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ABSTRACT
In this paper, we analyze a wireless LAN hot-spot, based
on the IEEE 802.11b protocol, and more specifically we ad-
dress the issue of defining proper pricing strategies, from
both perspectives of evaluating technical performance and
quantifying the economic revenues. We take into account
a model for users’ behavior that considers the trade-off be-
tween perceived QoS and paid price. This allows us to de-
scribe all users’ choices in a decentralized manner, so that
the transmission rate of each node is driven both by service
requirements and by the customer’s willingness to pay. Af-
ter this setup, the multiple users’ medium access mechanism
is considered through simulation based on ns-2. Within this
model, the network performance is evaluated and discussed.
First, we investigate the provider’s task of having a suitable
price policy that gives a satisfactory income. This is con-
nected with the goal of achieving high throughput, but is
also dependent on a price setting that is accepted by the
users and optimizes resource usage. Finally, we present nu-
merical results which can provide practical insight for pric-
ing setup in a wireless LAN hot-spot.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: network com-
munications, wireless communication

General Terms
Management, Performance, Economics

Keywords
Rate allocation, Utility functions, Pricing

1. INTRODUCTION
A very interesting and developed application of the Wire-

less Local Area Networks (WLANs) based on the IEEE
802.11 protocol [1] is the creation of hot-spots, where a set
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of mobile terminals is connected to a central access point.
This kind of system is nowadays present in business areas
like conference rooms or airport and hotel lounges, where
users are interested in easily and rapidly establishing a net-
work connection.
Current implementations of IEEE 802.11 systems use the

Distributed Coordination Function (DCF) using Carrier-
Sense Multiple Access (CSMA). It is well known [2] that
in this case the performance is heavily affected by the net-
work operating conditions. Thus, the provider is interested
in efficiently managing the bandwidth resource. Reasonably,
this could mean aiming at achieving a satisfactory income
from the network management operation and providing as
many users as possible with a satisfactory service, which are
required in order to have a sustainable economic model. For
this reason, the investigations on how to properly allocate
the radio resource, as well as to set up an appropriate pricing
strategy, are key issues for the network operator [3].
To explore these aspects, we refer to the application of

economic models to the Radio Resource Management, an
open field for research on which several contributions have
appeared in the recent literature. In particular, the con-
cept of utility functions and issues taken from game-theory
have been employed to represent a tunable Quality of Ser-
vice (QoS), for example obtained through variations of the
terminal’s data rate [4,5].
An example of application of micro-economic issues to the

management of a WLAN hot-spot is given in [6]. However,
note that the micro-economic control performed there refers
to the definition of a virtual price that has the effect of regu-
lating the access and is negotiated dynamically [7]. Instead,
in the present contribution we are interested in considering
more directly the real price established by the operator for
the service tariff, which is bound to be fixed a priori and
known in advance by the users.
In particular, our aim is to investigate the role of actual

pricing in determining resource usage. Besides causing rev-
enue generation, pricing the system usage also allows a bet-
ter coordination and a more efficient utilization. In other
words, price tuning can be seen as an implicit Admission
Control (AC) mechanism which improves the system per-
formance. On the other hand, too high a price prevents
users from entering the service, so that the system is under-
utilized. Besides the total revenue, we also study the service
appreciation by measuring the average number of satisfied
users, which is another indicator of good management that
a provider of a real system needs to take into consideration
in the long run.

713



In order to perform these evaluations, we adopt the micro-
economic model for wireless applications and services pre-
sented in [8], which describes the users’ choices as driven by
their appreciation of the service, and at the same time allows
the evaluation of economic quantities such as the provider
revenue and the average number of satisfied users.
Hence, our goal in this study is to apply such an eco-

nomic model to a system characterized by CSMA/CA. This
requires first of all a model extensions in order to account for
the dynamically changing operating conditions of a WLAN
hot-spot. Moreover, to perform this integration in a simple
and direct manner, we realized it within the ns-2 simula-
tor [9]. Thus, after a short summary of the micro-economic
model that will be used to evaluate the behavior of the users
of the WLAN hot-spot, presented in Section 2, we describe
the case study implemented by means of an extended ns-2
simulator in Section 3. Moreover, in Section 4 we show the
numerical results of our extensive simulation campaign and
in Section 5 we conclude.

2. THE MODEL FOR USERS’ BEHAVIOR
The key assumption in this work is that the users’ behav-

ior can be described as driven by two factors: the quality
of the service itself, which is assumed to be estimated from
a quantitative point of view via subjective testing and is
therefore represented by means of a utility function u(r),
and the price paid for accessing the service, described by a
pricing function p(r). Both of them are non decreasing func-
tions of the allocated resource r, which in the case of data
applications we consider denotes the achieved data rate.
The service perception is determined by the trade-off be-

tween these two parameters, since for every user, qualita-
tively speaking, the larger the utility and/or the lower the
price, the higher the satisfaction. According to the model
presented in [8], we represent this with a service satisfaction
function for every user i belonging to the potential users set
Q, called Ai(ui, pi), where ui and pi are user i’s utility and
price paid. Since both utility and price ultimately depend
on the rate r, we will often using a slight abuse of nota-
tion, by writing Ai(ri) for short. It is further assumed that
the satisfaction function takes values between 0 and 1, so
that we can regard it as a probability of the ith user being
satisfied.
In the following, we will refer to pi = p(ri) and Ai = A(ri),

since it is reasonable to assume that these functions are ho-
mogeneous throughout the whole network (the extension to
the case where different pricing or QoS classes are present
is straightforward). Instead, we assume a different utility
function for every user so as to account for the variability of
services and terminals. Being a subjective factor, the utility
heavily depends on factors which can not be controlled by
the resource manager, such as the terminal performance or
the users’ evaluation of the service quality per se. Hence,
ui(·) is in general a different function for every user.
We assume that the general objective of the network man-

ager is to have high revenue while at the same time achieving
satisfaction of the users. Thus, we evaluate the revenue on
satisfied users only. The motivation for this is as follows:
from an economic point of view, dissatisfied users are ex-
pected to abandon the service in the long run and henceforth
they can be considered as lost customers. For this reason,
generating revenue without satisfying the users appears to
be pointless.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

ba
nd

w
id

th
 s

ha
re

user 1
user 2
user 3
user 4
user 5
user 6

Figure 1: Proportional share of resource for a
WLAN system with six users with increasing pri-
ority. This confirms and extends to a larger system
the results already obtained by [12].

When dealing with WLANs based on the IEEE 802.11b,
the complexity of the MAC protocol makes it difficult to deal
with analytical formulations of the capacity. Even though
interesting analytical models have been presented in the lit-
erature [2, 10, 11], for the sake of simplicity this paper uses
results obtained with the ns-2 simulator.
Moreover, we need a differentiation mechanism to pri-

oritize and coordinate multiple users’ requirements in the
WLAN environment, which possibly imply a different rate ri

for every user. The value of ri will then be mapped through
the utility and pricing functions to finally determine the
probability of accepting the service, Ai.
For investigation purposes only, we suppose that all users

generate packets at the same rate, so the requested traf-
fic of each user depends on the length of generated pack-
ets. This mechanism, together with other possibilities, has
been proposed in [12]. We remark that other differentiation
techniques might be used as well within the same rationale.
The choice of this particular strategy is motivated by the
fact that under saturation conditions the long range aver-
age traffic enjoyed by each user results to be proportional
to its packet length. In particular, this mechanism allows
for the ratio between the offered traffic of any two users to
be the same both in the non saturated and in the saturated
case.
To confirm this, Fig. 1 reproduces the results shown in

[12], extended to a wider range of number of users. We con-
sider the subsequent allocation of up to 6 users in the WLAN
scenario, so that a new user is allocated every 100 seconds.
The resource requirements of each user are subsequently in-
creasing, so that the rate requested by the ith user, i > 1,
is i times that requested by the first one. As shown in the
figure, the correctness of the assumption of proportionally
fair share of resources holds. However, as the number of
users increases the instantaneous variations around the long
range average value become more evident.
As shown in Fig. 1, the rate achieved by the users is not

constant over time, and in particular varies according to the
presence of other users in the network. For this reason, the
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rate ri allocated to user i should be regarded as variable over
time, i.e., ri(t). For the purpose of a practical evaluation,
and also in order to account for the fact that the users’ re-
evaluation of their service perception is not instantaneous,
we sample the time axis so that each user re-considers its
acceptance of the service every ∆T seconds.
If user i enters in service at time ti and its call duration

request is Ti seconds, � Ti
∆T

� service evaluations might occur
at most, beyond the first one at the time the user is allocated
in the system. The call is successfully completed if and

only if all these tests are passed. In particular, r
(0)
i is the

rate requested by user i before entering the system. This
rate is assumed equal to the allocation which maximizes its
satisfaction probability, i.e.,

r
(0)
i = argmaxA(ri) . (1)

For 0 < j ≤ � Ti
∆T

�, r
(j)
i is instead defined as the average rate

perceived up to the jth evaluation, i.e.,

r
(j)
i =

1

j∆T

Z ti+j∆T

ti

ri(t)dt ,

where ti is the start time of user i’s service.
Note that the values of r

(j)
i , with j > 0, are meaningful

only if the user hangs to the service continuously, since if
the user refuses the service its allocated rate drops to zero.
In order to evaluate this aspect, we define, by exploiting
the concept of conditional probability, the conditional ac-
ceptance of r′i given that ri was an acceptable assignment
as:

A(r′i|ri) =

(
A(r′

i)

A(ri)
if A(r′i) ≤ A(ri)

1 if A(r′i) > A(ri) .
(2)

The call of user i is successfully completed with probabil-
ity

Pi(complete service)=Ai(r
(0)
i )

�Ti/∆T�Y
j=1

Ai(r
(j)
i |r(j−1)

i ) .

Otherwise, we distinguish between the case in which the ser-
vice is evaluated as unacceptable already at the first evalu-

ation, which happens with probability 1−Ai(r
(0)
i ), and the

case of service refusal in a subsequent evaluation, when the
user is already in the system, whose probability is

Ai(r
(0)
i )

„
1−

�Ti/∆T�Y
j=1

Ai(r
(j)
i |r(j−1)

i )

«
.

In the former case the user is said to be blocked, in the latter
to be dropped. In particular, we define

Pi(drop instant k) =

= Ai(r
(0)
i )

„ k−1Y
j=1

Ai(r
(j)
i |r(j−1)

i )

«“
1− Ai(r

(k)
i |r(k−1)

i )
”

which is the probability that the user is dropped at the kth
evaluation.
The distinction between blocked and dropped correctly

reflects that users can refuse the service due to their own
a priori decision of not entering the system, for example
because of the price being too high, or can experience un-
acceptable service degradation due to a congestion arisen in
a second time. As is well known, the impact on the QoS of

these events is considerably different. The reason for explic-
itly classifying also blocked users is that considering pricing
implies that the system is admission controlled, as discussed
in the introduction and also as will be numerically shown in
the following.
In this way, our previously discussed revenue evaluation

can be rigorously formalized as follows. We want to evaluate
the revenue R as the sum of paid prices, but subdividing it
between the contributions determined by satisfied and dis-
satisfied users, respectively.

A satisfied user i will pay in the end a price p
`
r
(F )
i

´
deter-

mined by the rate r
(F )
i perceived on its entire service con-

nection, which is:

r
(F )
i =

1

Ti

Z ti+Ti

ti

ri(t)dt .

The revenue generated by satisfied users, R(s), is therefore
determined as

R(s) =
X
i∈Q

p
`
r
(F )
i

´
Pi(complete service) (3)

For what concerns dissatisfied users, blocked ones do not
generate revenue at all. The value R(d), which is the po-
tential revenue generated by dropped users, is instead equal
to

R(d) =
X
i∈Q

�Ti/∆T�X
k=1

Pi(drop instant k)p
`
r
(k)
i

´
. (4)

For our evaluation it does not matter whether in the end
dropped users pay or not. Either virtual or real, a high rev-
enue generated by dropped users is an index of inefficiency,
since it means that part of the resources have been wasted
to be allocated to dissatisfied users. For this reason, a suit-
able provider’s goal could be to increase R(s) and decrease
R(d) at the same time, or at least to cut a trade-off in this
trend.

3. CASE STUDY
To validate the aforementioned model, we have run ex-

periments with the ns-2 simulator. We consider a Hot-Spot
scenario with a single IEEE 802.11b Access Point (AP) in
the center of a 32 m ×32 m square area. Propagation effects
and mobility have been implemented with already available
ns-2 modules, determining a radio scenario affected by slow
fading with pedestrian mobility of the terminals.
The main element of the simulator is the so-called wNode,

a typical node of ns-2, which we provided with some addi-
tional features to account for the micro-economic behavior
of the WLAN users. We implement the model of Section
2 in order to drive the choices of the users in terms of se-
lecting the most suitable transmission rate, as the trade-off
between paid price and gained utility, so as to eventually
evaluate the supplied QoS.
Also, in order to support the users’ prioritization due to

their different rate requirements, we focus on a CBR ser-
vice over UDP with constant packet generation rate, so the
contention process within nodes is always fair but the time
of transmission, and hence the bytes transmitted, are pro-
portional to the priority represented by the requested rate

r
(0)
i . In this way, we aim at representing real-time interac-
tion with the traffic. Note however that this choice can be
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Figure 2: The central unit of the simulator: the
wNode

easily and directly replaced within the simulator by more
complicated choices. The scheme of the wNode, as well as
some implemented functions, are reported in Fig. 2.
The users behave dynamically, coming and going from

the Hot-Spot and setting up connections of different types
in terms of duration and transfer rate. The arrivals are Pois-
son with arrival rate λ. For what concerns the service dura-
tion, we also assume Poisson distribution with parameter µ;
however, the users might leave the system if they consider
the service dissatisfactory (this is why the exit process is
no longer Poisson when dissatisfied users begin to appear).
The ratio λ/µ is still useful to understand how many users
on average would be under service if the dissatisfied users
did not abandon the system.
The micro-economic model previously discussed is used to

evaluate the users satisfaction and is implemented in a dis-
tributed manner at each node. Essentially, there are three
kinds of events that matter in the system: a new node es-
tablishing a connection, a node ending its connection due
to successful service completion (these two are regulated
through the Poisson parameters λ and µ) and finally the
evaluations of the users about their service, which might de-
termine a premature termination due to dissatisfaction in
the service received.
When a user i arrives to the system, the simulator evalu-

ates at first r
(0)
i as described by Eq. (1). With probability

A(r
(0)
i ), the user accepts to establish a connection at rate

r
(0)
i , and in this case the duration Ti of the connection is
also determined. Then, the user is added to the system
directly through the already implemented ns-2 functional-

ities. This means that the rate provisioning of r
(0)
i is not

guaranteed, due to the possible presence of other users. It is
possible that the transmission rates no longer match the ini-
tial requirements because of congestion, this means that for

wNode i the perceived rate ri is lower than r
(0)
i . In general,

we can regard r
(0)
i as the requested rate, and every value r

(j)
i

with j > 0 as the achieved rate after j∆T seconds, keeping
in mind that the achieved rate is not necessarily equal to the
requested one (in case of congestion it is indeed lower), but
due to the fair sharing property of IEEE 802.11 discussed

in Section 2 the two values are roughly proportional to each
other. For this reason, in the simulator, every ∆T = 20
seconds the achieved rate is re-evaluated, based on the con-
ditional probability given by Eq. (2).
At the end of the simulation run, users can be subdivided

in terms of how their transmission ended: as described in
Section 2 there are blocked users that do not accept to estab-
lish the connection at all; also, other users may accept their
initial transmission rate, but when it decreases due to other
arrivals they perceive it is too low and so they exit from the
system, i.e., they are dropped users; finally, there are users
that finish their transmission in a satisfactory manner.
For what concerns the pricing, we considered two cases,

in order to test how different pricing strategies impact on
the system performance:

• LINEAR PRICING STRATEGY : p(r) = α · r
• FLAT PRICING STRATEGY : p(r) = qf ,

where both α and qf are proper positive parameters, chosen
by the provider a priori (hence known to all users) and con-
sidered as tunable values to change the price and therefore
represented as the independent variables in the graphs.
Note that we have chosen these expressions in order to

provide a qualitative comparison of two different possibili-
ties. Also other pricing strategies can be tested with the very
same approach presented here, especially hybrid policies be-
tween flat and linear pricing which might indeed might be
more realistic.

4. RESULTS
As a general comment, price variations influence the sys-

tem in a complex way, in terms of both users’ throughput
and provider’s revenue. This relation is revealed by an im-
plicit admission control, created by pricing the resource and
therefore allowing the users to self-manage the system ac-
cess. A better understanding of this relation between pric-
ing and system welfare is developed considering two different
pricing strategies, i.e., linear and flat pricing.
We show the results of our evaluation in Figures 3–6. Fig-

ures 3 and 4 refer to the linear case. In particular the former
shows how users are subdivided in the system, considering
the three categories already explained; on the other hand,
the latter shows how the revenue is split between satisfied
and dropped users (blocked users are not considered as they
do not generate revenue). Moreover, in both cases four dif-
ferent values of the tunable parameter λ/µ are considered,
where an increasing value leads to a more congested system.
In the same way the results are shown for the flat pricing
strategy in Figures 5 and 6.
The linear case shows a discrimination in terms of users’

utility. In fact, increasing the unit price, i.e., the parameter
α, implies a higher penalty for the users with high requested
rate and/or low utility. As a result, the revenue obtained by
the provider with a linearly-dependent pricing is not very
high, since users tend to regulate their request to cheaper
resource allocations, but this also means that a high per-
centage of satisfied users is obtained, as the users have more
freedom in their choice. This discrimination somehow pre-
vents high-demanding users from entering the system or in
most cases from completing the call. It can be said that this
way of pricing the network service is a way for the provider
to perform implicit admission control; note that the self-
regulated access of the users is performed on the basis not
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Figure 3: Users’ dynamics with linear pricing
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Figure 4: Revenue’s dynamics with linear pricing

only of their perceived utility but also of their reaction to the
price, which is in this case proportional to the rate request.
These facts are in general the reason for a lower revenue,
but also for higher stability of the performance (observe in
fact the smoother shape of the curves).
On the other hand, the flat case also applies implicit ad-

mission control, but in the same way to all the users, whereas
the linear case was adaptive to their requests. This implies
that every user simply asks for the transmission rate which
gives the highest utility, since the maxima of utility and
acceptance probability occur for the same rate value. Due
to the increasing behavior of the utilities, this is obtained
when the rate is as high as possible (which would be 11
Mbps, but indeed in the simulator this value is capped at
5 Mbps, which is a more realistic estimate of what can be
achieved in practice).
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Figure 5: Users’ dynamics with flat pricing
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Figure 6: Revenue’s dynamics with flat pricing

Therefore, flat pricing leads both to higher rate requests,
and also to increased revenue. Compared to the linear pric-
ing case in fact, from the individual perspective of the users
the fixed price to pay regardless of the rate seems to be rel-
atively cheaper, if the requested rate is high, although it is
higher in absolute terms. However, the price that the users
(and hence also the provider) pay for these improvements is
an increasing congestion and therefore an overall decrease
in the users’ satisfaction.
These properties of the flat pricing strategy make it not

suitable in general. However, it might be a good choice
in a class-based scenario for business customers, i.e., for a
limited number of users with top requirements and therefore
willing to pay more. Instead, to manage the majority of
the customers without strong quality requirements, a usage-
based linear pricing is more efficient.
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We considered also the number of users that can be served
at the access point in a satisfactory manner, working at max-
imum revenue. Fig. 7 shows the users’ distribution, revenue
and throughput (evaluated on satisfied users only) achieved
with linear pricing under conditions of extreme congestion
(i.e. λ/µ = 30). Note that that revenue is maximized for
α ≈ 0.4, which is more or less the point in which blocked
users become a considerable fraction, and, as a consequence,
at the same time dropped users are decreased. This shows
the effectiveness of a proper linear pricing setup in manag-
ing the admission to the system and regulating congestion
so as to obtain revenue efficiency.
In a realistic scenario, the number of users that can simul-

taneously share the channel with satisfactory performance
is not very high, at most we found approximately 7 users
transmitting at 0.5 Mbps each, for a resulting very limited
throughput compared to the available bandwidth. For a
provider, this means that congestion and pricing-based com-
petitive management of the users decrease the AP capacity.
Moreover, the results show that increasing the number

of users in the system leads to a saturation of the revenue
of satisfied users. A smarter distribution of the AP that
subdivides the customers according to these considerations
could lead to a higher welfare for both the users and the
provider.

5. CONCLUSIONS
We studied RRM and pricing policies for a WLAN hot-

spot, considering both technical and economic perspectives.
The goal of achieving a satisfactory revenue is decomposed
into two objectives, namely good network efficiency and high
appreciation from the users. To represent this aspect, we ap-
plied a micro-economic framework to describe users’ choices
in a decentralized way.
The results obtained through the ns-2 simulator, mod-

ified in order to describe the users’ behavior as driven by
micro-economic aspects, show that the overall behavior of
the system is strongly affected by the micro-economic man-
agement. This is true for the throughput, the generated
revenue (and especially the relationship between the rev-

enue generated by satisfied vs. dissatisfied users), and the
number of allocated users.
Thus, an appropriate choice of the pricing policy is key

for the provider to obtain good system performance. In
particular, the pricing strategy should be able to regulate
the users’ access in order to prevent users from achieving
dissatisfactory service due to congestion.
Moreover, there are tight inter-dependencies between pric-

ing and efficiency of the IEEE 802.11 protocol that can be
studied with our model and whose correct evaluation is use-
ful not only for the provider’s network planning, but also for
possible further improvements of the protocol efficiency.
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