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Abstract—Energy efficient communicationsin ad hocand sen-
sorwir elessnetworks is avery important topic. Westudy theprob-
lem of creating spanning tr eesof low cost,where low cost can be
viewed in terms of global or local energy efficiency. We refer to
the algorithms and techniquespresentedin the literatur e, and we
show an extensionto them, calledTDPC, which takesinto account
both global and local efficiency. Weshow that thesetechniquescan
beapplied to existingalgorithms, impr oving the performance,and
addressingboth needs. We show how it is possiblein general to
cut a trade-off betweenthe two contrasting requestsof global and
local energy efficiency, by using TDPC with a particular classof
algorithms.

I . INTRODUCTION

In this paper, we studyad hoc networks from the point of
view of energy efficient broadcastand multicast. An ad hoc
network is characterizedby two basicrequirements:reliabil-
ity evenwithoutpre-existinginfrastructure,andcompletelydis-
tributednetwork control [1]. Strongconnectivity of anadhoc
network can be managedwith appropriatealgorithmswhich
considerproperlytheneedto build suchnetworksin low power
environments.

We analyzetheproblemof network generationfor a topol-
ogyof � terminalsin adesignatedarea.Wecanrepresenteach
userandhis terminalasa point. Thenetwork generationmust
be done(as fast as possible,ideally instantaneously)when a
particularuser(called in the following “information source”)
startsa transmissionto other users. We speakof broadcast
(one–to–all)if the communicationis direct from the sourceto
all users,or multicast(one–to–many) if, in thecommunication
area,only asubsetof theusers,calledmulticastgroup,is inter-
estedin receiving informationfrom the source. However, we
let openthe possibility of using other usersas relays(multi-
hop operation).We assumeto be in a power limited network,
wherewecanspeakindifferentlyof power or energy efficiency,
assumingimplicitly thatwe considertransmissiontime ascon-
stant.

In this situation,we would like to find the lowest energy
spanningtree,rootedat thesource,that reachesall thedesired
destinations.Theanalysisof thisproblemin wirelessnetworks,
which can be found in [2], [4] and [5], is different from the
wireline cases,for which solutionsarewell known [8]. In fact,
therearesubstantialdifferencesbetweenwiredandwirelesssit-
uations: if we considerpower expenditureasa metric for the
evaluationandcomparisonof thesolutions,in wired networks
thismetricshowsa linearbehavior (thecostof spanningtreeis
thesumof thecostsof thebranches),whereasthis is no longer
truefor wirelessnetworks.

A trade-off canbe immediatelyidentified,which an algo-
rithm mustevaluate,betweenreachingfrom thesourcea large
numberof nodesin asinglehop(with consequenthigherpower
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consumption),andreachingdirectly only few nodes,by using
lower power, andusingthemasrelaysto reachotherdestina-
tions.An importantaspectof this trade-off is thenon-linearat-
tenuationcharacteristicsof theradiochannel,thatplaysamajor
role in determiningpowerconsumption.

For simplicity, weassumethateachterminalin thenetwork
hassufficient transceiver resourcesto handleeverycall without
blocking,andthat thelimiting factoris energy consumptionas
opposedto channelcapacity. Evenif it is suitablethateachter-
minalrequireslow powerconsumption,wedonotputparticular
boundsto thepower thata nodecanexpendfor transmissions.
Potentially, in our model every nodeis reachablefrom every
other, aslong asenoughpower is used.This hypothesisis only
awayto take into accountall possiblechoicesfor aconnection.
In fact,therequestof a low costtreeby itself makesit unlikely
to establishlinks with unreasonablyhigh expenditure. Then,
for sake of generality, it is moresuitablethat the algorithmit-
self discardslinks thatneedhigh power to beestablished,e.g.,
betweenvery far nodes,ratherthanhaving anadditionalbound
thatwould bedifferentaccordingto specificnetwork.

Weassumethatnodemobility occursona timescalewhich
is significantlylargerthanthatof datatransmission,sothatdur-
ing thetransmissionwe considerthepositionsof theterminals
asfixed. On the otherhand,the network may needto be “re-
arranged”if aterminalchangesitspositionsothatit isnolonger
reachableefficiently. This considerationplaysa role in deter-
miningthecomputationalcomplexity: sinceweneedto quickly
generate(or re-arrange)networksdueto mobility, we take into
accountthat the complexity of the algorithmwe usemustnot
betoohigh.

Thekey point of this paperis to highlight the trade-off be-
tweenglobalandlocalefficiency, thatimpliesdifferentpossible
choicesin establishinglinks andchoosingtransmittingnodes.
Moreover, theTimeDivisionPathChanging(TDPC)conceptis
presented:this techniqueoptimizesbothefficiencies,becauseit
considersseveralspanningmulticasttreesto coverthenetwork,
thatareasdisjoint aspossible.Then,by cyclically rotatingthe
transmittingnodes,global efficiency is kept but high stressto
singlenodesis avoided.

This paperis organizedasfollows: in SectionII themodel
usedfor thewirelessenvironmentis described.In SectionsIII
and IV we presenttechniquesto obtainglobal and local effi-
ciency, respectively, andwe introducethe TDPC concept. In
SectionsV weshow examplesof applicationof TDPCwith dif-
ferentalgorithms. In SectionVI we evaluatethe performance
of theconsideredalgorithms.Finally, SectionVII presentsthe
conclusionsandsummarizestheadvantagesof usingTDPC.

I I . WIRELESS ENVIRONMENT MODEL

We considera network of � nodes,oneof which playsthe
roleof sourceof information(in theexampleswedenotethisas
nodenumber0). Themulticastgroupconsistsof thesourceof
informationandof anumberof destinationnodes(at leastone).
We assumethat eachnodecanchooseits power level without
limit: wemustrememberhoweverthattheprimarytargetof the



algorithmis to searchfor efficient (i.e., low power) solutions,
sothathighpower transmissionsareavoided.

Thepowerconsumptionin awirelessenvironmentis strictly
relatedto theattenuationof theradiochannel.Popularmathe-
maticalmodels(e.g.,see[6] and[7]), have threebasicterms:
path loss, large scale variations and small scale variations.
Largescalevariationsareusuallydescribedwith a log-normal
distribution,with meanin dB equalto thepathloss.Smallscale
variationsaremodeledwith aRayleigh(or Rician)distribution,
wherethe received signal is a wide sensestationarycomplex
Gaussianprocesswhoseenvelopeis a Rayleigh(or Rice) ran-
domvariable.

Practicalconsiderationsallow usto simplify this model:as
a matterof fact,theeffect of smallscalevariationsis mitigated
by designinga receiver with diversity(e.g.,Rake receiver with
maximal ratio combining[6]). So we can assumethat small
scalevariationsaremanagedby thesetechniquesanddonotaf-
fect the link cost,exceptpossiblyfor a constantfactor. Large
scalevariationsareinsteadoftenaccountedfor in wirelesssys-
temsby an outageprobability [7]: thesevariationsaffect the
transmittedpower, that must be sufficiently high so that the
transmissionis correct in a given percentageof cases(e.g.,
99%). In both cases,a fixed power margin is introducedin
orderto meetthedesiredquality requirements,andthismargin,
being appliedto all transmissions,is irrelevant in the energy
optimizationproblemconsideredin thesequel.

In view of theabovediscussion,weconsiderpathlossasthe
only significantparameter:from experimentalmeasurementsit
follows that the received signal is proportionalto ����� , where� is the distancebetweentransmittingandreceiving antennas,
and � is an exponentwith typical valuebetween	�

� and ��

� .
A valueof 	�

� meansthat the propagation is asin free space,
whereasmore realistic valuesfor urbanareasare 	�
�������

�
[6]. We assumethat � is fixed in the environment, i.e., the
propagationmediumis uniform.

We then have a simplified model in which the cost func-
tion of a link is proportionalto ��� . Becausewe have assumed
omnidirectionalantennasandnoupperboundsto powerexpen-
diturefor anode,wecansaythatatransmitterthatusesapower
proportionalto ��� canreachwith adequatequality every point
within a radiusof � , andevery nodeis reachableif sufficient
power is used.

In order to simplify our environment(but this approxima-
tion is not restrictive) we alwaysconsidera 2-dimensionaldis-
tribution of the usersin the network: this meansthat we do
not considerissuessuchasthe curvatureof earth,or different
heightsof theantennas.

We emphasizean importantpropertythat resultsfrom the
broadcastnatureof the wirelessenvironment. It was called
wireless multicast advantage by theauthorsof [2] and[3], and
canbeexplainedby meansof thefollowing example.
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Fig. 1. Simple3-nodenetwork ( � is thesource)

ConsiderFigure1, in which a very simplenetwork is pre-
sented:atransmitter(indicatedas � ) mustreachtwo destination
nodes( � and � ). � canchooseto eitherreachonly � (thenear-

est) and let it reach � , or (using a higher power level) reach
both � and � with a singletransmission.Thefirst casehastotal
power expenditureequalto ������! �"��$# . The secondcasere-
quiresonly the power neededto reach � , sincenode � , being
closer, is alsoreachedby this transmission.So in this casewe
have a globalcostof the transmissionequalto � ��%# . In a wire-
line environmentwe have in both casesa global costequalto
thesumof two parts,onefor eachlink. On theotherhand,in
a wirelessenvironmentthepower expendedby onetransmitter
is only thepower neededto reachthefarthestreceiver, i.e., the
maximumof thelink powers. In otherwords,if a transmitter&
is connectedto a set ' of receivers,its power consumptionis
equalto: (*) &,+.-0/214357698 � �: 5 (1)

This propertymakes cost functionslike global power ex-
penditurenot additive and it explains why classicalgorithms
for wireline networks do not work correctly for wirelessnet-
works.Weshow in thenext sectionwhichtypeof approachcan
betakento accountfor thesedifferences.

I I I . GLOBAL ENERGY EFFICIENCY

Thegenerationof anetwork,giventhespatialdistributionof
the terminals(or, equivalently, the distancebetweeneachpair
of nodes),canbeviewedasa spanningtreecreationproblem.
If wewantto considertheglobalpowerconsumption,weasso-
ciateacostto eachlink. Basedontheconsiderationsof thepre-
vioussection,wechooseacostfunctionequalto � � . Variousal-
gorithmsto minimizeglobalcostcanbefoundin theliterature,
i.e., Prim’s algorithm[8]. Thesealgorithmswereproposedto
beappliedtowirelinenetworks,whereas,asalreadymentioned,
in the wirelessenvironmentcostsarenot additive, becauseof
the wireless multicast advantage. Thereforetheglobalcostof
thetreeis thesumof theexpendituresof singlenodes,but thisis
a non-linearfunctionof theindividual link costs.Theproblem
of finding the minimum costspanningtreein this node-based
versionof the problemis harderthan the link-basedwireline
formulation.

In this paperwe focus our attentionon node-basedalgo-
rithms: two suchalgorithmswereproposedin [3], onefor the
broadcastcase,BIP (Broadcast Incremental Power), and one
for themulticastcase,MIP (Multicast Incremental Power). Be-
causethedifferencebetweenBIP andMIP consistsonly in an
additionaloperationof pruningof thetreeto remove all unuti-
lized connections,we speakindifferently of MIP or BIP, im-
plying thatBIP is only a versionof MIP in which themulticast
groupsize is ; , i.e., it includesall nodesin the network. In
Sections4 and5 we show that it is possibleto modify the en-
ergy efficiency objectiveby introducingaconceptof efficiency
relatedto local powerconsumption.

The MIP algorithm acts in steps,starting with only the
sourcenodeincludedin the treeas the root. At every stepa
nodeis addedto thetree,building a link betweena nodeof the
treeanda nodenot yet included. Becausewe startwith only
thesource,andthenetwork has ; nodes,we completetheal-
gorithm in ;=<>� steps. The choiceof which nodeto addis
donethroughaheuristicfunction: thenew link chosenat every
stepis theonewith minimumadditionalcostin termsof power
consumption.Adding this link to thespanningtreecausesthe
lowestincreaseof thetotal network cost.

An importantclarificationmustbemade:by just following
theabove descriptionit is possiblethat thegeneratedspanning
treehasredundantlinks. Wemustthenoperateapruningof the
tree in order to remove unnecessarybranches.We will show
lateranexampleof thispruning.



The MIP algorithm can be seenas an evolution of algo-
rithmssuchasPrim’s,which provide a solutionto theproblem
of minimum-global-costspanningtree in the linear case[8].
Prim’s algorithm builds a network with a step-by-stepproce-
dureaswell, but thetreesgeneratedby the two algorithmsare
generallydifferent. BecausePrim’s andMIP algorithmsscan
thesetof � pointsin thesameway, theorderof complexity is?A@ �CBED for both.Althoughimplementationtechniquesthatcan
lower this valuehave beenproposed,hereit is enoughto note
thatthecomplexity is polynomial.

Moreover, therearedifferencesin the step-by-stepevalua-
tion performedby the algorithms. The cost function F%GHJI (i.e.,
thecostof thelink from K to L at the M th step)is definedin the
two casesasfollows:

Prim’s: F GHJION �P�HJI (2)

MIP: F GHJIQN �P�HJISRUT�GV @ KWD (3)

where T G V @ KWD is the power that node K needsin order to sus-
tain links towardsalreadyreachednodes(asa consequenceof
thewirelessenvironmentpropertiesdiscussedin Section2, this
termis themaximumof thepowerexpenditureonthelinks that
node K maintainsafter the first M steps).That is, while Prim’s
algorithmusesa costfunctionthat is simply equalto theabso-
lute costof the link in termsof power dissipation,in choosing
the link to addto the network the MIP algorithmalsoconsid-
ersthepoweralreadyexpendedby thetransmitternodein links
previouslyadded.

This approachdoesnot give us the optimal spanningtree,
however it is very simpleandrequiresshortcomputationtime,
andtheasymptoticperformanceis not far from optimal[3]. For
this reasonwe do not seekfurther improvementsof theglobal
consumption,which would still bepossiblewith morecompli-
catedheuristics,but donot appearsignificantenough.

In Section5, we will show that the approachof this algo-
rithm (called in [3] “node-based”approach)allows usefulex-
tensionsto otherperformancemetrics,e.g.,thelocal consump-
tion.

We now compareMIP andPrim’s algorithmswith an ex-
ample. Figure2 shows 10 points that representa distribution
of terminalsin a wirelessscenario. Let the exponentof the
distance� in the cost function (relatedto the propagation) be� N 	 , i.e., we areassumingpropagation aswe have in open
space.

Figures2aand2c show thenetwork topologygeneratedby
MIP andPrim’s algorithmrespectively. As we have saidbe-
fore, Figure2a doesnot representcorrectly the resultof MIP
algorithm,becauselinks 	PX�� and YPX[Z areunnecessary. In
orderto maintainthelink to 6, node0 usesin factapower level
sufficientto reachbothnodes4 and1 directly. By pruningthese
links, weobtaincorrectlythesolutiongivenby MIP algorithm,
shown in figure2b.

Assumingthesideof thesquareareato beequalto 10units,
wecancomputetheglobalcostof thetreeswhichis (expressing
resultsin referencepowerunits,rpu):\.]2^%_ N �`��ab��Z rpu for MIP algorithm\._�c Hed N ��Z4afY4� rpu for Prim’s algorithm

To illustratethemulticastcaseratherthanbroadcast,wecan
simply prunethe treesgenerated,by eliminatingbranchesthat
reachleaf-nodesthatarenot part of the multicastgroup. This
proceduremustberepeateduntil all leavesin thetreebelongto
themulticastgroup.

Qualitatively, wecanexplainthehighercostof thetreegen-
eratedby Prim’s algorithmby observingthatwe have a higher
numberof transmittingnodes.Comparingthe treesgenerated
by MIP andPrim’s algorithms,it is easyto seethat in thecase

Fig. 2. A 10-nodenetwork ( g is thesource)

of MIP only node0 is involved in transmissionsto relatively
far nodes,so it is the only nodewith high consumption. In
Prim’s algorithmtreewehaveseveralnodesthatsupportheavy
(in termof dissipation)links, e.g.5, 7, 8.

Thiscriterionis oftenverified: thewireless multicast advan-
tage principle implies that if we have few transmittingnodes
(with consequentlyhigher but concentratedpower expendi-
ture),we oftenobtaina lower globalpower consumption.We
couldconcludethatundertheaspectof globalefficiency anode-
basedapproachappearsto besuitable:it allowsin asimpleway
theconstructionof adhocnetworkswherethenumberof trans-
mitting nodesis limited andtheglobalpowerdissipationis low
andnot far from theminimumpossible.

This problemcanbesolvedwith a TDPCapproach,where,
insteadof usinga fixedsetof transmittingnodes,a cyclic rota-
tion betweenasmallnumberof relaysis performed.

IV. LOCAL ENERGY EFFICIENCY AND TDPC TECHNIQUE

The searchfor an energy-efficient network canbe alterna-
tively seenfrom a local standpoint,asin [9] and[10]. In a real
network, suchasoneof laptopterminals,theenergy is supplied
to eachterminalby a battery, which canonly containa finite
amountof charge.As previouslyobserved,thefactthataspan-
ning tree is efficient under the aspectof global consumption
maycorrespondto situationsin which few nodesconsumerel-
atively large amountsof powers,andthis resultsin poor local
efficiency sincefew nodearehighly stressed.

Therequirementof avoidingto stressthesinglenodesleads
to theconsiderationof themaximumof theconsumptionateach
singlenodeasa measureof local efficiency. Thus,we measure
thelocalefficiency asthereciprocalof themaximumof thesin-
gle nodeexpenditures:thehigherthis value,themoreefficient
the network in a local sense. If we assumethat the network
reconfigurationdue to exhaustedbatteryin any nodeis to be
avoided,we candefinethelifetime of a network astheaverage
time until an outageoccursat any node. It is easyto seethat
this timeis proportionalto thelocalefficiency aspreviouslyde-
fined.Sowecharacterizethebehavior of aspanningtreeunder
the aspectof local efficiency by the value h , called in the fol-
lowing network lifetime anddefinedasfollows:



h N iT @kj D where
j N argmaxHml ibn n o T @ K$D

whereT @ KWD is theaverage power consumptionof nodeK (possi-
bly takinginto accountthefactthatthenodeis not transmitting
continuously, asexplainedlater).

In fact, if even only onenodeis overloaded,after a short
time it is impossibleto sustainthe network topology, because
thelink requestsaretoo heavy for thechargeleft in thebatter-
ies, andthe spanningtreehasto be recomputedafter the dis-
chargednodeis removed. This may make it impossibleto es-
tablishsomelinks in thenetwork, andis undesirableespecially
in the caseof multicast: in fact, the nodewith exhaustedbat-
tery maynot evenbepartof themulticastgroup,beingsimply
a relay.

As mentionedin Section3, anetwork is “globally” efficient
whenthenumberof transmittingnodesis relatively low, which
on the otherhandis undesirablefor local efficiency, assome
nodesmayhaveto performahighnumberof transmissionsover
a largeareaof coverage,andthenetwork lifetime decreases.In
otherwords,it maybebetterto have several transmitterswith
low consumptionthan few transmitterswith high energy re-
quest.This,on theotherhand,worksagainstglobalefficiency.
Therefore,whenwetakeinto accountbothglobalandlocaleffi-
ciencies,wehaveto facetwo contrastingneeds,andthecorrect
trade-off needsto beidentified.

In this paperwe illustratea possibleextensionof thenode-
basedalgorithmswhich also considersthe local energy effi-
ciency. Thebasicideais thefollowing: insteadof usinga sin-
gle spanningtree for the total connectiontime, several trees
areused,characterizedby similar global costs,but maximally
disjoint set of relays. By alternatingamongthesetreeswe
cangreatlydecreaselocal consumption,sincemostnodeswill
cyclically restandtheaveragepower consumption.Themech-
anismwe proposeto reachour target is calledTime Division
PathChanging(TDPC),similar to TDMA techniques.

In practice,if p is thenumberof treesfound,wedividethe
time axisinto frames,andeachframeinto p slots.During theK th slot of eachframe,the K th treeis used.1 Thebenefitof act-
ing in thiswayis evenmoresignificantif oneconsidersthatin a
realisticmodelof laptopbatteries([11] and[12]) somerecharge
phenomenatake placewhenthebatteryis not supplyingpower
to the terminal. So the changeof spanningtree is very use-
ful: not only doesit allow to shareof power dissipationamong
a greaternumberof nodes,but it alsomakesit possiblesome
rechargeof theterminals,whichwe “put at rest” cyclically.

It is importantto noticethat theTDPCtechniqueactswell
when it is usedjointly with a node-basedalgorithm: in fact,
wecanobtain p differentspanningtreessimplyby aniterative
mechanism,by just varying theheuristicof thealgorithm. By
doing so,we combinethe local efficiency of alternatingmini-
mally overlappingtreeswith the globalefficiency of eachone
of them.

In thefollowing Sections,we illustratetheseresultsandwe
show how thenode-basedalgorithmscanbeextended.

V. WEIGHTED MULTICAST INCREMENTAL POWER

ALGORITHM (WMIP)

A node-basedalgorithm, (asdescribedin [3]) canbe eas-
ily modifiedto incorporatea local energy efficiency objective.
In fact suchalgorithmis basedon the evaluationof a heuris-
tic function that representsthe estimatedcostfor the unlinked
nodes:ateachstep,thenodewith thelowestvalueof theheuris-
tic functionis chosenandaddedto thetree.q

Note that this may apply to successive blocksof datatransmitted,thereby
avoiding thesynchronizationissuesinvolvedin time division.

We operateas follows: the MIP algorithm is usedto find
a global low-costspanningtree,that is includedasfirst treein
a setof p . Furthermore,other p R Z treesof the TDPC set
areto bedetermined,with smallpowerconsumptionandrelays
thatareasdifferentaspossible.

To do so, the initial researchof global low-cost spanning
treeis perturbed,so thata differentsolutionis found. In prac-
tice,we assigna weightto eachnode:this weightis multiplied
ateachstepby afactorthatis afunctionof theexpendedpower
of thenodein thetreepreviouslyfound,andis usedto calculate
thenext tree.Thatis, in looking for the rtsuZ st tree,wepenal-
ize transmissionsfrom thenodeswith highpowerconsumption
in the r th solution. This procedurehasto be repeatedby re-
evaluatingtheweightsandcomputingthenext solution:by this
way p differentspanningtreesarefound.

By meansof aniterative approachof this sort,calledin the
following Weighted Multicast Incremental Power (WMIP), thep generatedspanningtreestendto be asnon-overlappingas
possible,while having similar global energy cost. Obviously
the costof solution rvstZ is generallyexpectedto be higher
than the cost of solution r , becausethe higher the index of
the solution, the more restrictive the conditionsin which the
spanningtreeis found. However, asshown in the sequel,this
increaseturnsout to belimited.

We canmodify the expressionof the heuristicof the MIP
algorithm(3) asfollows:

WMIP: F GHJION0wyx d{zH}| �~�HJIURST�GV @ K$D�� (4)

A term, w x d�zH , has been added: it is the “weight-in-
transmission”of the K th node,in fact its meaningis to make
thetransmissionfrom the K th nodeheavier. Thevalueof wyx d{zH
changesaccordingto the index r , that is the index of thepar-
ticular solutionin theset,sothatwe accountfor thenodecon-
sumptionin the treesalreadyfound, by encouragingthe high
consumptionnodesin the r th solutionto beinactiveor to have
low consumptionin the

@ r�s�ZED st solution. The w�x d�zH coeffi-
cientcanbedefinedin arecursiveapproach,thatcanbeapplied
to thestudiedcasein a simpleandintuitive way. In this caseit
mustbeobservedthat w x d�zH canbeinterpretedasa cumulative

weight,i.e., in it is keptmemoryof thepastweight,sincewyx d{zH
is definedfrom w�x d � i zH andsoon.

Formally, if T d @ K$D is the expendedpower by node K in ther th tree,weevaluatew x d�zH asfollows:

w�x�� zH N � @ K$D (5)w x d{� i zH N � | �T d @ KWD���� w x d{zH (6)

� @ K$D is theinitial conditionatnodeK . It canplaymany roles:
if westartwith equalbatterylevel for all nodes,wemaydefine� @ KWD asfollows:�� � � @ ��D N � �� @ K$D N �.� if K is not in themulticastgroup� @ K$D N Z otherwise

where � ��� Z , ��� � Z . This is becausewe desireto avoid us-
ing thenodeswhicharenotpartof themulticastgroup,andalso
to avoid stressingthesource,which is alwaysinvolvedin trans-
mission. Sowe choosea higherinitial weight-in-transmission
for thesenodes.� | � � is amultiplicative termandis a functionof �T d @ K$D , i.e.,
the normalizedvalueof the power spentby node K in the r th
tree,T d @ K$D . Thenormalization,usefulto keeptheargumentof



function � between� and Z , is referredto themaximumpower
expenditureof asinglenodein the r th solution.Formally:

�T d @ K$D N T d @ K$DT d @kj D where
j N argmaxHml ibn n o T d @ K$D

Concerningtheparticulartypeof function � | � � , we request
that it leavestheweightof leaf nodesunchanged,while penal-
izing transmissionsfrom nodeswith high power expenditure.
Therefore,we needa monotonically increasingfunction for
which � | �4� N Z . A possiblechoiceof � | � � is anexponential-
typefunction:

� | � � N����9� with ��� Z�aW� � �
wherethe coefficient � and � may be tunedin order to have
betterperformance.Our simulationsstudieshave shown that,
althoughtheoptimality of theperformanceis dependenton the
valuesof theseparameters,similar results,that show the ad-
vantageof applyingTDPC to this algorithm,canhowever be
highlightedevenwith a choiceof � and � in large ranges,for
example��N Z�
�ZO��Z�

� , � N ZO��� .

Fromthepreviousformulationof WMIP algorithmwe can
expect that it will be impossibleto have p spanningtrees
whosesetsof relaysaredisjointpartitionsof thesetof � nodes
of the network. This happensfirst of all becausethe network
hasa sourcenodeand the transmissionfrom this nodeis un-
avoidable.Furthermore,aswe still build treesbasedon global
energy efficiency, dependingon the topologysomekey nodes
mayhave to beactivemostof thetime.

It is thereforevery difficult not to use nodesthat are in
strategic positionsandcancover largepartsof thenetwork: if
weavoid usingthesenodeswemustexpectaveryhighincrease
of thetotalpower expenditure.It is importantto noticethatthe
node-basedapproachdoesnot increasethecomputationalcom-
plexity of the algorithm: the only significantvariation under
this aspectis a scanfor every nodeand the evaluationof the
weight in transmission.This additionalcomplexity is however
negligible comparedto theoriginal term

?A@ � B D .
VI . SIMULATION RESULTS

We canafford a performancecomparison,andat the same
time gain somedeeperunderstandingof TDPC’s advantages,
by consideringa very simplistic approachto generatethe set
of p solutions,i.e., an algorithmin which we usea random
treegeneration,ratherthana low-costbasedalgorithm. In or-
der for this to be meaningful,we mustput boundsto the ran-
domlyoperatedchoices,therebydiscardingparticularlybadop-
tionsthatcanleadto spanningtreeswith many veryhigh-power
branches,becausesuchtreesarebadunderbothglobalandlo-
cal efficiency. With this variation, the randomalgorithm(de-
notedin the figuresas IncreasingBound Randomalgorithm,
IBR) doesnot operatein a completelyrandomway, but it dis-
cardsarandomlychosenlink if its powerrequestis greaterthan
somepredefinedupperbound.Thechoiceis repeated,andthe
upperboundis increasedby an assignedpercentage,in order
to avoid situationsin which we have no links with acceptable
cost. By appropriatelychoosingthis boundwe canpractically
fix theglobalpower consumptionof theentiretree. In fact,by
repeatingthe algorithm,we usuallyfind anothersolutionwith
similarglobalconsumption,but in generalwith powerexpendi-
tureassignedto othernodes.

So the valueof global consumptionof an IBR solution is
constrainedinto almostfixedranges,thataregenerallynot ef-
ficient, and iterationscan not changesignificantly this value:
TDPCcanimprove theefficiency, but only underlocal aspect,
i.e.,by loweringthelocalconsumptionof singlenodes,with the
principleof usingseveralspanningtrees,ratherthanonly one.

In thioscase,we only exploit TDPC’s ability to sharethecost
amongnodes,without any explicit attemptto chooseenergy-
efficient solutions.

Wehavechosenasquareareaof Z �2¡!Z � unitsin whichwe
randomlyplace� nodes.Thesimulationsallow thepossibility
to vary theplacementof thenodesin theareaaccordingto sev-
eralrandomdistributions,but wefoundthattheperformanceof
thealgorithmsis only marginally affectedby thespecificstatis-
ticsof thenodedistribution,soin thefollowing wewill only re-
fer to thecaseof nodesuniformly distributedwithin thesquare
area.Theexponentin the pathlossexpression� hasbeenset
equalto 4 asadefault value.

We assignthe internalparametersof thealgorithmsasfol-
lows. The � -parametersdefining the initial conditionsin the
WMIP algorithmareselectedby setting: � � N Z�
 � , ���¢N Z .
This choiceis meantto give to the sourcemore“endurance”,
andto not usespecialcareagainstusingnodesthatarenot part
of the multicastgroup. The � | � � function is an exponential-
type function. A definition of parameters� and � of broad
validity, useful in the comparisonof different situations,was
found to be �[N Z�

	 , � N Z4
�� . This choice led to gener-
ally good performancefor various typesof environmentand
differentnetworks. More accuratechoicesof theseparameters
would bestill possiblein eachspecificsituation,althoughonly
marginal improvementscanbeexpected.

Figures 3-5 representthe trade-off betweenglobal con-
sumptionandnetwork lifetime in variousscenarios:eachpoint
in thegraphscorrespondsto apairof globalefficiency/network
lifetime values,obtainedwith the specifiedalgorithm and a
given choiceof the number p of consideredpathsin TDPC
approach.The valuesarenormalizedto the solutionof mini-
mumglobalcost(that is usuallythefirst solutionfoundby the
WMIP algorithm). The lifetime h is the reciprocalof the local
consumptionof the nodethat suffers the highestexpenditure,
averagedover all trees,becauseasexplainedin Section4, this
is thenodethatcanleadto a changein network topology, due
to insufficient chargeleft in battery.

Thus the bestpoints in the graphsare the oneswith low
globalconsumptionandincreasedlifetime, i.e.,in theupperleft
corner: ideally, a perfectoptimizedsituation,that canbe ob-
tainedonly in a very specialnetwork, hastheglobalconsump-
tion equalto Z , i.e., not increased,andthe local consumption
perfectly distributed amongall nodes,so that the normalized
lifetime is � .
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Fig. 3. 100-nodenetwork, 10-usermulticastgroup

Thefirst solutionof WMIP algorithmcorrespondsto point@ Z�a Z¤D : valuesof p greaterthan Z attemptto increaselifetime
while slightly increasingglobal dissipation. As a function ofp , wecancut thetrade-off betweenthesecontrastingrequests,
by choosingtheoperatingpoint thatgivesthebestconditions.

ConsiderFigure3: it refersto a100-nodenetwork, in which
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Fig. 5. 100-nodenetwork, broadcast

themulticastgroupis composedof 10 elements(includingthe
source).Eachpoint in thecurve labelled“WMIP” corresponds
to a TDPC solutionwith p N Z�a%	�a%�¥
7
 
 . It canbe seenthat
by increasingp theglobalconsumptionis increasedwhile the
local consumptionis decreased.

We can observe that if we let p equalto � , we obtain a
global normalizedconsumptionof Z�

�`� , i.e., �9¦ higher than
for thebestglobalcase,while thenetwork lifetime is increased
by ����¦ . In thesamescenario,it is possibleto usehighervalues
of p , therebyachieving an even lower local consumptionbut
at thecostof a slightly highertotal consumption.For example,p N Z � leadsto aglobalnormalizedconsumptionof Z�
�ZE� , but
allows to doublethe normalizedlifetime, whereasby takinga
highervalueof p it is possibleto obtaina lifetime aboutequal
to 	�

� , while payingaglobalcostincreaseof at least�9��¦ .

Thus, it is easyto choosea point of trade-off, by simply
setting p equalto a valuewhich meetsthe desiredconsump-
tion requirements.An interestingconclusionthatcanbedrawn
from theseresultsis thatby only increasingthewholenetwork
expenditureby about ZE� percent,thelocal consumptioncanbe
halved,i.e.,thelifetime of thenetwork,aslimited by thebattery
charge,canbedoubled.Dependingon thenumberof nodesin
thenetwork, thesizeof themulticastgroup,andotherparame-
tersthatwecansimulate,it is possibleto chooseacorrectpoint
of trade-off for a network scenarioin a very generalway. We
only haveto run theWMIP algorithm p timesandthenimple-
menta TDPC-mechanismwith the appropriatenumber p of
solutionsto beusedin aTDMA-lik e fashion.

As afinal remark,noticethattheperformanceof theIBR al-
gorithm,alsoreportedin theplots, is significantlypoorerthan
that obtainedwith WMIP; however even a randomtree gen-
eratorobtainsan improvedperformance,only by usingTDPC

principle. It is possibleto concludethat a consistentperfor-
manceimprovementis allowed,in bothcases,but this improve-
ment is more useful if TDPC is appliedalong with a power
awarealgorithmto build thetrees,sothatenergy consumption,
bothin globalandlocal sense,canbekeptsmall.

VI I . CONCLUSIONS

In this paper, we have addressedissuesarising when de-
signingalgorithmsto generatespanningtreesfor broadcastand
multicastcomunicationsin wirelessnetworks. In particular, at-
tentionhasbeengiven to the issueof energy efficiency, both
in global terms(total network consumption)andin local terms
(focusingon themosthighly stressednodes).

Wehaveproposedanovel approachwhichcombinesglobal
andlocalconsiderations,therebyproviding aflexible tool to de-
signnetwork topologiesunderenergy constraints.In addition,
theproposedapproachis anapriori technique,wherethecom-
putationalcost canbe paid all at once,andrun-timechanges
of thespanningtree(e.g.,to continuouslytake into accountthe
dischargeof thenodesasin [9]) arenotnecessary, unlessanode
is completelydischargedandneedsto beremoved.

TDPC also gives the necessaryflexibility to trade-off be-
tweenlow global costandlong network lifetime. This canbe
donein a very easyway, from tradeoff curves suchas those
shown in thispaper.

For thefuture,possibleextensionsof thiswork couldbefirst
of all animplementationof TDPCwith distributedalgorithms,
thataremoreinterestingfor real implementationsover adhoc
networks.Moreover, thegenerationof many spanningtreescan
beusedasmeshgeneration,i.e., to introducea desiredamount
of redundancy, by usinga setof spanningtreesinsteadof only
oneat sametime. This may be usefulor necessary, whenthe
possibilityof outagefor thenodesof thenetwork is accounted.
Another quite naturalsequelof the work of this papercould
be the specializationto practicalcasesof interest,like sensor
networksor othertypesof network in low powerenvironments,
by simplymodifying thenetwork parameters,or distinguishing
betweendifferentpropertiesof thenodes.
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