differentfrom the
wireline casesfor which solutionsarewell known [8]. In fact,
therearesubstantiatiifferencebetweerwired andwirelesssit-
uations: if we considerpower expenditureasa metric for the
evaluationandcomparisorof the solutions,in wired networks
this metricshaws a linearbehaior (the costof spanningreeis
the sumof the costsof the branches)whereashisis nolonger
truefor wirelessnetworks.

A trade-of canbe immediatelyidentified, which an algo-
rithm mustevaluate betweerreachingfrom the sourcea large
numberof nodesn asinglehop (with consequerhigherpower
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consumption)andreachingdirectly only few nodes by using
lower power, and usingthemasrelaysto reachotherdestina-
tions. An importantaspecbf this trade-of is the non-linearat-
tenuatiorcharacteristicef theradiochannelthatplaysamajor
rolein determiningpower consumption.

For simplicity, we assumehateachterminalin the network
hassufficienttransceier resources$o handleevery call without
blocking,andthatthelimiting factoris enegy consumptioras
opposedo channekapacity Evenif it is suitablethateachter-
minal requiredow power consumptionywe do notputparticular
boundsto the power thata nodecanexpendfor transmissions.
Potentially in our model every nodeis reachablgrom every
other aslong asenoughpoweris used.This hypothesiss only
away to take into accountall possiblechoicesfor aconnection.
In fact,therequesbf alow costtreeby itself makesit unlikely
to establishlinks with unreasonabhhigh expenditure. Then,
for sale of generality it is moresuitablethatthe algorithmit-
self discarddinks thatneedhigh power to be establishede.g.,
betweenvery far nodesratherthanhaving anadditionalbound
thatwould be differentaccordingio specificnetwork.

We assumehatnodemobility occurson atime scalewhich
is significantlylargerthanthatof datatransmissionsothatdur-
ing the transmissiorwe considerthe positionsof the terminals
asfixed. On the otherhand,the network may needto be “re-
arranged’if aterminalchangeds positionsothatit isnolonger
reachableefficiently. This consideratiorplaysarole in deter
miningthecomputationatompleity: sincewe needto quickly
generatdor re-arrangehetworks dueto mobility, we take into
accountthatthe compleity of the algorithmwe usemustnot
betoo high.

The key point of this paperis to highlight the trade-of be-
tweenglobalandlocal efficiency, thatimpliesdifferentpossible
choicesin establishindinks and choosingtransmittingnodes.
Moreover, the Time Division PathChanging TDPC)concepis
presentedthistechniqueoptimizesbothefficiencies becausét
considerseveralspanningnulticasttreesto coverthenetwork,
thatareasdisjointaspossible.Then,by cyclically rotatingthe
transmittingnodes,global efficiency is kept but high stressto
singlenodesis avoided.

This paperis organizedasfollows: in Sectionll the model
usedfor the wirelessenvironmentis described.In Sectiondll
and IV we presenttechniquedo obtain global andlocal effi-
ciengy, respectrely, and we introducethe TDPC concept. In
Sections/ we shav examplesof applicationof TDPCwith dif-
ferentalgorithms. In SectionVI we evaluatethe performance
of the consideredilgorithms. Finally, SectionVIl presentghe
conclusionandsummarizeshe advantage®f usingTDPC.

Il. WIRELESS ENVIRONMENT MODEL

We considera network of N nodesoneof which playsthe
role of sourceof information(in theexampleswe denotethis as
nodenumber0). The multicastgroupconsistsof the sourceof
informationandof a numberof destinatiomodeqatleastone).
We assumehat eachnodecanchooseits power level without
limit: we mustremembehoweverthattheprimarytargetof the



algorithmis to searchfor efficient (i.e., low power) solutions,
sothathigh powertransmissionsreavoided.

Thepowerconsumptionn awirelesservironmentis strictly
relatedto the attenuatiorof the radio channel.Popularmathe-
maticalmodels(e.g.,see[6] and[7]), have threebasicterms:
path loss, large scale variations and small scale variations.
Large scalevariationsare usuallydescribedwith alog-normal
distribution, with meanin dB equalto thepathloss.Smallscale
variationsaremodeledwith a Rayleigh(or Rician)distribution,
wherethe received signalis a wide sensestationarycomplec
Gaussiarprocessvhoseervelopeis a Rayleigh(or Rice) ran-
domvariable.

Practicalconsiderationsllow usto simplify this model: as
amatterof fact,the effect of smallscalevariationsis mitigated
by designinga recever with diversity (e.g.,Rake recever with
maximal ratio combining[6]). Sowe canassumehat small
scalevariationsaremanagedy thesetechniquesanddo notaf-
fectthelink cost,exceptpossiblyfor a constantfactor Large
scalevariationsareinsteadoftenaccountedor in wirelesssys-
temsby an outageprobability [7]: thesevariationsaffect the
transmittedpower, that must be sufficiently high so that the
transmissionis correctin a given percentageof cases(e.g.,
99%). In both cases,a fixed power magin is introducedin
orderto meetthedesiredquality requirementsandthis magin,
being appliedto all transmissionsis irrelevantin the enegy
optimizationproblemconsideredn the sequel.

In view of theabove discussionye consideipathlossasthe
only significantparameterfrom experimentaimeasurements
follows that the receved signalis proportionalto d—%, where
d is the distancebetweentransmittingandreceving antennas,
anda is an exponentwith typical value between2.0 and4.0.
A valueof 2.0 meansthatthe propagtionis asin free space,
whereasmore realistic valuesfor urbanareasare 2.7 ~ 4.0
[6]. We assumethat « is fixed in the ernvironment,i.e., the
propagtion mediumis uniform.

We then have a simplified modelin which the costfunc-
tion of alink is proportionalto d*. Becauseve have assumed
omnidirectionalntennasndno upperboundso power expen-
diturefor anode we cansaythatatransmittethatusesapower
proportionalto d* canreachwith adequatejuality every point
within a radiusof d, and every nodeis reachabldf sufficient
poweris used.

In orderto simplify our ervironment(but this approxima-
tion is not restrictive) we alwaysconsidera 2-dimensionatis-
tribution of the usersin the network: this meansthat we do
not considerissuessuchasthe cunatureof earth,or different
heightsof theantennas.

We emphasizean importantpropertythat resultsfrom the
broadcastature of the wirelesservironment. It was called
wireless multicast advantage by the authorsof [2] and[3], and
canbeexplainedby meansof thefollowing example.
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Fig.1. Simple3-nodenetwork (0 is thesource)
ConsiderFigure 1, in which a very simple network is pre-

sentedatransmitterindicatedas0) mustreachtwo destination
nodes(1 and2). 0 canchooseo eitherreachonly 1 (thenear

est)andlet it reach?2, or (using a higher power level) reach
both1 and2 with asingletransmissionThefirst casehastotal

power expenditureequalto d,;* + d,,. The secondcasere-
quiresonly the power neededo reacf12, sincenode1, being
closer is alsoreachedy this transmissionSoin this casewe

have a global costof the transmissiorequalto d,,, . In awire-
line ervironmentwe have in both casesa global costequalto
the sumof two parts,onefor eachlink. Onthe otherhand,in
awirelesservironmentthe power expendedby onetransmitter
is only the power neededo reachthefarthestrecever, i.e., the
maximumof thelink powers. In otherwords,if atransmittert
is connectedo a setR of recevers, its power consumptioris
equalto:
p(t) = maxd,,” 1)

This property makes cost functionslike global power ex-
penditurenot additive and it explainswhy classicalgorithms
for wireline networks do not work correctly for wirelessnet-
works. We show in thenext sectionwhichtypeof approacttan
betakento accountfor thesedifferences.

I1l. GLOBAL ENERGY EFFICIENCY

Thegeneratiorof anetwork, giventhespatialdistribution of
the terminals(or, equivalently, the distancebetweeneachpair
of nodes),canbe viewed asa spanningreecreationproblem.
If we wantto considetthe globalpower consumptionye asso-
ciateacostto eachlink. Basedontheconsiderationsf thepre-
vioussectionwe chooseacostfunctionequalto d*. Variousal-
gorithmsto minimize globalcostcanbefoundin theliterature,
i.e., Prim’s algorithm[8]. Thesealgorithmswere proposedo
beappliedto wireline networks,whereasasalreadymentioned,
in the wirelesservironmentcostsare not additve, becauseof
the wireless multicast advantage. Thereforethe global costof
thetreeis thesumof theexpenditure®f singlenodeshut thisis
anon-linearfunction of theindividual link costs.The problem
of finding the minimum costspanningtreein this node-based
versionof the problemis harderthanthe link-basedwireline
formulation.

In this paperwe focus our attentionon node-basealgo-
rithms: two suchalgorithmswere proposedn [3], onefor the
broadcastase,BIP (Broadcast Incremental Power), and one
for themulticastcase MIP (Multicast Incremental Power). Be-
causethe differencebetweenBIP andMIP consistsonly in an
additionaloperationof pruningof the treeto remove all unuti-
lized connectionswe speakindifferently of MIP or BIP, im-
plying thatBIP is only aversionof MIP in which the multicast
groupsizeis N, i.e., it includesall nodesin the network. In
Sections4 and5 we shaw thatit is possibleto modify the en-
emgy efficiengy objective by introducinga conceptof efficiency
relatedto local pawver consumption.

The MIP algorithm actsin steps, starting with only the
sourcenodeincludedin the treeasthe root. At every stepa
nodeis addedto thetree,building alink betweera nodeof the
treeanda nodenot yet included. Becausewe startwith only
the source andthe network has N nodes we completethe al-
gorithmin N — 1 steps. The choiceof which nodeto addis
donethrougha heuristicfunction: the new link choseratevery
stepis theonewith minimumadditionalcostin termsof power
consumption.Adding this link to the spanningiree causeghe
lowestincreaseof thetotal network cost.

An importantclarificationmustbe made:by just following
theabove descriptionit is possiblethatthe generategdpanning
treehasredundantinks. We mustthenoperatea pruningof the
treein orderto remove unnecessarpranches.We will shov
lateranexampleof this pruning.



The MIP algorithm can be seenas an evolution of algo-
rithmssuchasPrim'’s, which provide a solutionto the problem
of minimum-global-cosspanningtreein the linear case[8].
Prim’s algorithm builds a network with a step-by-stepproce-
dureaswell, but thetreesgeneratedby the two algorithmsare
generallydifferent. BecausePrim’s and MIP algorithmsscan
thesetof NV pointsin the sameway, the orderof compleity is
O(NN3) for both. Althoughimplementatiortechniqueghatcan
lower this value have beenproposedhereit is enoughto note
thatthe compleity is polynomial.

Moreover, therearedifferencedn the step-by-stepvalua-
tion performedby the algorithms. The costfunction¢j; (i.e.,
the costof thelink from i to j atthenth step)is definedin the
two casesasfollows:

Prim's: ¢’ =d,§ 2

ciy = d;§ —pa(i) ©)

wherep? (i) is the power that node: needsin orderto sus-
tain links towardsalreadyreachechodes(asa consequencef
thewirelesservironmentpropertiediscussedh Section2, this
termis the maximumof the power expenditureonthelinks that
node: maintainsafterthe first n steps).Thatis, while Prim’s
algorithmusesa costfunctionthatis simply equalto the abso-
lute costof thelink in termsof power dissipation,in choosing
thelink to addto the network the MIP algorithmalso consid-
ersthe power alreadyexpendedy thetransmittemodein links
previously added.

This approachdoesnot give us the optimal spanningtree,
however it is very simpleandrequiresshortcomputatiortime,
andtheasymptotiqperformancés notfarfrom optimal[3]. For
this reasonwe do not seekfurtherimprovementsof the global
consumptionwhich would still be possiblewith morecompli-
catedheuristics put do not appeassignificantenough.

In Section5, we will shav that the approachof this algo-
rithm (calledin [3] “node-based’approach)llows useful ex-
tensiongo otherperformancemetrics,e.g.,thelocal consump-
tion.

We now compareMIP and Prim’s algorithmswith an ex-
ample. Figure 2 shavs 10 pointsthat represent distribution
of terminalsin a wirelessscenario. Let the exponentof the
distanced in the costfunction (relatedto the propagtion) be
a = 2, i.e., we areassumingpropagtion aswe have in open
space.

Figures2aand2c shav the network topologygeneratedby
MIP and Prim’s algorithmrespectiely. As we have said be-
fore, Figure 2a doesnot representorrectly the resultof MIP
algorithm,becausdinks 2 — 4 and9 — 1 areunnecessaryn
orderto maintainthelink to 6, nodeO usesn factapowerlevel
sufficientto reachbothnodest andl directly. By pruningthese
links, we obtaincorrectlythe solutiongivenby MIP algorithm,
shawn in figure 2h.

Assumingthesideof thesquareareato beequalto 10 units,
we cancomputetheglobalcostof thetreeswhichis (expressing
resultsin referencgower units, rpu):

MIP:

Purrrp = 44,01 rpu for MIP algorithm
Pprim = 71,94 rpu  for Prim’s algorithm

Toillustratethemulticastcaseratherthanbroadcastywe can
simply prunethe treesgeneratedby eliminatingbrancheghat
reachleaf-nodeghatare not part of the multicastgroup. This
proceduranustberepeatedintil all leavesin thetreebelongto
themulticastgroup.

Qualitatively, we canexplainthehighercostof thetreegen-
eratedby Prim’s algorithmby observingthatwe have a higher
numberof transmittingnodes. Comparingthe treesgenerated
by MIP andPrim’s algorithmsi,it is easyto seethatin the case

Fig.2. A 10-nodenetwork (0 is thesource)

of MIP only nodeO is involved in transmissiondo relatively
far nodes,so it is the only nodewith high consumption. In
Prim’s algorithmtreewe have severalnodeghatsupportheary
(in termof dissipation)inks, e.g.5, 7, 8.

Thiscriterionis oftenverified: thewireless multicast advan-
tage principle implies thatif we have few transmittingnodes
(with consequentlyhigher but concentratecoowver expendi-
ture), we often obtaina lower global power consumption.We
couldconcludehatundertheaspecbf globalefficiengy anode-
basedapproactappearso besuitable:it allowsin asimpleway
the constructiorof adhocnetworkswherethe numberof trans-
mitting nodess limited andthe globalpower dissipationis low
andnotfar from theminimumpossible.

This problemcanbe solvedwith a TDPCapproachwhere,
insteadof usinga fixed setof transmittingnodesa cyclic rota-
tion betweera smallnumberof relaysis performed.

IV. LOCAL ENERGY EFFICIENCY AND TDPC TECHNIQUE

The searchfor an enegy-eficient network canbe alterna-
tively seenfrom alocal standpointasin [9] and[10]. In areal
network, suchasoneof laptopterminals theenengy is supplied
to eachterminal by a battery which canonly containa finite
amountof chage. As previously obsened,thefactthata span-
ning treeis efficient underthe aspectof global consumption
may correspondo situationsin which few nodesconsumerel-
atively large amountsof powers, andthis resultsin poorlocal
efficiency sincefew nodearehighly stressed.

Therequiremenbf avoiding to stresghesinglenodedeads
to theconsideratiof themaximumof theconsumptiorateach
singlenodeasa measuref local efficiengy. Thus,we measure
thelocal efficiency asthereciprocalof themaximumof thesin-
gle nodeexpendituresthe higherthis value,the moreefficient
the network in a local sense. If we assumethat the network
reconfigurationdue to exhaustedbatteryin ary nodeis to be
avoided,we candefinethelifetime of a network asthe average
time until an outageoccursat ary node. It is easyto seethat
thistimeis proportionako thelocal efficiency aspreviously de-
fined. Sowe characteriz¢he behavior of aspanningreeunder
the aspectof local efficiency by the valuet, calledin the fol-
lowing network lifetime anddefinedasfollows:
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)
wherep(i) is the average power consumptiorof nodei (possi-
bly takinginto accounthefactthatthenodeis nottransmitting
continuouslyasexplainedlater).

In fact, if evenonly one nodeis overloaded after a short
time it is impossibleto sustainthe network topology because
thelink requestsaretoo heavy for the chageleft in the batter
ies, andthe spanningtree hasto be recomputedafter the dis-
chagednodeis removed. This may malke it impossibleto es-
tablishsomelinks in the network, andis undesirableespecially
in the caseof multicast: in fact, the nodewith exhaustedbat-
tery may not even be partof the multicastgroup,beingsimply
arelay.

As mentionedn Section3, anetwork is “globally” efficient
whenthe numberof transmittingnodess relatively low, which
on the other handis undesirablefor local efficiency, assome
nodesmayhaveto performahighnumberof transmissionsver
alargeareaof coverage andthe network lifetime decreasedn
otherwords, it may be betterto have several transmitterswith
low consumptionthan few transmitterswith high enegy re-
guest.This, onthe otherhand,works againstglobal efficiency.
Thereforewhenwetake into accounbothglobalandlocal effi-
ciencieswe haveto facetwo contrastingheedsandthecorrect
trade-of needdo beidentified.

In this paperwe illustratea possibleextensionof the node-
basedalgorithmswhich also considersthe local enepgy effi-
cieng/. The basicideais the following: insteadof usinga sin-
gle spanningtree for the total connectiontime, several trees
areused,characterizedby similar global costs,but maximally
disjoint set of relays. By alternatingamongthesetreeswe
cangreatlydecreasdocal consumptionsincemostnodeswill
cyclically restandthe averagepower consumptionThe mech-
anismwe proposeto reachour targetis called Time Division
Path Changing(TDPC),similarto TDMA techniques.

In practicejf M is thenumberof treesfound,we divide the
time axisinto frames,andeachframeinto M slots.During the
ith slot of eachframe,theith treeis used.! Thebenefitof act-
ing in thisway is evenmoresignificantif oneconsidershatin a
realisticmodelof laptopbatterieg[11] and[12]) somerechage
phenomendaake placewhenthebatteryis not supplyingpower
to the terminal. So the changeof spanningtreeis very use-
ful: notonly doesit allow to shareof power dissipationramong
a greatemumberof nodes,but it alsomalesit possiblesome
rechage of theterminals,whichwe “put atrest” cyclically.

It is importantto noticethatthe TDPC techniqueactswell
whenit is usedjointly with a node-basedlgorithm: in fact,
we canobtainM differentspanningreessimply by aniterative
mechanismby just varying the heuristicof the algorithm. By
doing so, we combinethe local efficiency of alternatingmini-
mally overlappingtreeswith the global efficiency of eachone
of them.

In thefollowing Sectionswe illustratetheseresultsandwe
shav how thenode-basedlgorithmscanbe extended.

where p = argmaxp(¢)
i=1..N

V. WEIGHTED MULTICAST INCREMENTAL POWER
ALGORITHM (WMIP)

A node-basedalgorithm, (asdescribedn [3]) canbe eas-
ily modifiedto incorporatea local enegy efficiency objective.
In fact suchalgorithmis basedon the evaluationof a heuris-
tic function thatrepresentshe estimatedcostfor the unlinked
nodes:ateachstep thenodewith thelowestvalueof theheuris-
tic functionis choserandaddedto thetree.

INote that this may apply to successie blocks of datatransmitted thereby
avoiding the synchronizationssuednvolvedin time division.

We operateasfollows: the MIP algorithmis usedto find
a globallow-costspanningree,thatis includedasfirst treein
asetof M. Furthermorepther M — 1 treesof the TDPC set
areto bedeterminedwith smallpower consumptiorandrelays
thatareasdifferentaspossible.

To do so, the initial researchof global low-cost spanning
treeis perturbed sothata differentsolutionis found. In prac-
tice, we assigna weightto eachnode:this weightis multiplied
ateachstepby afactorthatis afunctionof theexpendedpower
of thenodein thetreepreviously found,andis usedto calculate
thenext tree. Thatis, in looking for them + 1sttree,we penal-
ize transmissionfrom thenodeswith high powver consumption
in the mth solution. This procedurehasto be repeatedy re-
evaluatingtheweightsandcomputingthe next solution: by this
way M differentspanningreesarefound.

By meansof aniterative approacthof this sort, calledin the
following Weighted Multicast Incremental Power (WMIP), the
M generatedpanningtreestendto be asnon-overlappingas
possible,while having similar global enegy cost. Obviously
the costof solutionm + 1 is generallyexpectedto be higher
thanthe costof solutionm, becausehe higherthe index of
the solution, the more restrictive the conditionsin which the
spanningreeis found. However, asshavn in the sequel this
increasdurnsoutto belimited.

We can modify the expressionof the heuristicof the MIP
algorithm(3) asfollows:

WMIP: ¢

n = w{™[d% — pl(i)] (4)

A term, w{™, has been added: it is the “weight-in-
transmission”of the ith node,in fact its meaningis to make
the transmissiorfrom the sth nodeheavier. The valueof wgm)
changesaccordingto theindex m, thatis theindex of the par
ticular solutionin the set,sothatwe accountfor the nodecon-

sumptionin the treesalreadyfound, by encouraginghe high
consumptiomodesn themth solutionto beinactive or to have

low consumptiorin the (m + 1)st solution. The w,(m) coefi-
cientcanbedefinedin arecursve approachthatcanbeapplied
to the studiedcasein a simpleandintuitive way. In this caseit
mustbeobser‘edthatwgm) canbeinterpretedasa cumulatve
weight,i.e.,in it is keptmemoryof thepastweight,sincewgm)
is definedfrom wgm—” andsoon.

Formally, if p,,, (%) is the expendedpower by nodes in the
mith tree,we evaluatew!™ asfollows:

wf?

% (i)
w™ = Flpa ()] w(™

()
(6)

¥(i) istheinitial conditionatnodei. It canplay mary roles:
if we startwith equalbatterylevel for all nodeswe maydefine
() asfollows:

P(0) = o
¥(i) = 1. If iisnotin themulticastgroup
¥() = 1 otherwise

whereyy > 1, ¥, > 1. Thisis becauseve desireto avoid us-
ing thenodeswhicharenotpartof themulticastgroup,andalso
to avoid stressinghesourcewhichis alwaysinvolvedin trans-
mission. Sowe choosea higherinitial weight-in-transmission
for thesenodes.

F[z] is amultiplicative termandis afunctionof p,, (), i.e.,
the normalizedvalue of the power spentby node: in the mth
tree,p,, (7). The normalizationusefulto keepthe argumentof



function F' betweerD and1, is referredto the maximumpower
expenditureof a singlenodein themth solution. Formally:

Bm(i) = 2200 where 4 = agmaxpn (i)

Pm () i=1..N

Concerninghe particulartype of function F'[z], we request
thatit leavesthe weightof leaf nodesunchangedwhile penal-
izing transmissiongrom nodeswith high power expenditure.
Therefore,we needa monotonicallyincreasingfunction for
which F[0] = 1. A possiblechoiceof F[z] is anexponential-
typefunction:

Flz] = AP withA>1,>0

wherethe coeficient A and 8 may be tunedin orderto have
betterperformance.Our simulationsstudieshave showvn that,
althoughthe optimality of the performances dependenbnthe
valuesof theseparameterssimilar results,that shav the ad-
vantageof applying TDPC to this algorithm, can however be
highlightedevenwith a choiceof A andg in large rangesfor
exampleA=11~153=1~3.

Fromthe previous formulationof WMIP algorithmwe can
expect that it will be impossibleto have M spanningtrees
whosesetsof relaysaredisjoint partitionsof thesetof N nodes
of the network. This happendirst of all becausehe network
hasa sourcenodeand the transmissiorfrom this nodeis un-
avoidable. Furthermoreaswe still build treesbasedon global
enepy efficiencgy, dependingon the topology somekey nodes
may have to be active mostof thetime.

It is thereforevery difficult not to use nodesthat are in
stratgic positionsandcancover large partsof the network: if
we avoid usingthesenodesve mustexpectavery highincrease
of thetotal power expenditure It is importantto noticethatthe
node-basedpproactdoesnotincreasehe computationatom-
plexity of the algorithm: the only significantvariation under
this aspectis a scanfor every nodeand the evaluationof the
weightin transmission.This additionalcompleity is however
negligible comparedo theoriginalterm O(N3).

V1. SIMULATION RESULTS

We canafford a performanceeomparisonandat the same
time gain somedeeperunderstandingf TDPC's adwantages,
by consideringa very simplistic approachto generatethe set
of M solutions,i.e., an algorithmin which we usea random
treegenerationratherthana low-costbasedalgorithm. In or-
der for this to be meaningful,we mustput boundsto the ran-
domlyoperatedhoicestherebydiscardingparticularlybadop-
tionsthatcanleadto spanningreeswith mary very high-paver
branchesbecauseuchtreesarebadunderbothglobalandlo-
cal efficiency. With this variation, the randomalgorithm (de-
notedin the figuresas IncreasingBound Randomalgorithm,
IBR) doesnot operatein a completelyrandomway, but it dis-
cardsarandomlychoserlink if its powerrequests greatetthan
somepredefinedupperbound. The choiceis repeatedandthe
upperboundis increasedby an assignedoercentagein order
to avoid situationsin which we have no links with acceptable
cost. By appropriatelychoosingthis boundwe canpractically
fix the global power consumptiorof the entiretree. In fact, by
repeatingthe algorithm, we usuallyfind anothersolutionwith
similar globalconsumptionbut in generalwith power expendi-
tureassignedo othernodes.

So the value of global consumptionof an IBR solutionis
constrainednto almostfixed rangesthataregenerallynot ef-
ficient, and iterationscan not changesignificantly this value:
TDPC canimprove the efficiengy, but only underlocal aspect,
i.e.,byloweringthelocal consumptiorof singlenodeswith the
principle of usingseveral spanningrees ratherthanonly one.

In thios case we only exploit TDPC'’s ability to sharethe cost
amongnodes,without ary explicit attemptto chooseenegy-
efficient solutions.

We have chosera squareareaof 10 x 10 unitsin whichwe
randomlyplace N nodes.Thesimulationsallow the possibility
to vary the placemenof the nodesin theareaaccordingto sev-
eralrandomdistributions,but we foundthatthe performancef
thealgorithmsis only mamginally affectedby the specificstatis-
tics of thenodedistribution, soin thefollowing wewill only re-
fer to the caseof nodesuniformly distributedwithin the square
area. The exponentin the pathlossexpressionn. hasbeenset
equalto 4 asadefaultvalue.

We assignthe internalparametersf the algorithmsasfol-
lows. The 1-parameterslefining the initial conditionsin the
WMIP algorithmare selectedby setting: vg = 1.4, ¥, = 1.
This choiceis meantto give to the sourcemore “endurance”,
andto not usespecialcareagainstusingnodesthatarenot part
of the multicastgroup. The F[z] function is an exponential-
type function. A definition of parametersA and 3 of broad
validity, usefulin the comparisonof differentsituations,was
foundto be A = 1.2, 8 = 1.5. This choiceled to gener
ally good performancefor varioustypesof ervironmentand
differentnetworks. More accuratechoicesof theseparameters
would bestill possiblein eachspecificsituation,althoughonly
mamginal improvementsanbe expected.

Figures 3-5 representthe trade-of betweenglobal con-
sumptionandnetwork lifetime in variousscenarioseachpoint
in thegraphscorrespond$o a pair of globalefficiency/network
lifetime values, obtainedwith the specifiedalgorithm and a
given choiceof the numberM of considerecpathsin TDPC
approach.The valuesare normalizedto the solutionof mini-
mum global cost(thatis usuallythefirst solutionfound by the
WMIP algorithm). The lifetime ¢ is the reciprocalof the local
consumptionof the nodethat suffers the highestexpenditure,
averagedover all trees,becausasexplainedin Section4, this
is the nodethatcanleadto a changein network topology due
to insuflicientchageleft in battery

Thus the bestpointsin the graphsare the oneswith low
globalconsumptiorandincreasedifetime, i.e.,in theupperleft
corner: ideally, a perfectoptimizedsituation,that can be ob-
tainedonly in avery specialnetwork, hasthe global consump-
tion equalto 1, i.e., notincreasedandthe local consumption
perfectly distributed amongall nodes,so that the normalized
lifetimeis N.
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Thefirst solutionof WMIP algorithmcorrespondso point
(1,1): valuesof M greaterthan1 attemptto increasdifetime
while slightly increasingglobal dissipation. As a function of
M, we cancutthetrade-of betweerthesecontrastingequests,
by choosingthe operatingpoint thatgivesthe bestconditions.

ConsiderFigure3: it refersto a100-nodenetwork, in which
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the multicastgroupis composedf 10 elementgincludingthe
source).Eachpointin the curve labelled“WMIP” corresponds
to a TDPC solutionwith M = 1,2,3.... It canbe seenthat
by increasingM theglobal consumptioris increasedvhile the
local consumptioris decreased.

We canobsere thatif we let M equalto 4, we obtaina
global normalizedconsumptionof 1.05, i.e., 5% higherthan
for the bestglobal casewhile the network lifetime is increased
by 50%. In thesamescenariojt is possibleto usehighervalues
of M, therebyachievzing an evenlower local consumptiorbut
atthecostof aslightly highertotal consumptionFor example,
M = 10 leadsto aglobalnormalizedconsumptiorof 1.15, but
allows to doublethe normalizedlifetime, whereasby taking a
highervalueof M it is possibleto obtainalifetime aboutequal
to 2.5, while payinga globalcostincreaseof atleast40%.

Thus, it is easyto choosea point of trade-of, by simply
setting M equalto a valuewhich meetsthe desiredconsump-
tion requirementsAn interestingconclusionthatcanbedravn
from theseresultsis thatby only increasinghewhole network
expenditureby about15 percentthelocal consumptiorcanbe
halved,i.e.,thelifetime of thenetwork, aslimited by thebattery
chage,canbe doubled.Dependingon the numberof nodesin
the network, the sizeof the multicastgroup,andotherparame-
tersthatwe cansimulate,t is possibleto choosea correctpoint
of trade-of for a network scenarioin a very generalway. We
only haveto runthe WMIP algorithm M timesandthenimple-
menta TDPC-mechanisnwith the appropriatenumberi of
solutionsto be usedin a TDMA-lik e fashion.

As afinal remark,noticethatthe performancef theIBR al-
gorithm, alsoreportedin the plots, is significantly poorerthan
that obtainedwith WMIP; however even a randomtree gen-
eratorobtainsanimproved performancepnly by usingTDPC

principle. It is possibleto concludethat a consistentperfor
manceimprovements allowed,in bothcasesbut thisimprove-
mentis more usefulif TDPC is applied along with a power
awarealgorithmto build thetrees,sothatenegy consumption,
bothin globalandlocal sensecanbekeptsmall.

VIl. CONCLUSIONS

In this paper we have addressedssuesarising when de-
signingalgorithmsto generatespanningreesfor broadcasand
multicastcomunicationsn wirelessnetworks. In particular at-
tention hasbeengiven to the issueof enepy efficiengy, both
in globalterms(total network consumptionjpndin local terms
(focusingonthe mosthighly stressechodes).

We have proposeda novel approactwhich combineglobal
andlocal considerationgherebyproviding aflexible tool to de-
sign network topologiesunderenegy constraints.In addition,
the proposedapproachs ana priori techniquewherethe com-
putationalcostcan be paid all at once,andrun-time changes
of thespanningree(e.qg.,to continuouslytake into accounthe
dischageof thenodesasin [9]) arenotnecessarunlessanode
is completelydischagedandneedgo beremoved.

TDPC also gives the necessarylexibility to trade-of be-
tweenlow global costandlong network lifetime. This canbe
donein a very easyway, from tradeof curves suchasthose
shawn in this paper

Forthefuture,possibleextensionof thiswork couldbefirst
of all animplementatiorof TDPCwith distributedalgorithms,
thataremoreinterestingfor realimplementation®ver ad hoc
networks. Moreover, thegeneratiorof mary spanningreescan
be usedasmeshgenerationij.e., to introducea desiredamount
of redundanyg, by usinga setof spanningreesinsteadof only
oneat sametime. This may be usefulor necessarywhenthe
possibility of outagefor the nodesof the network is accounted.
Another quite naturalsequelof the work of this papercould
be the specializatiorto practicalcasesof interest,like sensor
networksor othertypesof network in low power ernvironments,
by simply modifying the network parametersor distinguishing
betweerdifferentpropertiesof thenodes.
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