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Abstract

In this paper, we studythe connectionbetweenRadioResourceManagement
andeconomicparameters,whoseapplicationin multimediacommunicationsystem
is a challengingtask. In fact,a realnetwork provider hasto considerotherparam-
eters,besidesthecommongoalsof RadioResourceManagementlike throughput
maximisationor meetingconstraintsconnectedwith the Quality of Service. In
particular, whenthe financialneedsof the provider andthe reactionof the users
to pricesaretaken into account,economicshave to be introducedin theanalysis.
We intendto studymultimediacommunicationsystemsby including well-known
economicmodelsandreasonableconsiderationsin the usualRadioResourceAl-
location scenario. To do this, we presenta model of users’satisfaction, which
considerstheeffectsof bothusers’requestandpricepaid. In this way it is possi-
ble to investigatetherelationshipbetweentheRadioResourceAllocation andthe
provider revenue. Otherconclusionscanbe derived aswell, e.g., for the pricing
strategy planningor the network dimensioning.Thus,we give analyticalinsight
andnumericalresultswhich highlight that thenetwork managementis heavily af-
fectedby theeconomicscenario.

1 Introduction

During recentyears,a hugedevelopmentof new servicesandalsoseveralnovel busi-
nessmodelshave beenseenin cellulartelephony. While RadioResourceManagement
(RRM) is key to high performanceof communicationsystems,many economicfactors
alsohave astrongimpact.

The Quality of Service(QoS)conceptis often studiedin connectionwith its eco-
nomicmeaning,wheretariffs andprovider revenueareconsideredimportantaswell as
otherparametersof moretechnicalnature[1]. At the sametime, several researchers
have adoptedmicro-economicalconceptsto analysenext generationcommunication
systems[2] [3] [4] [5].

However, in thesedescriptions,non-technicalparametersas usersatisfaction or
pricing are consideredonly from the users’point-of-view, e.g. in decentralisedap-
proaches.The role of the provider is neglected,or the provider is merelyconsidered
to act asan arbitratorthat guaranteesthe welfareof the users. In fact, thesestudies



usuallyapplygame-theoreticalconcepts,likeutility function[6], to optimiseor simply
improve the usageof the RadioResource.In certaincasesa connectionwith virtual
pricesis alsomade[7]. However, nothingis saidaboutthe real pricing policy of the
operator, how theusersreactto it, andwhichcouldbethebeststrategy for theprovider.

We think that the increasinginfluenceof economicson communicationsystems
makes it necessaryto extendthe analysisalso to this field. The first reasonis that a
concreteprovider needsto be able to estimatethe revenuethat can be generatedby
differentRRM strategies.To decidewhich servicesshouldbeimplemented,to dimen-
sion the network capacityandto correctlysharethe bandwidthamongthe users,the
economicincomehasto bemeasuredin someway. In general,theexistenceof thenet-
work itself is guaranteedonly aslongasthereis anadequaterevenuefor theoperator.

Then,in a centralisednetwork theprovider canactdirectly to pursueits goal, i.e.,
to increaseits revenue.However, users’reactionsto thetariff areanimportantfactoras
well. Realworld usersarefar from beingindifferentto prices.Thus,their satisfaction
is determinedby boththequality of theconnectionandthepricepaidfor it. If therole
of pricingonusers’satisfactionis neglected,theconclusionscanbemisleading.

Henceforth,in this work we proposeananalysisof economicaspects,by studying
theusers’satisfactionin multimediacommunicationsystems.TheQoSis modeledwith
thewell-known conceptof utility functions,thatcorrectlymodelthesoft tunability of
theperceivedquality in modernnetworks. Thesamemodelis usedalsofor theprice,
thatis indeedacontinuousquantity[8] thatcouldbeadjustedby theprovider, according
to apricingpolicy known to theusersandin generaldefinedapriori.

In thesequel,weapplytheframework to therateallocationissue,in whichausage-
basedpricing policy and a classof allocationpolicies are evaluated. Several useful
insightaregivenfor realcasesof RRM. In particular, thesystemcapacityis discussed
in detail,asour modelshows differentbehaviours,alsoundertheeconomicaspect,for
systemscharacterisedby hard or softcapacity, respectively.

The work is organisedasfollows: in Section2 we discussthe basicpropertiesof
utility functionandprice functionandpresentthe theoreticalframework to depictthe
users’satisfaction. In Section3 we presentdifferentkinds of networks anddefinea
simplecasestudyto applyourmodel.In Section4 weshow simulationresultsthatgive
several insightsaboutthe systemsunderexam. Finally in Section5 we concludethe
work.

2 Model for the Behaviour of Network Users

We presenta modeldevelopedfrom the economicconceptof utility function,widely
usedto depicttheQoSperceivedby theusersof a wirelessnetwork. Eventhoughthis
conceptis derivedfrom micro-economics[9], it is oftenadoptedin therecentliterature
[10] to mathematicallydepict the QoSdegreeperceived by the users.Therearesev-
eralpossibilitiesto defineanumericalrepresentationof QoS:oneexampleof suchkind
could be the 5-level mean-opinion-score(MOS) [11], that directly considersthe per-
ceptionof theserviceandnumericallygradestheQoSvia subjective testing.Different
casesof resourceassignmentareconsideredandthegradescanbeeasilytransformed
into a functionby meansof interpolationbetweenthesamples.

Strategiesto derive utility functionsarenot investigatedherein detail. We simply
assumethatautility function�����
	 mapssomequality-relatedparameter� , �������� ,



ontoaninterval of realnumbers,discreteor continuous.Notethat,in thecaseof RRM,� representstheresourceof thenetwork givento theusers,andcouldbeone-or multi-
dimensional.

Sinceutilities map the perceived quality, they are increasingfunctionsof the � -
parameters,i.e., it is assumedthatthegreatertheresourceallocatedto auser, thehigher
its satisfaction.Thisimpliesthefollowing requirementsonthederivativeof thefunction������	 :

d������	
d� � ��� (1)

�������� � d������	
d� ! ��" (2)

Equation(2) is known in economicsas the law of diminishingmarginal utilities.
This reflectsthephenomenonaccordingto which the improvementof theQoSis van-
ishingwhenanalreadyhigh gradeof satisfactionhasbeenreached.That is a realistic
assumptionfor generalcases.

Eventhoughin this work we focuson rateassignment,we developseveralconsid-
erationsthatcaneasilybetranslatedto otherkindsof RRM without lossof generality.
For this reason� will beidentifiedin thefollowing with theassignedrate.Notethatin
thecaseof bandwidthmanagement,technologicallimits do not allow channelassign-
mentslarger thana given threshold,dependingessentiallyon the kind of serviceand
thetypeof terminal.For this reasonin thefollowing wewill use:

��������#� �����
	 ! $ (3)

with constant
$
, that is a strongerconditionthanEq. (2). Equation(3) reflectsthefact

that thereis an upperboundto the perceptionof the QoSfor every kind of service.
Equivalently, this Equationreflectsthehumaninsensitivity to thequality improvement
beyondacertainlimit.

Thereis alsoa maximumvaluefor � , calledin thenext �&%('*) , dueto technological
constraints.Hence,we will considerassignmentof theresourceonly in therange�+����,�-%('*) . It is reasonableto assumethatin practicalcases�&%.'*) suppliesautility close
to
$
. This is equivalentto consideringonly usersableto achievesatisfactoryutilities for

large � . Let theminimumachievableutility:

�0/21 �3��4�6587 /:9 �*;�<>=>? �����
	 (4)

betheutility of not receiving service,i.e., �0/ ! ���@�A	 . In thefollowing we will assume� / ! � . Notethatboththeseconditionscanberelatedto AdmissionControl (AC). In
practice,we areassumingthat the AC is actuallyblocking the userswith low values
of the utility even for � closeto �-%('*) and this decisionis error-free, i.e., thereare
no admissionerrorsthat causecall droppingor degradationof the serviceof already
connectedusers.In thesecasestheutility couldgo below ���@�A	 , beingan interruption
of the servicemoreannoying thana block in admission. However, in this work the
AdmissionControl is limited to theobservationthatusersarenot allocatedbeyondthe
systemcapacityandthat userswhich receive an assignmentof rateequalto � canbe



consideredblocked. In spiteof this,thereis nore-negotiationof alreadyallocatedusers
noraconservative blockingof userswhichcanbeconsideredharmfulfor thesystem.

Moreover, a utility function is often also supposedto have certainpropertiesof
regularity, which usually include continuousdifferentiability, at leastpiece-wise. In
particular, whenthis is verified for every valueof � , we speakof elastic traffic [12].
Note that this propertyappliedto (2) and(3) implies concavity of �����
	 at leastfor �
greaterthanagivenvalue,i.e.:

B �&CED
�GF FH���
	I�J���LKM� � �&C (5)

Theexactbehaviour of theutility dependson thekind of multimediatraffic we are
assigningto theusers.For thesimplestkind of service,e.g.,GSM voice-like calls,it is
commonlyassumedthat thequality degreeof theserviceis on/off, i.e., �����
	 is bound
to have only two values,which meancompletesatisfactionor dissatisfaction for the
user. This is not true whennext-generationserviceslike datatransferor audio/video
streamingaretakeninto account.Theseservicescanbeconsideredelastictraffic, since
the servicesthemselvesallow differentdegreesof perceived quality accordingto the
assignedrate,with a soft degradationfrom the bestpossiblechoiceto the minimum
acceptablequality. Therefore,weconsidercontinuousfunctionsto modeltheutility for
theusers.

Oneof thegoalsof RRM is to achieve a goodusers’welfare,consideredasanag-
gregateof their utilities, subjectto feasibility constraints.In thecaseof rateallocation,
themainconstraintis thelimited capacityof thenetwork. However, it seemsunrealistic
to measureonly the welfarewithout taking into accountthe role of pricing. The first
reasonis that theoperatorwill not provide theserviceif therevenuecomingfrom the
usersis insufficient. Ontheotherhand,theperceptionof theservicefor theusersis not
alwaysthesameif thepriceis changed:in practice,usersaresatisfiedwith theservice
if bothqualityandpricepaidareconsideredacceptable.

We proposeto take this effect into accountby definingan acceptanceprobability
for every userthat requestsservice. Note that this conceptwasnot strictly necessary
for theGSM-like services,in which theQoScanbeassumedequalfor eachadmitted
usersandthe price fixed a priori (so that the QoSmetricsareusuallyassumedto be
theprobabilityof not achieving thedesiredSignal-to-InterferenceRatioor having the
connectionrefusedby theAdmissionController).

Wecanmathematicallymodelit byconsideringautility function�����
	 , aspreviously
defined,to representtheQoS.The pricecouldalsobe representedby a function NG���
	
(in general,dependentof the rate). The price function is in several aspectssimilar to
theutility, for example,it is reasonableto requireaconditionlikeEquation(2), i.e.:

dNG���
	
d� � �O" (6)

However, thepriceis in generalnotupper-limited.
Let usassignto eachuseranacceptanceprobability PQ���I�HNG	 , for which we empha-

sisethedependenceon theQoS(throughtheutility � ) andthepaidprice N . In fact,this
probability hasto increasefor increasingutility anddecreasingprice. In moredetail



PQ���I�HNG	 shouldsatisfy: R
PR � � ��

R
PR N �S� (7)

KMNUTJ��� �����VW� / PX���I�YNG	 ! �O� �����VW�#� PX���I�HNG	 ! Z (8)

KM�[T\��� �����]�� / PQ���I�HN
	 ! Z � �����]��#� PX���I�HNG	 ! � (9)

wherethesecondpartof relationship(8) shouldbeintendedasmoredueto theduality
betweenutility andprice, thanasin a practicalsense,becausean infinite utility is not
reachable,seeEq.(3). Thevaluesof PX�@�M���^	 and PX�>�S�_�\	 canbearbitrarilychosenin` �a� Zcb , astheformeris theacceptanceprobabilityof ablockeduser(thatis notadmitted,
regardlessof its value of P ), whereasthe latter representsa casethat never occurs
in practicalsystems,due to limited utility. A choicethat can assurethe validity of
conditions(8) and(9) is: PQ���I�HN
	G1 Z(dJegfahji V-k i ]cl0m (10)

with nO�&oj�
pq� beingappropriatepositiveconstants.
Thechoiceof thisparticularfunctionis relatedto theCobb-Douglasdemandcurves

[9], that arewidely usedin economics.If we considera high numberof usersin the
system,eachof themwith a very low probabilityto have accessto thesystem( n close
to � ), it is thentruethat P tendsto thedemandfor theaccess,i.e.,

PX��NG	Irts8��NG	vu�N faw for given � ,PX����	Irts8����	Iu,�
x for given N .
However, theconclusionsweobtainarequitegeneralanddonotdependon thispartic-
ular choice,they arevalid for every functionthatsatisfiesEqs.(7)–(9).

With theprobability P wecanmodelthebehaviourof usersin acentralisedresource
assignmentschemein which the only choiceleft to the usersis whetherthey want to
accepttheserviceor not. Therevenueis determinedas:

y !
z
{}|�~ N { PX��� { �YN { 	Y� (11)

wheretheusersareconsideredto benumberedfrom 1 to � andtheir relativeutility and
priceto be � { andN { respectively.

If thesystemis centralisedandthegoalof theprovider is therevenuemaximisation,
wecanformulatethis taskasanoptimisationproblem:�3�:� y

s.t. capacityconstraints

Theconstraintscanbedefineddifferently, accordingto thecharacterisationof the
systemcapacity. Basically, in the following we will studyandcomparethe casesof
hard or softcapacity, thatapplyto TDMA- (or FDMA-) like andCDMA-lik e systems,
respectively. However, for both situationsthe maximisationof the revenuein a con-
strainedcasedependson the users’demand. In caseof high demand,accordingto



optimisationtheory, themaximumfor therevenueis obtainedon theedgeof thecon-
straint. In this case,thereare differencesbetweenthe optimal solutions,due to the
differentkindsof constraint.For thesake of simplicity, we will studythesebehaviours
by meansof simulationsin thefollowing Section.

3 Strategies of Rate Allocation and pricing

We considera centralisedandgreedyrateassignmentstrategy, in which the resource
managerknows therelation�+��� { ���
	 for everyuser� . By exploiting this information,
theprovider triesto chooseavaluefor therate� thatmightsatisfytheuser, beingat the
sametimerespectfulof thelimited amountof bandwidththatcanbeallocated.This last
constraintdependson thekind of capacity, i.e. hardor soft, in thesystemunderexam.
After rateassignment,theusercandecidewhetheror not to accepttheassignedvalue,
accordingto theacceptanceprobabilitypreviouslydefined.

In moredetail, the utilities aremodelledassigmoidcurves, sincethey arewell-
known functionsoftenusedto describeQoSperception[4] [12]. We considerthe fol-
lowing analyticexpressionfor thesecurves:

�����
	G1 ���0�:��	��Z�� ���0�:��	 � � (12)

where � ��� and ��T�� aretunableparameter, accordingto which differentusers’
utilities aredifferentiated.It is alsoassumedthat the utilities arenormalisedto their
upperlimit, i.e., the asymptoticvalue of �����
	 for large � (indicatedin Eq. (3) as

$
)

is taken to be equalto
Z
. This is only donefor the sake of simplicity, in othermore

complicatedscenariosalsodifferentmaximumutilities canbeconsidered.
Weconsiderarateallocationstrategy basedonthederivativeof theutility. Therole

of � F ���
	 is to describethe subjective perceptionof changesin the rateassignment.If� F { ���
	 is closeto � for � � �:/ , thereis no point in giving moreresourcethan�:/ to user� . The improvementsdueto increasingthe resourcesbeyond ��/ canbe consideredas
negligible.

Theevaluationof thepoint ��/ afterwhich theincrementalutility canbeconsidered
closeto zerois still a degreeof freedomfor theprovider, andthereis a trade-off in its
choice.For this reasonwemodeltherateassignmentperformedby thegreedyprovider
in the following way: a thresholdvalue ��T�� is determineda priori by theprovider,
andtherateassignmentproposedto eachuser� , � { , startsfrom:

� { /�1 �3�:� � � �^��� � �+� b �a�H�&%('*) b D��0F{ ���
	 � �j�:	8" (13)

Note that the threshold� numericallytranslatesthe generalbandwidthmanagement
strategy into asingleparameter.

Thesigmoid-shapeof theutilities impliesthat thegreaterthevalueof � , thelower
the initial rate � { / proposedto user � . That is, thereis a trade-off for the provider in
choosing� . With ����� the provider tries to supply userswith very high utility.
However, dueto limitation in thetotal resource,suchanassignmentmaypreventother
usersfrom enteringthe system,asthereis no bandwidthleft. On the otherhand,too
low rates,obtainedwith high threshold,save capacityfor otherusersbut decreasethe
acceptanceprobability.



Therateassignmentpolicy dependsonthekind of constraintfor theradioresource,
aspreviously discussed.In moredetail, in this paperwe distinguishbetweensystems
characterizedby hard or softcapacity.

In theformercase,userscanbeacceptedaslong astherearechannels(time slots,
or frequencies)available. This situationincludesfor exampleTime or Frequency Di-
vision Multiple Access(TDMA or FDMA). We canstudysucha systemby imposing
a constrainton the sumof the values� { that canbe allocated.Thus,the optimisation
problembecomesfor this case:�3�:� y

s.t.

z
{�|�~ � { �t��"

For the rateallocationproblem, � canbe consideredasthe availablebandwidth.
However, in CDMA systemsthe probability that a new call finds the resourcebusy
is negligible [13]. On the otherhand,suchsystemsare interference-limited,andthe
capacityis consideredto be soft. That is, the hard theoreticallimit to the number
of usersis worthlessconsideredthat thereis anotherconstraint,i.e., new calls should
be blocked when their admissionwould causean excessive degradationfor already
connectedusers.

In this work, we model the capacityof a CDMA-lik e systemby consideringthe
feasibilityof therateassignmentin aninterference-limitedsystem.Wetranslatetherate
to signal-to-interferenceratio (SIR) by meansof the well-known Shannon’s capacity
formula: �a� 9 { ! � �*�� q¡ d\Z � (14)
where

�a� 9 { is thetargetSIR for user� . Theratevalues� { aredeterminedfor oneuserat
a time,by assumingthattheallocationfor user� happensafterevery user¢ , Z �S¢�J�
hasbeenconsidered.For eachuser� , therateis initialisedto thevalue � { / determined
by Eq. (13). If the setof the target SIRsfor all usersis feasible,this rateassignment
is kept. Else,the new user’s target SIR is decreasedin stepsof

Z
dB, until the system

is feasible.Notethat therateassignmentsfor alreadyallocatedusersarenot changed.
Finally, the rate � { correspondingto theSIR accordingto Eq. (14) is assignedto user� . Note that both utility ����� { 	 and price NG��� { 	 are functionsof � { ; thus, the service
acceptanceprobability, expressedby PX���I�YNG	 , is affectedby thechangesin � { .

For whatconcernspricing, oneshouldobserve thatpricing strategiesincludea lot
of differentproposals[14] [15] andit is not clearwhetherall of themcanbe consid-
eredrealistic. Anyway, thebasicpropertyof a realisticpricing policy is a conceptual
simplicity, thatallows understandingandappreciationby theusers.

In this work we discusstwo differentpolicies: a flat price strategy anda simple
usage-basedpricing wheretheprice NG���
	 is linearly relatedto � , i.e., NG���
	 ! £ � , with
a givenconstant

£
. In particular, in thecaseof flat price,Eq. (11) canberewritten by

replacingN { with a constantN . Theeffect of pricing is not neglected,asthevalueof N ,
defineda priori, canbesubjectto change.For linearpricing instead,N { canbeseenasNG��� { 	 , sothatdifferentpricesareexperiencedby differentlyservedusers.Thesimplicity
of thesetwo policiesimpliestheir probablepresencein next generationnetworks,even
thougha morecomplicatedpricing schememayturn out to bebetterfor boththeusers
andtheprovider. However, themodelcanbeappliedto everyfixedpricing relationship
known by theusersapriori.



Parameter(symbol) value
numberof cells 19
bandwidth( ¤ ) 20 rateunits

maxassignablerate(¥:¦�§�¨ ) 8 rateunits
cell radius(© ) 500m

gainat1 m (ª ) «(¬_ dB
Hatapathlossexponent(® ) ¯6°²±
shadowing parameter(³ )  dB

log-normalcorrelationdownlink ´M°µ±
log-normalcorrelationdistance ¬_± m

meanSNRatcell border ¬>´ dB
utility parameter¶ ¬j·E¬>´
utility parameter¸ ´M°²¬j·3¹M°µ¬

acceptanceprob. parameterº ´M° ´M±
acceptanceprob. parameter» ¬
acceptanceprob. parameter¼ ¹

Table1: List of Parametersof SimulationScenario

4 Results

Let usconsiderrateassignmentin aCDMA-lik esystem,andcomparetheperformance
of the two studiedpricing policies. Table 1 shows the parametersof the simulation
scenario.In particular, notethat the usersareuniformly distributedin a cellular area
with hexagonalcells,thatare“wrappedaround”sothatnobordereffect is introduced.

Thefirst setof resultspresentedinvestigatehow thepriceaffectstherevenue.Fig-
ures1(a)and2(a)show thebehaviour of theflat pricestrategy, whereasin Figures1(b)
and2(b) therevenuefor theusage-basedpricing is plotted.In bothcases,120and180
usershave beenconsidered,respectively. It is emphasisedthatthereis a pricing choice
which maximisestherevenue,asdiscussedin Section2. Thus,thepricevariationsad-
just therevenueby meansof theusers’reactiondepictedin our modelby a changein
theacceptanceprobability.

Thereis alsoadependenceontheproviderchoicesin assigningthebandwidthto the
users.In fact,it shouldbenotedthat,besidestheprice,alsothethresholdvalueaffects
the revenue:both themaximisingpriceandthemaximumachievablerevenuechange
if the operatoradoptsa differentthreshold� . The valueof the thresholdrepresentsa
measureof the QoSgiven to the users: in general����� { 	 increasesfor decreasing� ,
eventhoughdifferentusersexperiencedifferentqualities.Hence,thepriceandtherate
allocationstrategy shouldbecarefullyplanned,possiblywith a joint analysis.

Figure1(b) seemsto suggestthat,whenthepriceis low, theusage-basedpricing is
lesssensitive to therateallocationparameter. In fact,a low N encouragestheusersto
enterthe system,so that the whole capacityis allocated.Thus,the revenueincreases
proportionallyto

£
. However, notethatthemaximaof thecurves,thataretheinteresting

pointsfor theprovider, areplaceddifferentlyfor different� . Thismeansthattheeffect
of thelow priceis to attractusersinto thesystem,with noor smallconsiderationabout
the intrinsic QoS.With higherprice,alsothegradeof servicebecomesimportant,and
thehighestvalueof therevenueis determinedby bothacceptablepriceandsuitablerate
assignment.
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Figure1: Provider revenuefor 120users
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Figure2: Provider revenuefor 180users

Figures3–4show, for flat andusage-basedprice,thefractionof usersadmittedinto
the system. In general,the higher the price, the lower the numberof the usersthat
accepttheservice.Thetrade-off in thechoiceof theutility thattheprovider assignsto
eachuser(capturedin theRRM with thethresholdvalue� ) implies,however, different
behaviours for different thresholds,even for a flat price strategy. For a low price the
numberof admittedusersis constantandcorrespondsto a saturationof thebandwidth,
sothatsomeuserscannot beadmitted.In this case,thelower thethreshold,thefewer
the users. A low � generallymeansa high assignedrate. Therefore,few usersare
admittedin this case,whereashighervaluesof � allow the admissionof moreusers,
thoughwith lower quality. In Figures3(a) and 4(a) this phenomenonis reversedat
high price, i.e., therearemoreusersfor low valuesof � . This happensbecausethe
decreasein the numberof usersis moreconsistentfor thresholdvaluesthat assigna
poorerquality to theusers.This doesnot occurin theusage-basedpricestrategy since
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Figure3: Admissionrate,120users
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Figure4: Admissionrate,180users

the price for low quality usersis still lower. Finally, notethat the maximumrevenue
is obtainedapproximatelyon the edgeof saturationof the capacity, i.e., wherethe
numberof usersstartsto decrease.In this point, theeffect of thedecreasein admitted
usersovercomestherevenueincreasedueto higherprice.

A similar behaviour canbe observed in Figure5, wherethe total assignedrate is
representedfor 120 users(the curves for 180 usersarealmostthe same). However,
whereasthe fraction of admittedusershasa monotonicbehaviour asa function of �
for low price, the assignedratesaresorteddifferently. In particular, whenthe load is
low, thereis a moresuitablevalueof � (in thesimulations,

Z " Ä ) thatallocatesa higher
rate. For higherload thebehaviour of differentthresholdsis approximatelythesame,
eventhough� ! Å is thebestchoice.This meansthattheallocationof a total datarate
closeto theavailablebandwidthdependson thetrade-off betweenthedemandandthe
QoSassignedto theusers(mappedby theparameter� ). Thus,thegeneralchoiceof the
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allocatedQoSis not trivial andcanheavily affect thebandwidthdimensioning.
Finally, a comparisoncanbe donebetweenthe TDMA-lik e andCDMA-lik e sys-

tems,i.e., betweensystemwith hardor soft capacityrespectively. In Figure6 we rep-
resentthe applicationof usage-basedpolicy to a CDMA network besidesa network
characterisedby hardcapacity(TDMA-lik e)with correspondingparameters.

First of all, it canbeobserved(Fig. 6(a))thatthepeakperformanceof theCDMA-
like network in termsof achievablerevenueis higher. However, in generaltheperfor-
manceissimilar. A moreinterestingphenomenoncanbeobservedin Figure6(b),where
it is shown thatthe“knee” presentalsoin Figure3(b) is not presentin theTDMA-lik e
network. This impliesthata greedystrategy is not perfectlysuitablefor a soft capacity
network. In fact,usersthatcanbeconsideredinefficient for thestability of thesystem
shouldbe refused.An interestingconclusionthat canbe drawn from thesecurves is
thata higherpricing canevenbeuseful,sinceit allows a betterselectionof theadmit-
tedusers,increasingalsotheadmissionrate(thatseemscounter-intuitive).

5 Conclusions

It is not trivial to determinethebestusageof thenetwork for theprovider, that is the
maximisationof the profit. The users’responseto both radio resourcemanagement
and pricing hasto be taken into accountfor its influenceon the revenue. Thus, we
introducedthe Acceptance-probability model,which considersthe joint effect of user
utility andprice. In this way it is possibleto includeeconomicconsiderationsin the
studyof communicationssystems.

In this work themodelwasappliedto comparedifferentpricing strategiesandsys-
temscharacterisedby differentkinds of capacity(TDMA- or CDMA-lik e). The be-
haviour of theRRM is differentwheneconomicparameterslike pricing strategiesand
userdemandare taken into account. Thus, to efficiently control the performanceof
thesystem,theselectionandtuningof RRM andpricing policiesshouldbeaddressed
jointly. From the point-of-view of a provider, this implies that the RRM cannot be
solvedasa separateproblem.Rather, thedesignof anappropriateresourceallocation
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strategy needsseveraleconomicvaluesasinput parameters,like priceandutility elas-
ticity of theusers,andalsotheshapeof theutility functions.Eventhougheconometric
insightsto evaluatethesequantitiesarenot socommonlyandeasilyfound,they could
be very useful. On the other hand,note that the proposedframework is completely
general,so that it canbe appliedto differentspecificationsof utility andpricing rela-
tionships.

A generaltrade-off is identifiedbetweenquality andprice: userswill not accepta
highquality if they think it is tooexpensive. In fact,over-assignmentcanbeconsidered
wasteful:it hardlyimprovestherevenue,but markedly deterioratestheadmissionrate.
Theappropriatesetupof thepricingstrategy is key to haveasatisfactoryrevenuefor the
provider. Toohighpricesdrivecustomersaway (in thelong run, likely to competitors),
with low or no revenueasa result.Too low pricescaneasilybeaffordedby theusers,
but alsoyield very little revenue. Pricevariationsalsoaffect the expectednumberof
usersin thesystem;hence,they have to beconsideredin systemdimensioning.

To sumup, theproposedmodelallows usefulinsightsto begainedabouttheRRM
strategy. Theeconomicaspectsof RRM shouldnotbeneglected,for they notonly affect
performance,but alsorequireseveralstrategic choicesto bemade.It is imperative for
the provider to take into accounttheseaspects;thus,our modelcanbe usefulto gain
understandingof themandimprove theRRM in realsystems.
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