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ABSTRACT
In this paper we discuss utility functions models to study Radio
Resource Management. Our goal is to identify the characteris-
tics of the wireless systems which make such theoretical models,
though challenging, very useful, as they allow to quantify the Qual-
ity of Service and to analytically investigate the users’ satisfaction.
Moreover, we show how, within a utility-based framework, it is
possible to also study economic issues, besides more conventional
technical aspects such as throughput or system capacity. Thus,
when economics are taken into account by considering the finan-
cial needs of the provider and the users’ reaction to prices, we are
able to study wireless systems in a more realistic and appropriate
way. Another key contribution of this paper is a discussion on how
utility functions should be applied to the particular case of the ra-
dio resource. To this end, we extend classic economic concepts
with an original proposal, better able to model the nature of the
wireless services. Finally, by giving both analytical insight and
numerical results, we compare different classes of RRM strategies
and explore the relationships between Radio Resource Allocation,
pricing, provider’s revenue, network capacity and users’ satisfac-
tion.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: network communica-
tions, wireless communication; I.6.5 [Model Development]: mod-
eling methodologies

General Terms
Management, Performance, Economics

Keywords
Rate allocation, Utility functions, Service Guarantees

1. INTRODUCTION
The evolution of wireless communication systems is very rapid

and more and more services are offered through the wireless medium.
This implies an increasing importance of the Radio Resource Man-
agement (RRM), which must consider not only technical efficiency
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but also whether different constraints given by users’ preferences
are met. This and other economic aspects (like the provider’s in-
come, which makes the business model sustainable) can have a
heavy impact on the entire system. In particular, this is a strong
point when elastic traffic [1,2] is considered, i.e., the system allows
a tunable allocation, with possibly different degrees of service.

In the recent literature, several researchers have proposed to in-
troduce utility-based RRM to take into account these facts [3–6].
The approach consists in defining utility functions to represent the
service appreciation of the users, depending on the amount of al-
located resource, which is an effective way to mathematically rep-
resent the Quality of Service (QoS) provided. In this way, in fact,
one can both control the QoS requirements of every user and also
evaluate the overall network welfare, defined as an aggregate of the
utilities (e.g., the sum, if they are considered to be additive).

The introduction of utility functions offers an analytical tool to
represent the relationship between users and services. However, it
is arguable that such a connection can be realistic if the pricing is-
sues is neglected. Since the services do not come for free, users
would also likely prefer to have a cheap service. Hence, we need
to include into the model the trade-off between offered QoS (seen
through utilities) and price paid. In the present paper we will re-
fer to the MEDUSA (Micro-economic Elastic Decentralized Users’
Service Acceptance) model proposed in [7], even though the con-
clusions are quite general, i.e., other models can be used as well.
The only thing which is requested by the study presented here is to
represent in some way the choices of each user according to both
utility and price in a reasonable manner (i.e., users always prefer
higher utility and lower price). In particular, the MEDUSA model
introduces a satisfaction probability for each user, and allows the
evaluation of every performance metric for the satisfied users only.

In this paper we present the following novel contributions: we
expand the previously defined model to gain theoretical insight
about the RRM in the case of dynamic resource assignment. We
propose in particular to introduce what we call backward utility
functions, which effectively represent service degradation. As is
well known, service degradation for ongoing connections might be
very annoying, thus it may penalize the perceived QoS. Under this
framework, we analyze the goals of achieving both satisfactory rev-
enue for the provider and welfare for the users, implying that a
trade-off has to be cut between offered QoS and pricing.

Moreover, we consider two possible approaches to utility-based
RRM, which are a reservation scheme in which the initial allocation
is kept constant (which leads to no degradation, but potentially re-
fuses many connection) and a best effort strategy where the alloca-
tion is adapted dynamically according to incoming requests of the
users. We show how this latter policy depends on the degradation
of the utilities when the allocated resource is changed. Then, an an-



alytical model is proposed to take into account the degradation of
the utilities due to decreased assignment. Finally, the performance
of the resulting allocation schemes is discussed and compared by
means of an extensive simulation campaign.

The paper is organized as follows: in Section 2 we introduce the
model used to represent the allocation of the radio resource and the
users’ appreciation of their assignment. In Section 3 we discuss
how to extend this model, defined in a static manner, to take into
account also rate degradations. This will result in the original pro-
posal of backward utilities, i.e., a hysteresis effect to account for
degradations in the assignment. Then, Section 4 theoretically dis-
cusses and compares the possible strategies to allocate resources,
whereas Section 5 presents the results applied to a given simulation
scenario. Finally, in Section 6 the conclusions are drawn.

2. THE MEDUSA MODEL
We give here a short summary of the MEDUSA model, whose

basic idea is to quantify the level of satisfaction for each of the
N users, which depends on both the perceived QoS and the price
paid. Thus, for each user i, an Acceptance value Ai ∈ [0, 1] is
defined, that depends on the utility ui and on the paid price pi.
This is a mathematical evaluation of the degree of satisfaction for
the ith user, which can be used in an analytical investigation, by
assuming the following statistical meaning: every user has a prob-
ability of reaching satisfaction equal to Ai. Only the resource al-
located to satisfied users is efficiently used. In the following, we
will assume that allocation to unsatisfied users is wasted, since, for
example, they leave the service. This impacts on every metric re-
lated to resource allocation, like throughput and revenue earned by
the provider, which must be evaluated by considering only users
accepting the service.

Several expressions are possible to define a sensible acceptance
function. In [7] the following was proposed:

A(ui, pi) , 1 − e−k·(ui/ψ)µ·(pi/φ)−ε , (1)

where k, µ, ε, ψ, φ are appropriate positive constants. The expo-
nents µ and ε regulate the sensitivity to utility and price, respec-
tively, whereas ψ, φ and k are merely normalization constants (a
reference utility, a reference price, and the opposite of the loga-
rithm of a reference value for A, respectively). Note that both ui
and pi depend on the allocated resource ri. Thus, the shape of the
acceptance probability as a function of ri depends on the functions
ui = u(ri) and pi = p(ri). The MEDUSA model can be exploited
to study different aspects of the Radio Resource Management. In
particular we focus on rate assignment for CDMA–like networks.
For the sake of simplicity, let us identify ri with the transmission
rate of terminal i considered on average, i.e., channel variations due
to fading are neglected. Several statistical average metrics coming
from each user allocated with rate ri, which implies utility ui and
price pi, can be evaluated directly and simply. For example, the
revenue R earned by the provider, the number S of admitted users,
the amount T of allocated resource and the total utility U for ad-
mitted users can be computed as:

R =
N

X

i=1

piA(ui, pi) , (2)

S =
N

X

i=1

A(ui, pi) , (3)

T =

N
X

i=1

riA(ui, pi) , (4)

U =
N

X

i=1

uiA(ui, pi) , (5)

respectively. In this sense, we can choose different alternative goals
for the RRM, like the maximization of the total revenue which leads
to different conclusions than the welfare maximization, as shown
in [6]. Within this framework, it is also possible to jointly evaluate
several metrics of interest: for example, it can be assumed that the
short-term goal of the provider is to improve the revenue earned
from the RRM, whereas in the long run it is desirable to improve
the social welfare, i.e., the total utility coming from the assignment.
This also represents a possibility of supplying a better service, be-
ing the same resource better utilized. From a general point of view,
all these metrics concur to the objective of an efficient RRM, seen
from either the customer’s or the provider’s perspective (or both).
In fact, these two goals of satisfying the provider and the customers
are not independent: the higher the users’ satisfaction, the more the
allocated resource, and hence the higher the potential revenue. On
the other hand, pricing and allocation strategies of the provider de-
termine the behavior of the users. We might exploit the simplicity
of a direct evaluation of the four previously defined metrics, which
allows to test the performance of RRM by means of simulation.

Consider the goal of maximizing the revenue by referring to
Equation (2) 1. The following intuitive property is implicitly rep-
resented: too high prices drive customers away (Ai decreases) and
yield very little revenue, whereas too low prices can easily be af-
forded by all users, but also with low revenue as a result. This can
be formalized by stating the existence of an optimal pricing policy,
i.e., an expression for pi(·), which is the one that corresponds to
the maximum revenue. Note however that, when the resource to
allocate is scarce, as is usually assumed, this optimal pricing is also
achieved when the capacity is fully utilized.

In general a purely analytical investigation of the problem is
hard. Moreover, if done under the assumption of having pi’s as
general as possible it will result in an unrealistic model, since pi(·)
is reasonably the same at least within the same service class, and
in general similar for all users. Note that technological constraints
impose that ri is between 0 and a maximum value rmax, assumed
for the sake of simplicity equal for all terminals, which depends
on the considered technology. We will also consider additional
assumptions for the utility and pricing functions. Note that these
choices are only for the sake of analytical convenience, but other
assumptions can be used as well (provided that the basic properties
previously discussed are satisfied).

To model the utilities, we employ sigmoid curves, which are
well-known functions often used to describe QoS perception [5].
The following expression will be employed to represent these curves:

u(r) , ψ
(r/xs)

ζ

1 + (r/xs)ζ
. (6)

The parameters ζ ≥ 2 and xs > 0 tune the utilities, so that they
might be different for every user. Note that the value xs is such that
u(xs) = ψ/2. Within simulations, xs and ζ are random variables
for each user. This definition results in having utilities which are
bound in the range [0, ψ]. This aspect will be extended in the next
Section to allow a broader definition of the concept of utility.

For what concerns the pricing schemes, several contributions
[2, 8, 9] have shown that the tariff setup has the double role of
achieving revenue and coordinating users. In this work we want
to discuss a pricing function defined a priori, which is applied in
the same manner for every user. We consider a simple usage-based
linear pricing scheme, i.e., we assume p(r) = ξr with constant
ξ. In fact, a realistic pricing function is also often required to be

1Similar conclusions, not discussed here for lack of space, can be
derived from Equations (3)–(5) for the other metrics.
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Figure 1: Behavior of the acceptance probabilityA(ui, pi) as a
function of r for price p(ri) = ξri and sigmoid utility

simple, as users usually do not like to deal with complicated tariff
plans. The linear pricing policy, i.e., each user pays proportionally
to the allocated resource, is easily understandable and hence suit-
able for our purposes. However, other data-transfer services tariff
considering the amount of downloaded data can be used [10, 11].

Figure 1 presents an example of a possible resulting acceptance
probability curve, by integrating Equations (1), (6) and the linear
pricing, which presents many similarities with the utilities involv-
ing battery life and perceived error probability presented in [4], for
which several theoretical results have been derived. These results
are not discussed here in detail; however, they only rely on simple
regularity properties for ui(·) and pi(·), e.g., being quasi-concave
non decreasing functions 2.

Prior to starting this analysis, we also need a general framework
for the RRM scheme which determines the resource allocation in
a tunable way. We assume that users arrive at separate instants.
After each arrival, the resource manager tries to allocate the new
user, say user i, by giving an assignment ri. Since the resource
manager can not exactly predict the requests of the upcoming users
in the queue, we might think that it adopts a greedy strategy fixed
a priori, for example the one described as follows (this reasoning
is applicable however to any other conceptually equivalent strat-
egy). We consider a rate allocation strategy based on the deriva-
tive of the utility In fact, u′(r) describes the subjective perception
of changes in the rate assignment. We assume that the provider
performs a greedy-algorithm allocation by determining a priori a
threshold value ϑ > 0, which numerically summarizes the general
bandwidth management strategy into a single parameter. The initial
rate assignment for user i, called ri0, is:

ri0 , max({0} ∪ {r ∈]0, rmax] : u′
i(r) ≥ ϑ}) . (7)

Due to the saturation of the utility functions, the greater the value of
ϑ, the lower the initial rate ri0 proposed to user i. This implies that
ϑ → 0 means, roughly speaking, very high utility supply, whereas
higher values of threshold imply the allocation of lower rates.

This allocation rule is however not independent of feasibility
constraints. We must in fact take into account the soft capacity
of a CDMA system [12], which means to consider the feasibility
of the rate assignment in an interference-limited system. This can
be done in many ways. In the present paper we simply translate
the rate to signal-to-interference ratio (SIR) by means of the well-
known Shannon’s capacity formula:

γt,i = 2ri/W − 1 , (8)

2Usually, technological constraints also impose additional proper-
ties, like upper-limits for the utilities, which simplify the problem
even further.

where γt,i is the target SIR for user i. In this way it is possible to
check if the initial value ri0 determined for the ith user by Equa-
tion (7) is feasible if considered together with the values assigned
to the previously allocated i − 1 users. If the set of the target SIRs
for all users is feasible, this rate assignment is kept. Else, a decision
has to be taken, according to the different RRM policies as will be
shown in next Section. Note that in every case we will come up
with an assignment r which is iteratively updated. At each step
however, we must use the MEDUSA framework to determine if
users are satisfied with their assignment or leave the service. Since
the allocation can be dynamically changed, also this decision can
change during time, and this will be addressed in the next Section.

3. ELASTIC TRAFFIC AND BACKWARD
UTILITIES

In the previous evaluations, the focus is on user i, which is the
one currently under admission. To have a realistic analysis how-
ever, we should consider that in interference-limited systems ev-
ery new admission may decrease the quality of already connected
users [12]. Hence a new admission can be damaging, if previously
admitted users have decreased resource assignments or more likely
if they refuse the degradation in the QoS due to the new admission.

In more detail, different approaches are possible to deal with traf-
fic elasticity. For example, we could exploit the possibility of tun-
ing the assigned rate only once, i.e., when the user is allocated for
the first time. In this way, the allocation is tunable but static. Else,
it is possible to consider a dynamic soft tuning of the offered QoS,
which can be exploited to improve the efficiency of the assignment,
even during connection. In this case, we need also to see how users
react to variations in the QoS, which can occur when their assign-
ment is reduced. This is not the only possibility of experiencing
a degradation: if a new user is admitted, the QoS might be de-
creased even for the users whose rates are not explicitly reduced. In
this case, the degradation is rather due to the interference increase,
which might cause the infeasibility of the SIR requirements.

We want therefore to extend the MEDUSA model to describe the
reaction to a dynamic assignment, i.e., to consider variations from
the initial assignment. The framework outlined previously is fully
satisfactory in the case of a conservative approach which does not
perturb the allocation of already admitted users. Hence, already ad-
mitted users are untouched until the end of their transmission and
there is no allocation dynamics to account for. However, since re-
source is scarce, after a certain number of admissions a new one
will be infeasible. This impossibility of admitting a new user i can
be seen as related to the infeasibility of the vector of the transmitted
powers. Hence, if the traffic were inelastic we would have to block
every new user. Since we are instead considering elastic traffic, it
is possible to adjust the transmission rates, and we can exploit this
property to try to increase the number of admitted users. By consid-
ering the framework of Section 2, we have two basic choices: the
first one is to try an assignment lower than ri only for user i. In this
way, the already established connections enjoy the same quality.
Hence, in this case there is a slight QoS guarantee, of course sub-
ject to the condition of finding available resource. From a greedy
point-of-view, the provider might however be interested in trying to
“squeeze” as many users as possible into the systems, to ultimately
increase the revenue. Such an analysis might be seen also from
the perspective of Congestion Control, that means adaptive RRM
under Rate Control to improve the allocation and allow correct net-
work operability, as discussed in Chapter 9 of [13]. This adaptation
is possible only if the assignment is not fixed for the whole connec-
tion, but might be changed, which requires to take into account the
users’ reaction to assignment variations.



As a first step, consider an extension of the Acceptance prob-
ability according to the definition of conditional probability [14].
Assume what follows: if two assignments r(0) and r(1) are char-
acterized by a value of Acceptance probability equal to A(0) and
A(1), respectively, we define a conditional Acceptance probability
of accepting r(1) given that r(0) was acceptable, called A(1|0) and
equal to:

A(1|0) =

(

A(1)/A(0) A(1) ≤ A(0)

1 A(1) > A(0) (9)

This Equation only exploits the concept of conditional probabil-
ity users with the implicit assumption that users will never refuse
quality improvement captured by higher A(u, p), hence it offers a
good model to analyze assignment variations made a priori. How-
ever, for the purpose of considering dynamic variations of the QoS,
Equation (9) is inappropriate. That is, it is unable to describe rate
control performed during the connection, where the impact of rate
modification can be heavier. On the one hand, where the QoS is
increased, it is obvious that none of the users already in the system
will be disappointed. Thus, the conditional probability of accept-
ing the variation is always 1, so we keep this part of Equation (9)
unchanged. On the other hand, Equation (9) says that the prob-
ability of leaving the service because of a service degradation is
proportional to the degradation amount. However, real services are
heavily affected by QoS decreases during an ongoing connection
and it is likely that the correct relationship is more than propor-
tional to the degradation amount. In other words, if the value of r
is decreased during service supply, this will make the service even
less valuable, so that the utility and the probability of accepting the
decrease must be even lower. Thus, Equation (9) should consider
a lower value of A(1|0) when degradations occur dynamically, i.e.,
when the service is already started. Of course a detailed scheme
would consider the duration of the interval in which the service
evaluation has been equal to A(0), and take into account that dif-
ferent services behave differently in this respect3. For the sake of
simplicity, we will neglect these differences.

What we will consider is that the utility of an assignment is dif-
ferent if it results from a degradation or it is the same assignment
done at the beginning. In the following we will speak of back-
ward utility, i.e., we have different utility curves, for increasing or
decreasing quality. The initial assignment always increases the re-
source, hence u(r) is the forward utility, which is an increasing
function such that u(0)=0, as discussed in Section 2. On the other
hand, the backward utility can even go below 0. If this happens, the
acceptance probability will be surely 0.

For the sake of simplicity, in the following we model the added
annoyance of the QoS degradation, when it occurs during connec-
tion, with a term included in the utility and depending on a positive
loss parameter called L. Its value can for example be seen as the
relative weight of the two different annoying events of being served
at first with low quality or experiencing degradation to low quality
during an ongoing connection. This is a generalization of the well-
known trade-off between blocking and dropping probability in Ad-
mission Control [15]. If u(r) is the forward utility function we
can define the backward utility as a modified version of the utility,
called υ(r, u, r(0)), as follows:

υ(r, u, r(0)) =

(

u(r) − Lu(0)(u(0) − u(r)) r ≤ r(0)

u(r) r > r(0),
(10)

where u(0) = u(r(0)).
3For example, data transfer sessions are probably kept alive if the
degradation occurs almost at the end. However, for real time data,
like a sport match, such a quality decrease might be very annoying.

When L = 0, the reaction of the users is always the same, re-
gardless of the time in which the service is re-evaluated. Hence,
the a priori evaluation is the same as the real-time evaluation. If
L > 0 we have a fragile QoS, i.e., the utility is lower if the current
assignment results from a degradation. An infinitely fragile QoS
(L = ∞) decreases suddenly to 0 if any degradation occurs, no
matter how small. In this sense, a reasonable range of values for L
is around the maximum utility ψ (which will be confirmed by sim-
ulations in Section 5). Approximately, values of L are meaningful
if between 0 and 2ψ. At this point we also need to slightly modify
the definition of A(u, p) given by Equation (1) by considering the
case in which u(·) is replaced by υ(·), which can assume negative
values. Thus,

A(υ, p) = 0 if υ < 0 , (11)

whereas we use the same definition (and henceforth we still call the
function A) when υ ≥ 0.
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0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rate assignment

ac
ce

pt
an

ce
 p

ro
ba

bi
lit

y

AAA
BBB
CCC

PSfrag replacements

forward utilityu(r)
backward utilityυ(r, u, 2)
backward utilityυ(r, u, 6)

Figure 3: Forward and backward acceptance prob. for L=2ψ.

Figure 2 reports the backward utility for ψ = 1 and L = 2ψ = 2
when the rate r is allocated between 0 and rmax = 8 and the
utility is sigmoid-shaped. The behaviour of such a curve which
vaguely reminds, to some extent, the hysteresis of magnetic mate-
rials. Figure 3 shows instead the behavior of the acceptance value
A(υ, p) with backward assignments from different r(0)’s. Note
that the backward acceptances are always below those in the for-
ward case, i.e., A(υ(r, u, r(0)), p) ≤ A(u(r), p) for every r(0).
It is also true that a decrease of the rate does not always imply a
lower value for A(u, p). In fact, one should remember that when
r decreases the price is in general lower. For example, if the as-
signed rate goes from r(0) = 6 to r(1) = 3, Figure 3 shows that
A(υ(r(1), u, r(0)), p) is still considered an improvement with re-
spect to A(u(0), p). However, this happens only since the assign-
ment r(0) = 6 is not the most preferred by the user. This effect



is mainly due to the fact that the price is decreased, even though
the quality is slightly decreased too (and this latter effect is em-
phasized by having L = 2ψ). Now we have modeled the users’
reaction to dynamic assignment in addition to QoS and pricing per
se, which implies an amplification of QoS degradation. This allows
us to compare different policies of dynamic resource management,
which will be done in the next Section.

4. COMPARISON BETWEEN DYNAMIC
RRM STRATEGIES

Consider a network where users are characterized by backward
utilities when rate degradation occurs. In this scenario, we iden-
tify two main classes [16, 17] of management, characterized by a
different behavior with respect to congestion control and elastic-
ity. The first one is called Guaranteed Performance (GP), since it
assures a reservation of a fixed resource for the whole connection.
Reservations or priorities are widely used in communication net-
works [18]. In particular, a GP approach can neglect the backward
utilities, since the resource assignment is never decreased. Also,
GP management implements only a simplified form of congestion
control, since users are conservatively admitted but the assignment
is static. The second class is a Best Effort (BE) allocation, which
provides no guarantee about possible future variations of the QoS
after admission [1–3].

It is easy to understand that the GP management has the advan-
tage of keeping a constant grade of service, i.e., the satisfaction
level of the connected users is fixed. On the other hand, the main
drawback is that the resource might be wasted, by allocating re-
source to users either with lower utility or lower contribution to
the revenue. The BE management instead provides only partial
QoS guarantees. On average, we might expect that this latter pol-
icy is more effective, since it allows admission to a larger number
of users, though their quality is possibly subject to degradation.

In the following we will compare these two strategies both from
the theoretical point of view and, after having discussed possible
implementations of the Best Effort strategy, by means of simula-
tions using the performance metrics previously defined. From a
naı̈ve point of view, the Best Effort RRM has the advantage of al-
ways allowing improvement of the metrics, at least theoretically.
This would happen since R, S, T and U as defined in Equations
(2)–(5) seem to be non decreasing ifN is increased (i.e., more users
are considered). Indeed, we must consider the loss due to the qual-
ity decrease of already admitted users in case that i is admitted.
This value depends on how the rate of a generic user j already in
the system is decreased to admit user i into the system. Assume
that the resource allocation vector (considered to have i elements)
is r

(0) = (r
(0)
1 , r

(0)
2 , . . . r

(0)
i−1, r

(0)
i = 0) before the admission of

user i and r
(1) = (r

(1)
1 , r

(1)
2 , . . . r

(1)
i−1, r

(1)
i ) afterwards. Hence, it

is possible to write:

S(i,0) =
i−1
X

j=1

A(uj(r
(0)
j ), p(r

(0)
j )) , (12)

S(i,1) =
i−1
X

j=1

A(υj(r
(1)
j , uj , r

(0)
j ), p(r

(0)
j )) +

+A(ui(r
(1)
i ), p(r

(1)
j )) , (13)

which is the total satisfaction (or also the average number of admit-
ted users) before and after the admission of the ith user. The sum
can be made over all users which have requested admission before
i, since if a user j < i has already terminated its call or has refused
the proposed QoS we assume to have r(0)j = r

(1)
j = 0.

Parameter (symbol) value
number of cells 19
bandwidth (W ) 20 rate units

max assignable rate (rmax) 8 rate units
cell radius (d) 500 m

gain at 1 m (A) −28dB
path loss exponent (α) 3.5

shadowing parameter (σ) 8dB
mean SNR at cell border 20dB

Table 1: List of parameters of the simulation scenario

Parameter value
N (number of users) 160

ζ 2 ÷ 20
xs 0.1 ÷ 0.9
k − log 0.9
ψ 1.0
L 1.0
φ 1.0
µ 2.0
ε 4.0

Table 2: List of micro-economic parameters

Similar Equations can be written for the metrics R, T , U . The
evaluation after the admission is done not only by considering the
contribution of the ith user, which is always an improvement, but
also a possible degradation, taken into account by considering the
backward utilities υj instead of uj . Equations (12)–(13) also in-
dicate that the performance of the BE RRM depends on how the
rates are translated from r

(0) to r
(1). However, our investigations

on this matter have shown that this choice only marginally affects
the performance, provided that the degradation of the rate is fair
and relatively small for every user. In the following, we will con-
sider a degradation from r

(0) to r
(1) by decreasing the SIR of con-

nected users with rate larger than 0, whose number is called N , in
steps of 1 dB/N , until the vector of the powers is feasible. Results
produced with other policies are still in agreement with the ones
shown in the following. One might argue that the variation in the
acceptance probability implies that users might completely refuse
the service, considered unsatisfactory due to degradation. Hence,
to have a full description of the model, the resource left by users
who quit from the service could be reassigned to the users who
stay in the system. This study however would imply iterative (and
possibly long) evaluations of these negotiations, hence it is left for
further research. In the sequel, we will always assume that if a user
j accepts the assignment r(0)j but considers the degradation to r(1)j
unacceptable, this resource is left unused by the system, which is a
conservative approach.

Finally, note that this procedure can be iteratively repeated (but
we avoid to give the whole formula, whose notation would be cum-
bersome) for every successive user which can not be feasibly allo-
cated. At this point however, we should consider “backward back-
ward utilities”. That is, assume that also user i + 1 can not be
admitted into the system and we want to represent the degradation
of the service for a user j who has already experienced a degra-
dation from r

(0)
j to r(1)j during admission of user i. In this case,

the backward utility to consider for user j is not represented by
υ(r, u, r

(1)
j ) but by υ(r, υ(0), r

(1)
j ), where υ(0) = υ(0)(r, u, r

(0)
j ).

5. RESULTS
In the following we will present comparative results for GP and

BE RRM, which show the achievable performance by such strate-
gies. We perform simulations in a CDMA system, with N users
placed with uniform spatial distribution over hexagonal cells, which
are wrapped around as usually done to avoid border effects. Table
1 shows the propagation parameters of the simulation scenario and
Table 2 reports the parameters of the MEDUSA model.
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Figure 4: BE management: revenue R for linear price p(r) =
ξr as a function of ξ.
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Figure 5: GP management: revenue R for linear price p(r) =
ξr as a function of ξ.

First of all, the revenue (metric R) is considered in Figures 4–6.
Figure 4 investigates the BE resource management, with different
values of the threshold ϑ. In this case the impact of the users’ re-
action to dynamic allocation has been taken into account by letting
the loss parameter L equal ψ. The same analysis is carried out in
Figure 5, but for the GP strategy. Here, the value of L has no im-
pact on the results, being the allocation for every user untouched
while it is in the system. As can be seen, both strategies exhibit
better performance when ϑ = 2.0 is considered. More in general
the larger the allocation threshold, the higher the revenue. This
means that in the considered scenario it is better to allocate a small
amount of resource per user to a large number of users, rather than
the opposite. However, from other considered scenarios (whose re-
sults are not shown here since this investigation is outside the scope
of the present paper) it emerges that this conclusion can not be gen-
eralized. Hence, in general the optimal threshold setup depends on
many factors, in particular on the number of users in the network.
More interesting is to look at Figure 6, where the performance of
GP and BE RRM is compared (the latter by considering different
values of L). In particular, as will be done in the following for the
other metrics, we evaluate the BE RRM for different values of L
and the GP RRM, which does not depend on L, and we compare
the two approaches for the case ϑ = 1.0 (different values of ϑ
present entirely similar results).
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Figure 6: Revenue R for linear price p(r) = ξr: comparison of
different RRM approaches.

It is emphasized that when no loss occurs, i.e., L = 0, the BE
strategy outperforms GP in terms of revenue. However, the revenue
decreases as L increases. So, the BE RRM is a good choice only
when users are not so sensitive to dynamic quality degradations.

Secondly, we investigate in Figures 7 and 8 the number of ad-
mitted users S as a function of the price, for different values of the
threshold. The two Figures represent the normalized value of S
for the BE and GP strategies, respectively. It is clearly emphasized
that the BE approach outperforms GP in this respect. In particular,
if the price is relatively low, BE can admit a percentage of users
close to 90%, even though the capacity is scarce. For more reason-
able price values, the number of admitted users is anyway larger
for the BE RRM policies than for GP. Hence, the only way to have
an efficient RRM in terms of number of admitted users is to fully
exploit the traffic elasticity by applying rate tunability every time it
is possible. In other words, if having a large number of customers
is included among the provider’s goals, it is very difficult to allo-
cate them in a guaranteed way. These conclusions are summarized
in Figure 9, where the two RRM policies are compared for the case
of ϑ = 1.0. It is shown that this general conclusion is still valid
even if L has a higher value, i.e., when users are very sensitive to
service degradations.

Figure 10 investigates instead the comparison between BE and
GP for the metric T , which represents the amount of allocated re-
source. In this case the detailed curves for the two policies are
not shown, since they are very similar. In fact, what Figure 10
points out is that both strategies are able to allocate almost the same
amount of resource, thus indicating that both strategies are efficient
in not wasting network capacity. This means that both of them are
well designed to allocate as much resource as possible, compatibly
with users’ satisfaction. In particular, when the price is low the BE
approach allocates slightly more resource, and this is reasonable,
as the elasticity of the traffic is better exploited. On the other hand,
as the price increases, GP becomes more appreciated by the users,
which accept to pay high tariffs only if the performance is guaran-
teed. For higher values of L, the amount of resource allocated by
BE RRM is slightly decreased, which means that the performed as-
signment may become less efficient for high sensitivity of the users
to quality degradations.

Finally, the total utility (Figure 11 vs. Figure 12, and comparison
in Figure 13) is higher for the GP strategy, and this is again due to
the absence of guaranteed performance in the BE approach. Note
also that the total utility of the BE strategy increases when L in-
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Figure 7: BE management: admission rate S/N for linear price
p(r) = ξr as a function of ξ.
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Figure 8: GP management: admission rate S/N for linear
price p(r) = ξr as a function of ξ.
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Figure 9: Admission rate S/N for linear price p(r) = ξr: com-
parison of different RRM approaches.
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Figure 10: Allocated resource (Throughput T ) for linear price
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Figure 11: BE management: total utility U for linear price
p(r) = ξr as a function of ξ.

creases, which might appear as counterintuitive. This is due to the
fact that when L is higher, there are also more users pulled out of
the system. The remaining ones are the users with relatively higher
utility. Hence, the higher L, the higher the total utility but also the
lower the number of admitted users S. This can be seen as a more
general consequence of the fact, shown in [6] for a simpler case,
that revenue and total utility in certain cases are contrasting goals.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have explored some capabilities of utility-based

RRM and have presented a model to describe a user-centric man-
agement of rate allocation and highlight pros and cons of different
allocation classes. This theoretical approach is useful from the ana-
lytical point of view to design efficient RRM strategies. As a further
contribution, our work has strengthened the analysis with practical
examples, by investigating in particular the comparison between
two possible allocation strategies, the RRM with Guaranteed Per-
formance (GP) and the totally Best Effort (BE) RRM.

In general, the choice between these two approaches might be
related to choices made a priori by the provider. It is true that the
BE strategy allocates more users, but the quality is poorer and es-
pecially the revenue is lower. In the analyzed scenario, the BE is
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Figure 12: GP management: total utility U for linear price
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Figure 13: Total utility U for linear price p(r) = ξr: compari-
son of different RRM approaches.

penalized by the introduction of the backward utilities. In other
words, when decreasing the allocated resource has a strong nega-
tive effect on users’ satisfaction, it seems that a Guaranteed Perfor-
mance could be the only solution. Otherwise, users may want to
leave the system, and the provider’s revenue is decreased. On the
other hand, if the provider’s goal is mainly to keep its own users
and to also acquire new customers, the GP RRM is clearly inap-
propriate. Thus, none of the two approaches can be the ultimate
solution, rather a trade-off between them could be more suitable.

To cut the trade-off, a possible strategy can be to preventively
admit users with a smarter criterion, which can, with an exact anal-
ysis or even simply by means of heuristic rules, try to forecast the
impact of the admission on the entire system. In this way the phi-
losophy will still be Best Effort, since there is no guarantee on the
achievable QoS, but the performance metrics can be improved, at
least on average. This strategy can lead to developing a Micro-
economic Admission Control, which can be the goal of future re-
search.
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