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Abstract— In this paper we investigate Radio Resource Man-
agement strategies for multimedia networks driven by economic
aspects such as users’ utility and service pricing. To this end, we
discuss a framework in which the impact of both QoS and pric-
ing is accounted for in the users’ acceptance rate of the service.
The model is general enough to be adapted to different situations
and optimization goals. Thus, we discuss possible objectives for
the network management under the constraints of meeting Qual-
ity of Service requirements, by satisfying at the same time tech-
nical conditions of feasibility. We employ utility functions, in or-
der to account for the additional characteristic represented by the
traffic elasticity, and consider the effect of price to have a realistic
characterization of economic quantities. The resulting optimiza-
tion problem is then discussed and analyzed, to derive general in-
sight and identify possibilities for enhancement.

Index Terms— Optimization, Radio Resource Management,
Pricing, Utility Functions, Mathematical programming, Eco-
nomics.

I. INTRODUCTION

The diffusion of Wireless Communication Systems is nowa-
days widespread, especially Wideband Code Division Multiple
Access (WCDMA) systems, which are able to provide users
with different services and data rates. At the same time, this
means huge investments by the network operators and the need
for an efficient management of the radio spectrum, which is a
scarce and expensive resource. There are mainly two points-of-
view from which the efficiency can be regarded: users’ satis-
faction and overall goodness of the network management. The
first point is made challenging by the fact that users of Next
Generation cellular systems are expected to be highly differen-
tiated in terms of access technology and service requirements.
Utility functions can be used in this kind of problem as general
means to describe Quality of Service (QoS) [1–3].

However, a pure description of the problem in terms of user-
centric utilities might be inefficient, since approaches based on
game-theory [4] demonstrate the need for a centralized supervi-
sion by the network operator. This explains why it is necessary
to introduce coordination among the users, and a possibility to
do so is by maximizing a given objective. For example, the
global management can be aimed at maximizing the provider
revenue, in order to have a sustainable business model, or the
number of admitted users, or the total utility coming from the
assignment. These objectives have been proven to be contrast-
ing [2], thus the design choice in this sense is very important.

To have a realistic description of the above metrics, also the
price paid for the service must be taken into account. The re-
lationship between economics and RRM is twofold, since the

pricing and allocation strategies of the provider determine the
behavior of the users. Users without adequate QoS are likely
dissatisfied; however, the users’ feelings also depend on the
price paid for the service. This means that users offered with
exaggerated QoS at a very high price may want to refuse the
service as well. Thus, both single users’ and provider’s satis-
faction levels depend on both allocation and pricing policies.

For this reason, in the present paper we adopt a micro-
economic model for the Radio Resource Management (RRM)
which explicitly takes into account the trade-off between util-
ity and price, called the MEDUSA model [5]. Its key aspect
is that it allows the evaluation of several metrics, which can be
included in the management objective. Within this framework,
we incorporate economic considerations, by integrating pricing
and utility functions. Note also that some recent contributions
[6, 7] deal with pricing, since it can be proven in many differ-
ent ways that charging users for network usage can improve the
efficiency of network management. The contribution we bring
here is different, since we are interested in economic quantities
as possible goals of the optimization, not only as heuristic ways
to improve the RRM.

With the presented model it is possible to analyze from a the-
oretical point-of-view the RRM issue seen as an optimization
problem. Our contributions in the present paper are the follow-
ing: first of all, we propose an optimization framework which
is able to account for different goals of the RRM. Secondly, we
discuss accurate linearizations of the problem and investigate
solutions based on both exact and heuristic algorithms, with
considerations about optimality and complexity. Finally, we ar-
gue possible extensions of the work, which include possibilities
of improving the management at a more global level with the
introduction of further RRM schemes (e.g., utility-aware Ad-
mission Control) where the optimization problem is considered
in different ways.

The rest of the paper is organized as follows: in Section
II we discuss related models of utility-based RRM and opti-
mization framework. Section III presents the micro-economic
model for integrating utility and pricing in the users’ behavior
and discusses the network constraints under which the alloca-
tion is performed. Section IV synthesizes these elements into
the formulation of an optimization problem, which is studied
with several techniques. In particular, we present two methods,
based on Inter Linear Programming (ILP) and Constrain Pro-
gramming (CP), which lead to exact solutions. Due to the in-
trinsic high complexity of exact approaches, a heuristic method
based on genetic algorithm is also introduced. Section V eval-
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uates all the methods in a given scenario, by also bringing a
discussion about comparative results. Section VI concludes the
paper.

II. RELATED WORKS

Many papers, appeared in the literature so far, have dealt with
the problem of exploiting economic theoretical instruments,
like utility functions and virtual pricing, to model RRM and
derive analytical studies. In [1] a utility-based framework is in-
troduced to study the Power Control problem, seen as the max-
imization of a network metric. However, utilities are used in
a different way, since they do not model the offered QoS but
take into account soft capacity constraints, which we address
instead explicitly. Also a cost function is considered, related to
the power consumption and hence not generating revenue.

In [8] a utility-based RRM is also considered, where the util-
ities are instead related to power consumption. In this paper the
pricing issue is also considered, but again differently from here,
since it is a technical instrument introduced at a virtual level to
improve cooperation of the users. This virtual pricing, used
mainly as a way to prevent congestion from arising in the net-
work, is also considered in [6,7,9]. Rather, what we call pricing
here is related to the money exchange between the users and the
provider, which implies for example the need for a definition
made a priori, since the tariff must be known in advance by the
users. Also, this meaning of pricing implies revenue generation
as an outcome for the provider.

Other contributions where the RRM framework is extended
beyond the power control are [3] and [10], where the structure
of the cellular networks is exploited, in the former to sepa-
rate optimality conditions of Power and Rate control, and in
the latter to derive a hierarchical Power/Rate control. In the
present paper, instead, a simplified Power Control is assumed
and we focus mainly on Rate Control, which is the subject also
of [2, 11].

For what concerns the optimization framework applied to
the WCDMA capacity constraint, some relationship with the
present work are present in [12], even though the scope is dif-
ferent, since here we are more interested in applying directly
optimization techniques. Instead, [4] and [13] apply optimiza-
tion techniques to find theoretical conditions by means of dual
problems, but our approach is more practical since our investi-
gation is centered on the WCDMA capacity constraint.

III. RADIO RESOURCE MANAGEMENT WITH UTILITY AND

PRICE

The utility-based approach to RRM assumes for each user
the availability of a non-decreasing, quasi-concave function
to describe the QoS coming from the assignment of different
amounts of resource. This mathematical formulation allows a
number of analytical results to be derived. In this paper we are
interested in considering an extended version of this framework,
in which the competition among users for the resource is made
more interesting since resource does not come for free. Thus,
Subsection III-A will present the framework used to represent
users’ behavior. Additionally, we discuss how to model the

integration of the microeconomic goals with a technical con-
straint given by the network capacity. In this paper we focus
on a single-cell WCDMA network, whose analysis is given in
Subsection III-B.

A. The MEDUSA Model

We refer to the model proposed in [5], which accounts jointly
for two contrasting aspects: utility functions to represent the
QoS perceived by the users, and a pricing function which de-
termines the price paid by the users. It is assumed that both
of them are non-negative non-decreasing functions of the as-
signed resource, and they also concur together in determining
users’ choices. To identify and cut this trade-off, an Accep-
tance value is defined, which depends on the utility ui and on
the paid price pi assigned to each user i, thus we will call this
function Ai(ui, pi). We assume that both ui and pi are func-
tions of the allocated resource ri; thus, Ai depends also on ri.
However, looking at Ai as Ai(ui, pi) allows to better empha-
size the trade-off, since it is easier to represent the properties
of dependence on utility and price that a suitable acceptance
function must have. In fact, it is intuitive that Ai must be an
increasing function of the utility and a decreasing function of
the price.

This model can be applied to the RRM for networks where
the terminal have multi-rate capabilities by identifying ri with
the transmission rate assigned to terminal i. The assumption of
traffic elasticity [3] corresponds to considering ri as continu-
ously tunable.

To model the RRM, we assume that all users adopt similar
criteria to evaluate their service appreciation, hence we use the
same function Ai(·) = A(·) for every user, without the index i.
For fairness reasons, it is also sensible that the users know the
tariff plan a priori, that is, also the pricing pi(·) = p(·) is the
same for all users. Hence, the subscript i will be omitted for the
functions A(·) and p(·), while it will be kept when speaking of
the actual values Ai (or pi) achieved (or paid) by user i, which
may be different for different users.

The utility function is instead assumed to be different for ev-
ery user to account for the variability of services and terminals.
Being a subjective factor, the users’ evaluation of the service
can not be controlled by the resource manager. Instead, it is
mainly impacted by the kind of service enjoyed and the termi-
nal used. Hence, we assume a different ui(·) for every user.
However, the utilities are not completely arbitrary, first of all
because they are usually assumed to behave according to cer-
tain economic properties, like the law of diminishing marginal
utilities, which states that the first derivative of the utility, which
is non-negative, tends to zero for large r. From the perspective
of a RRM utility, this might mean, e.g., that the quality expe-
rienced from radio services can not be indefinitely high, i.e., it
saturates, at least when a maximum amount of achievable re-
source R̄ is reached.

Moreover, in the following we will model the utilities as
parametric functions, so that we are able to tune the utilities
by simply changing their internal parameters. This can also be
regulated so that there is less or more variability of subjective
parameters among the users.
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mi resulting Economic Metric symbol

pi total revenue R

1 # of admitted users S

ri total assigned rate T

ui total utility U

TABLE I
ECONOMIC METRICS OF INTEREST FOR THE RRM

Importantly, note that these specifications about utilities and
pricing do not affect the model that will be developed in the
following, since they simply impact on the goal function of the
optimization problem. Thus, different models for the utilities
or the pricing function, or even for the satisfaction A(·) can be
adopted without affecting the procedure.

To quantify the network performance, we focus on particu-
lar values, called in the sequel Economic Metrics, which are
meaningful only if evaluated on the users accepting the service
conditions. An immediate example is the number of satisfied
users itself. These metrics can be evaluated by giving a statisti-
cal meaning to Ai. The expected value of an Economic Metric
M is in fact:

M =
N−1∑
i=0

miA(ui, pi) , (1)

where mi is the contribution of user i to the Economic Metric
and N is the number of users.

Table I reports some examples of Economic Metrics. The to-
tal utility is sometimes referred to as network welfare, whereas
the total assigned rate can be considered as a measure of the re-
sulting throughput. These quantities can be used as goal func-
tions for an optimization problem. In this way it is possible
to adopt a wide approach, which considers different Economic
Metrics, or even a combination of them. This means that in
general it is possible to support different reasonable choices of
M .

Note that this discussion specifies the first part of the opti-
mization problem, i.e., the goal function. What is still open is
the constraint set, which is the part most specific to the telecom-
munication networks properties. The constraints we have to
consider are related to the network capacity. In other words,
if the goal function is, for example, the revenue R, the opti-
mization is achieved by obtaining the highest possible revenue
provided that the vector of the allocated ri’s is feasible with
the capacity of the network, which can be different according
to the kind of system and also to the direction of the link (up-
link/downlink).

In the next subsection, we will focus on the downlink of a
single-cell WCDMA system (note, however, that the same ra-
tionale also applies to the uplink with few changes). In fact,
it is common to assume the forward link as bottleneck for the
connection in multimedia networks, hence we will assume that
the capacity is limited in this way.

B. WCDMA Capacity Constraint

We focus on the soft-capacity constraint, which assumes the
system to be interference limited, as in WCDMA networks. For

the sake of simplicity, we will refer to the single-cell case only,
even though the reasoning developed in the following can be
adapted easily to a multi-cell case with simple modifications.
In particular, a very common way of approximating the multi-
cell case with a single-cell approach is to consider the inter-cell
interference as fixed, so that it is merged into the thermal noise1.

Modelling the WCDMA soft capacity requires to introduce
auxiliary variables representing the allocated power (let us call
wi the power allocated to the ith user). It is well known [14]
that in Code Division systems the constraints based on the prob-
ability of finding the resource busy are very loose. On the other
hand, users can not be admitted when the already connected
calls would be subject to an excessive degradation in case of a
new admission.

A possible model of this constraint, which follows an ap-
proach commonly used in the literature [12], considers the
Signal-to-Interference Ratio (SIR). For the downlink of a
WCDMA system, the SIR is defined as:

SIRi =
giwi∑N−1

j=0,j �=i ξijgiwj + ηi
(2)

where gk is the power link gain for the kth user, 0 ≤ ξij ≤ 1
is the normalized cross-correlation between i and j at receiver
i and the term ηi is due to background noise. In the following,
we will assume this term as equal to a constant η for all users.

The bit-energy-to-interference ratio is equal to

(
Eb
I0

)
i

=
B
ri
SIRi (3)

where B is the spreading bandwidth. These relationships offer
a matching between data rates and SIR. In fact, if a constant
BER requirement is fixed for all mobiles, i.e., (Eb

I0
) is equal to

a constant Z for all users and rates, a target for the SIR, called
γ, can be defined for every value of rate r, i.e.:

γ = rZ/B.

The above equations can be used to map a rate assignment
equal to ri to a SIR-target assignment equal to γi via a linear
relationship.

With the above notation, it is possible to use the limitation
on the total power, which is bound to be below a given value
W̄ , as the feasibility constraint. This will be used in the next
section, which is devoted to the formulation of the optimization
problem.

IV. THE OPTIMIZATION FRAMEWORK

The formulation of the WCDMA optimization problem fol-
lows these steps. Let us focus on the revenue maximization
problem (for other Economic Metrics, the procedure can be re-
peated with minor changes).

1We will implicitly adopt this approach when, in the scenario, we will adopt
a large thermal noise, which can be seen as including also interference coming
from surrounding cells.
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At first, we have the following nonlinear optimization prob-
lem with continuous variables:

max
N−1∑
i=0

p(ri)A(ui(ri), p(ri))

s.t.

ri =
Bgi
γi
wi

gi

∑
j=0...N−1,j �=i wj+η

∀i = 0 . . . N − 1

N−1∑
i=0

wi ≤ W̄

0 ≤ ri ≤ R̄ ∀i = 0 . . . N − 1

wi ≥ 0 ∀i = 0 . . . N − 1

(4)

where ui(ri)’s are quasi-concave non-decreasing non-negative
functions, p(ri) is a non-decreasing non-negative function,
Ai(ui, pi)’s are compound functions with values in [0, 1] which
are decreasing in pi and increasing in ui. Moreover, the values
of γi, gi,B, η, R̄, W̄ are all positive constants.

In the following we present two exact methods to solve this
problem. In particular, in Subsection IV-A we will present an
approach based on Integer Linear Programming (ILP), whereas
in Subsection IV-B we solve the problem by means of Con-
straint Programming (CP). To deal with the high complexity of
these approaches, in Subsection IV-C we outline a procedure to
derive also a Genetic Algorithm (GA).

A. The ILP approach

The variables wi are allowed to take value only on a finite
subset of [0, W̄ ]. To deal with the difficulties that the functions

θi(r) = p(r)A(ui(r), p(r)) ∀i = 0, . . . , N − 1

brings, we can think of approximating them with piece-wise
constant functions Θi. We can think of Θi’s as a “sample &
hold” version of the θi.

Thus, if Θi is defined on a finite set of pairwise disjoint
closed intervals of [0, R̄], and is constant in every interval, we
can approximate this problem by a boolean integer program
with linear objective and linear and quadratic constraints, which
in turn can be transformed into an equivalent 0-1 Integer Linear
Program (ILP).

This ILP can then be solved by a standard Branch&Cut algo-
rithm [15]. Branch&Cut implements Branch&Bound by using
linear programming to derive valid bounds during construction
of the search tree. It is employed for solving mixed integer
linear programs. The relaxation of the integrality constraints
(LP-relaxation), which is usually done in the Branch&Bound
algorithms implemented by commercial ILP solvers, often pro-
vides lower bounds that are very poor.

In Branch&Cut the LP-relaxation is instead successively
tightened by the addition to the model of “valid” inequalities,
where a valid inequality is in general a plane that cuts off a por-
tion of the region of the feasible solutions, so it is also referred
to as cutting plane.

Inequalities that can be generated are in general exponen-
tially many, but usually only a subset of them is sufficient to
significantly strengthen the lower bound. These subset of con-
straints are generated by a so-called cutting plane procedure.
This makes Branch&Cut a much more powerful method than
Branch&Bound alone. In fact, since cuts are generated dynam-
ically throughout the search tree, the solution can be found for
large-scale instances. This can be done by using a generic ILP
solver, such as CPLEX [16], which has been employed to test
the accuracy of the solution.

In our heuristic approach, by improving the approximation
of the θi and by increasing the number of wi samples, we can
improve the approximation of the original nonlinear problem
as desired. In the following we show how the approximating
integer linear model is obtained.

If we require the variables wi to take value in
{W0, ..,Wm−1}N , being 0 ≤ W0 ≤ W1 < · · · <
Wm−1 ≤ W̄ , and the variables ri to take value only in
[R−

0 , R
+
0 ] ∪ · · · ∪ [R−

k−1, R
+
k−1], with 0 ≤ R−

0 < R+
0 ≤

· · · ≤ R−
k−1 < R+

k−1 ≤ R̄, and ∀i = 0, . . . , N − 1 and
∀j = 0, . . . , k − 1 we approximate θi in [R−

j , R
+
j ] with the

constant Θij = θi(R+
j ), then we can build the following

boolean quadratic program:

max
N−1∑
i=0

k−1∑
j=0

yijΘij

s.t.:
k−1∑
j=0

yij = 1,
m−1∑
h=0

xih = 1 ∀i = 0 . . . N − 1

N−1∑
i=0

m−1∑
h=0

xihWh ≤ W̄

yij ∈ {0, 1}
{ ∀i = 0 . . . N − 1,

∀j = 0 . . . k − 1

xih ∈ {0, 1}
{ ∀i = 0 . . . N − 1,

∀h = 0 . . .m− 1

(5)

Bgi
γi

∑ m−1
h=0 Whxih

gi

∑
l=0...N−1,l �=i

∑ m−1
j=0 Wjxlj+η

≥
k−1∑
h=0

R−
h yih

∀i = 0 . . . N − 1

Bgi
γi

∑ m−1
h=0 Whxih

gi

∑
l=0...N−1,l �=i

∑ m−1
j=0 Wjxlj+η

≤
k−1∑
h=0

R+
h yih

∀i = 0 . . . N − 1

where the boolean variables have the following meaning:

xij = 1 ⇔ wi = Wj

yih = 1 ⇔ ri ∈ [R−
h , R

+
h ].

Note that, if (x, y) is a solution of problem (5), then wi =∑
h=0...m−1Whxih for i = 0 . . . N − 1, the SIR for each

user can be computed from Equation (2) and by using it in
Equation (3) the ri’s can be derived, being certain that ri ∈
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[
∑k−1
h=0R

−
h yih,

∑k−1
h=0R

+
h yih], for i = 0 . . . N − 1. Therefore,

(5) approximates the original problem (4).
By substituting the product x�jyih with the variables z�jih,

∀�, j, i, h, and adding the corresponding constraints:

2z�jih ≤ x�j + yih

z�jih ≥ x�j + yih − 1

that force z�jih to be equal to x�jyih, we obtain the following
boolean ILP:

max
N−1∑
i=0

k−1∑
j=0

yijΘij

s.t.:
k−1∑
j=0

yij = 1,
m−1∑
h=0

xih = 1 ∀i = 0 . . . N − 1

N−1∑
i=0

m−1∑
h=0

xihWh ≤ W̄

(6)

yij ∈ {0, 1}
{ ∀i = 0 . . . N − 1,

∀j = 0 . . . k − 1

xih ∈ {0, 1}
{ ∀i = 0 . . . N − 1,

∀h = 0 . . .m− 1

zljih ∈ {0, 1}
2zljih ≤ xlj + yih
zljih ≥ xlj + yih − 1







∀i = 0 . . . N − 1,
∀h = 0 . . . k − 1,
∀l = 0 . . . N − 1,
∀j = 0 . . .m− 1

m−1∑
h=0

Bgi
γi
Whxih ≤

k−1∑
h=0

ηR+
h yih+

+
k−1∑
h=0

N−1∑
l=0 l �=i

m−1∑
j=0

giWjR
+
h zljih ∀i = 0 . . . N − 1

k−1∑
h=0

N−1∑
l=0 l �=i

m−1∑
j=0

giWjR
−
h zljih+

+
k−1∑
h=0

R−
h ηyih ≤

m−1∑
h=0

Bgi
γi
Whxih ∀i = 0 . . . N − 1

which is equivalent to problem (5), in the sense that the set of
the (x, y) components of solutions (x, y, z) of (IV-A) are the
solutions of (5).

By increasing m and k, we can improve the capability of
the linear discrete problem (IV-A) to approximate the original
continuous nonlinear problem (4). In our experiments we have
chosen equidistant Wi’s and R+

i = R̄
k (i+1) and R−

i = R̄
k i+ δ

for i = 0 . . . k − 1, with δ being a small positive number < R̄
k .

Note that the set of intervals allowed for variable ri need not
be the same for every i, as we did, and we can choose them
according to the function θi.

B. The CP approach

In this section we will present an exact algorithm to solve
the original non linear problem (4), assuming that the vector

w = (w0, . . . , wN−1) ∈ {W0 . . .Wm−1}N and the functions
θi are approximated by the piece-wise constant functions Θi,
as before. Hence we can compare the solution given by the
approach described in this section with that given by the ILP
model.

With this assumption, problem (4) is:

max f(w)

∑N−1
i=0 wi ≤ W̄

ri(w) ≤ R̄ ∀i = 0 . . . N − 1

w ∈ {W0 . . .Wm−1}N

where:

ri(w) =
Bgi

γi
wi

η + gi(
∑
j=0...N−1,j �=i wj)

and

f(w) =
N−1∑
i=0

p(ri(w))A(ui(ri(w)), p(ri(w)))

Our algorithm is based on a standard backtracking technique
(akin to those used in Constraint Programming) to generate all
the solutions and to find one with the highest value. To limit
the number of solutions actually evaluated, we use two pruning
mechanisms based on feasibility check.

One mechanism detects infeasibility of partial variable as-
signments. First it exploits the fact that each variable has some
values that cannot be used. In fact, if w is a feasible point then:

ri(w) =
Bgi
γi
wi

η+gi(
∑

j=0...N−1,j �=i wj)
=

=
Bgi
γi
wi

η+gi(
∑ N−1

j=0 wj−wi)
≥

Bgi
γi
wi

η+gi(W̄−wi)

So, for the feasibility of w, it will never happen that

Bgi

γi
wi

η + gi(W̄ − wi)
> R̄,

which implies that:

Bgi

γi
wi

η + gi(W̄ − wi)
≤ R̄,

or equivalently:

wi ≤ R̄η + R̄giW̄

gi( Tγi
+ R̄)

= W̄i.

Hence, variable wi must be assigned to values Wh ≤ W̄i From
our computational experience, this mechanism reduces by ten
times the size of the solution space to be generated.

A second procedure works as follows: if we have assigned
variables w0 . . . wk and:

τ(w0 . . . wk) :=
k∑
i=0

wi + (N − k − 1)LW > W̄
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EXPLORE(k)
{

if (k ≥ 1 and k ≤ N − 1)
if (τ(w0 . . . wk) > W̄ )

return;
if (k ≥ N)
{

if(w = (w0 . . . wN−1) is feasible)
{

calculate f(w);
update the best w∗;

}
}
else
{

for(h = 0 . . .m− 1)
if(Wh ≤ W̄k)
{

wk := Wh;
EXPLORE(k + 1);

}
}

}

TABLE II
THE EXPLORE PROCEDURE FOR THE CP ALGORITHM

where:
LW = min{Wh|h = 0 . . .m− 1}

there are no values left for the remaining wk+1 . . . wN−1 so as
to obtain a feasible assignment of all the variables. Hence, a
feasible assignment of the variables w0 . . . wk must satisfy the
condition:

τ(w0 . . . wk) ≤ W̄

Our algorithm assigns values to variables, starting from the
first variable to the last; as soon as it finds out that the cur-
rent partial assignment of the variables cannot be extended to
the others in a feasible way, it stops searching for values of the
remaining variables. Then it goes backtracking and tries a dif-
ferent partial assignment for the same subset of variables. More
precisely the algorithm consists in the recursive procedure out-
lined in Table II.

C. A Genetic Algorithm

The methods used in the previous section provide an exact
solution in finite time. Unfortunately, this time is often too long
for the approach to be usable in practice.

To test the algorithms under this aspect, we solve several
problem instances with N users, 6 ≤ N ≤ 16, m = 20 and
k = 20 on an average notebook computer. Within 10000 sec-
onds the CP implementation always returned the optimal solu-
tion, while the solver CPLEX often could not solve the corre-
spondent ILP in time. When both approaches returned a solu-
tion, the solutions were identical.

In this interval of N , the CP approach turned out to be faster.
When N < 6 the advantage in using CP for what concerns the
computational time is of several order of magnitude; in fact, on
our test computer the problem is solved in less than one second.
However, the computational time of the CP algorithm increases
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Fig. 1. Normalized computational time of the CP approach as a function of N

rapidly with N , until it fails to supply a solution in an accept-
able amount of time with N > 16.

To show the trend of this computational complexity increase,
consider Fig.1. Here, two curves are plotted: the time required
by the CP algorithm to explore the whole solution space and
the time to find the optimal solution; the values are normalized
to the time to explore the solution space when N = 6. Both
values increase exponentially with the number of users, which
makes the CP approach very fast for small N but inapplicable
to large networks.

Thus, especially if one wants to implement an optimization
technique directly at the Access Point of the cellular system,
more efficient techniques from the computational complexity
perspective are needed. To this end, we outline a Genetic Algo-
rithm (GA), which give results very close to the optimal solu-
tion but with lower computational complexity.

A GA for an optimization problem finds a feasible point with
good value by imitating the Natural Selection, the process of
adaptation to the environment of living beings. We have devel-
oped a standard Genetic Algorithm (GA) for the original prob-
lem. In our GA an individual is a vector of feasible powers. The
value of an individual w is the value of the objective function
on w. The gene of an individual is a component of the vector.
An initial population, i.e., a set of individuals, is obtained by
generating random vectors in [0, W̄ ] and repairing them if they
are not feasible. This means that they are modified as little as
possible, so as to make them feasible.

The population is iteratively modified by applying the mat-
ing, the mutation and the selection operations in this order. This
is done for a fixed number of iterations. The mating operation
consists of choosing some of the individuals and mating them,
that is, substituting them with their children. The children of
two individuals are obtained by swapping the second half com-
ponents and repairing the two possibly infeasible resulting vec-
tors. The mutation operation consists in mutating all the in-
dividuals. A mutated individual is obtained by altering some
of its components with a random value δ ∈ [−∆,+∆], where
∆ < W̄

2 . The selection operation produces the population of
the next iteration. This new population has the same number of
individuals of the current one. Its individuals are chosen from
the current population, possibly more than once. The probabil-
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Parameter (symbol) value

spreading bandwidth (B) 2.5 rate units

max rate per terminal (R̄) 1 rate unit

cell min radius (d0) 5 m

cell max radius (d1) 100 m

gain at 1 m (A) −28dB

Hata path loss exponent (β) 3

Shadowing parameter (σ) 6dB

max transmission power (W̄ ) 20dBm

Thermal noise floor (η) −38dBm

TABLE III
PARAMETERS OF THE PHYSICAL SCENARIO

Parameter value

k − log 0.9

ψ 1.0

φ 1.0

µ 2.0

ε 4.0

TABLE IV
PARAMETERS OF THE ECONOMIC SCENARIO

ity of an individual being chosen for the next generation (the
population of the next iteration) depends on the rank of the in-
dividual within the current population, the higher the rank the
higher the probability. The rank of an individual within a popu-
lation is the position of the individual in the population ordered
by increasing value. The returned individual is the best individ-
ual found in all the generated populations.

V. RESULTS

First of all, let us briefly outline the working assumptions
used for deriving results. For analytical convenience, we will
consider a simple usage-based linear pricing scheme, i.e., we
assume p(r) = αr with constant α. This scheme is sensible,
as it is simple and hence it might be appreciated by the users.
Also, it is likely that data-transfer services tariff users according
to the amount of downloaded data [7]. On the other hand, the
framework can be applied to other kinds of pricing as well. The
graphs presented in the following have been plotted by consid-
ering different α’s, hence emphasizing the dependence of the
Economic Metrics on the pricing setup. Utilities are assumed
to be sigmoid-shaped functions [1], which span from 0 to 1.
The mathematical expression is

u(r) = (r/rs)ζ/(1 + (r/rs)ζ),

where the concavity is regulated by an exponent ζ uniformly
distributed in the range 2 ÷ 4 and the flex point rs is taken as a
random value uniformly distributed in the range 0.1 ÷ 0.4.

The acceptance-probability functions are chosen as follows:

A(ui, pi) � 1 − e−k·(ui/ψ)µ·(pi/φ)−ε

, (7)

where k, µ, ε, ψ, φ are positive constants. This is justified by
the ideas presented in [5]. In particular, the parameters k, ψ
and φ are normalization constants, whereas the role of ε and
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µ is to make the acceptance probability similar to the Cobb-
Douglas curves [17], widely used in economics to represent in
general a relationship of economic nature, where an exponent,
called “elasticity”, is appropriately chosen in order to have a
good match with experimental measurements curve. Then, in
our case, the parameters ε and µ represent the sensitivities of
the users to the price and the utility. These data describing the
technical parameters of the scenario can be found in Table III.

In the following we will always consider the goal function of
the optimization to be the Economic MetricR, i.e., the revenue.
However, this choice, like all the purely technical choices made
about pricing and utility functions, can be replaced without af-
fecting the general optimization framework.

Under this framework, the proposed approaches are able to
find the optimal solution in terms of rate and power allocation,
which determine the economic metrics. In Figs. 2 and 3 we re-
port the solutions found by the exact approach (in particular, the
CP algorithm) and the Genetic Algorithm in terms of allocated
values. Being the price equal to 1, the allocation vector of the
rates weighed by the acceptance probabilities can be also seen
as revenue generation due to a single user.

The optimal solution found by the CP approach and the GA
are quite similar, at least for what concerns the allocated power,
which is the main allocated quantity. However, a small vari-
ability of the allocated power reflects in higher variations of
the achieved rate and even more of the perceived utility. This
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N A B C D E F

6 1.00 0.29 522.01 43.12 28.94 146.60
7 4.12 1.29 2075.8 983.1 66.52 759.68
8 15.53 5.59 2672.5 11.76 6.294 2.1001
9 59.41 23.53 2742.5 11.17 4.117 0.4749

10 181.42 78.00 2440.0 6.882 1.118 0.0881
11 527.61 250.82 681.94 1.235 1.235 4.92e-3
12 1592.2 805.88 1954.4 1.328 1.328 1.67e-3
13 4427.3 2371.9 889.71 1.464 1.464 6.20e-4
14 11664 6434.7 4160.6 1.518 1.518 9.17e-5
15 29099 16788 16.597 1.653 1.653 9.81e-5
16 68611 41005 745.83 1.764 1.764 4.29e-5

TABLE V
COMPUTATIONAL TIMES: A = CP TIME TO SOLVE. B = CP TIME TO FIND

THE OPTIMUM. C = GA TIME TO SOLVE. D = GA TIME TO REACH 99% OF

CP VALUE. E = GA TIME TO REACH 90% OF CP VALUE. F = TRADEOFF

CP VS. GA (RATIO BETWEEN D AND B).

means that a power allocation which is optimal for one Eco-
nomic Metric does not guarantee itself efficiency also for the
other Economic Metrics. It is also emphasized that the opti-
mal solution is obtained with extreme unfairness in the revenue-
optimal solution, since some users (in particular, user 4 in the
figures) achieve low data rates.

However, apart from the exact determination of the optimal
solution to the problem, our investigation has also the practi-
cal goal of determining efficient solutions (not necessarily the
optimal ones) in a reasonable time. In other words, in realistic
situations the resource manager needs to find a good feasible
solution for the original problem. With this purpose in mind,
we have seen that, among the strategies compared, the GA is
the best choice, because it finds a good feasible solution of the
original problem in a very small amount of time.

Table V compares the GA with the CP algorithm in terms
of computational time, by reporting several time metrics. The
values for the ILP problem are not reported since CPLEX was
able to provide solutions only for instances with low N . The
last column plots also the tradeoff between the CP and the GA,
seen as the ratio between the time required by the CP algorithm
to find the optimum and the time required by GA to find the
99% of this value. This value represents the capability of the
GA vs. the CP algorithm of finding a good solution: the lower
the value, the better the relative performance of the GA. We can
see that, when N ≥ 9, the GA finds a feasible solution whose
value is ≥ 99% of the value of the best solution given by the CP
while taking less time. When N > 12, the GA gives a solution
which is at least 99% as good as the CP one, in less than 1

1000
of the time required by the CP to give that solution.

However, an important remark needs to be kept in mind: the
GA and the CP do not face exactly the same problem. The CP
chooses the powers only on a finite set of values, while the GA
chooses them on a continuous interval. Because the objective
function is the same and the CP’s possible powers are feasible
for the GA, it can happen that the GA finds a feasible solution
with a higher value than the optimal solution found by the CP.
If the number of iterations is sufficiently large, the GA always
finds a feasible solution with higher value.

With this in mind, we can now compare the average perfor-
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Fig. 5. Admission rate S/N as a function of the unit price α.

mance obtained by the CP approach and the Genetic Algorithm.
Figs. 4–7 show the evaluation of the Economic Metrics for the
optimal solutions found by the CP and the GA. In these figures,
only networks with N = 6 have been considered. Note that
the ILP procedure always obtains the same results of the CP.
In these results, the GA has been run for 300 iterations only,
in order to have quick evaluation time, by considering the best
individual found up to the last iteration.

Note that all these evaluations are affected by strumental er-
ror which arises from the approximation in the discretization
of rates and powers. Due to this error, for example, it might
happen than the solution found by the heuristic Genetic Algo-
rithm is even better than the exact optimal one, since the models
are different. Indeed, this can be eliminated almost completely
through an appropriate increase of k and m. However, this of
course increases the time required for the solution.

Let us discuss the results in more detail: Fig. 4 shows that
the Genetic Algorithm exhibits good match with the optimal
solutions found in the exact manner by the CP approach. Note
that in all our simulations we run the Genetic Algorithm always
converges to the global maximum, even though this conclusion
might not be true in general.

Also note that the optimal solutions for the revenue-
maximization problem presents a very smooth behavior which
highlight the presence of an optimal price setting for the
provider, in order to maximize the revenue. Also, the confi-
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dence of the results is very good, with slightly larger oscilla-
tions in the Genetic Algorithm due to its heuristic nature and
also its usage of randomly generated points. On the other hand,
the curves presented in Figs. 5–7 are more subject to disper-
sion, since the plotted metrics are not directly involved in the
optimization procedure.

In particular, as is clear from Fig. 6 the optimum found by
the CP approach allocated less resource than the Genetic Al-
gorithm, where conversely Figs. 5 and 7 show that the number
of admitted users and the total utility of the users are higher in
the solution found with the CP approach. This means that the
CP approach still succeeds in better using the resources. How-
ever, the results of the Genetic Algorithm for what concerns the
metric under optimization are very close to the optimum. Thus,
for an effective allocation with applicability to real cases, it is
worth considering also to include several Economic Metrics in
the goal function, in order to have an efficient RRM under many
points of view.

VI. CONCLUSIONS AND FUTURE WORK

The contribution of this paper is a unified framework to study
the optimization of RRM when the trade-off between utility and
price is taken into account. We formalize the optimization prob-
lem for the rate allocation which aims at maximizing a given
Economic Metric and also propose linearized versions, which
are solved with several approaches.

In particular, we used both exact and heuristic methods. Due
to the intrinsic complexity of the exact procedures, the heuristic
approach seems to be a more practical solution to solve such
problems. In particular, an interesting possibility is offered by
strategies based on genetic algorithms, which exhibit a good
trade-off between accuracy and computational complexity.

As a future research topic, it might be interesting to inves-
tigate how these results can be useful in terms of gaining un-
derstanding about the properties of the Radio Resource Man-
agement, in particular in which way they can be applied to the
design of realistic and effective strategies.

To this end, we think that a possible alternative, not directly
explored here but left for further research, involves Admission
Control strategies to decrease the problem complexity. In fact,
the main issue to address when evaluating optimization is that
the complexity of the problem strongly increases with the num-
ber of users. Thus a strategy, even heuristic, to decide first of
all if for some of the users it is not even worth trying the re-
source allocation, can be identified, and this seems to be a valid
alternative to the problem of the computational capacity which
arises in such large networks.
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