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Abstract— This paper presents an analytical model for the
analysis of Hybrid ARQ techniques on Discrete Time Markov
Channels by means of Markov chains. The first contribution is an
original proposal to track the outcome of the packet transmissions
in a generalized Hybrid ARQ transmission system, deriving an
appropriate Markov chain. Also, an example is given of how
to put this Markov chain in relationship with a Discrete-Time
Markov Channel description. This framework can be used to
evaluate from the theoretical point of view the performance of
truncated Type II Hybrid ARQ techniques, deriving in general
some useful insight on the behavior of such systems.

Index Terms— Queueing analysis, automatic repeat request,
Markov processes, error analysis.

I. INTRODUCTION

IN RECENT years, the investigation of Automatic Retrans-
mission reQuest (ARQ) techniques over Markov channels

has reappeared as a flourishing subject in the technical litera-
ture [1]–[3]. It is worth noting that, differently from the classic
work studying ARQ systems [4], these contributions mainly
focus on wireless links, at least implicitly, and therefore exploit
the channel description with a Markov chain, as this has
been proven to be an elegant and powerful method to derive
analytical studies for these channels [5]. The effectiveness of
Markov models is mainly due to the fact that, whereas in
wireline links the average error probability (normally very
low) often suffices to describe the error process, in wireless
channels also higher order statistics are relevant (e.g., error
correlation may in general impact in a non trivial manner the
performance [1], [3]).

In this paper, we focus in particular on Selective Repeat
(SR) Type II Hybrid ARQ (HARQ), trying not to depend
on a specific implementation but rather keeping a general
approach where several specific kinds of Type II HARQ
can be framed. The analysis of plain SR ARQ techniques
through Markov chains can be captured within this general
framework [3]: Firstly, some basic assumptions are introduced
in order to describe the transmission system. Among them, the
most important is about the availability of a Markov Chain
modeling the channel, hence called in the following channel
chain, where different states correspond to different physical
conditions of the channel and therefore different quality levels
of the received packets. Through manipulation of the channel
chain, a wider representation, called in the following ARQ
chain, is derived, whose state comprises not only the channel
but also the outcome of the previously transmitted packets.

When the ARQ transmission window comprises only one
packet, which is a situation called ideal ARQ in the liter-
ature, the two chains coincide, the outcome of this single

packet depending on the channel state only. This situation
becomes very different when non-instantaneous feedback at
the transmitter is considered, since packets are not always
transmitted in increasing numerical order. Thus, even though
the channel memory is concentrated in the current state due
to the Markov chain representation, the outcome of previous
packet transmissions is required. It is easy to prove [3] that it
is necessary to keep track only of a number of packets which
can be transmitted during a full round-trip time. In this way,
the system chain can be derived and therefore throughput and
delay performance can be obtained.

However, the above description holds for plain SR ARQ.
Instead, Type II HARQ, which is our focus in this paper,
requires a different analysis. We point out that Type II HARQ
has also been investigated in some very recent contributions
which might relate to the present paper, even though they focus
more on specific versions of Type II HARQ [6] or analyze
it in an implementation context [7]. Our contribution here is
instead a general mathematical analysis (developed in a similar
fashion to the classic SR ARQ but with completely different
characteristics of the Markov model) of the Type II HARQ
transmission system, which is still missing in the literature.

Thus, in this paper we bring up the following contributions:
first, a multiple-level Markov channel model dedicated to
HARQ studies with hard decision is proposed. Differently
from the previously mentioned Discrete Time Markov channel
used in classic studies of ARQ systems, a model for the
HARQ packets must include a packet outcome larger than
a binary one (i.e., correct vs. erroneous). We also obtain an
entire analytical formulation of the problem by considering the
multiple-level Markov chain as based on an underlying Dis-
crete Time Markov channel. Finally, this model is used in order
to investigate and quantitatively evaluate the performance of
different implementations of Type II HARQ.

The remainder of this paper is organized as follows: in
Section II we analytically describe the HARQ system by
means of a Markov framework, deriving the ARQ chain from
an N-State Discrete Time Markov Channel. The solution of
the ARQ chain allows to evaluate different metrics, as shown
in Section III. Finally, Section IV shows numerical evaluations
and Section V concludes the paper.

II. ANALYTICAL FRAMEWORK

HARQ techniques combine classic ARQ, since they involve
retransmission of the erroneous packets, and Forward Error
Correction (FEC), i.e., packets are protected from channel
impairments by error-correcting codes, besides the only error-
detecting codes which can be found in plain ARQ and allow
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for parity check and subsequent acknowledgement (ACK) /
not acknowledgement (NACK) of packets. For Type II HARQ,
retransmissions always refer to the same information content,
but the actual packet sent may be different. The transmit-
ter replies to a NACK by sending incremental redundancy
packets. These consist of redundancy bits not yet transmitted,
which improve the error-correcting capability if attached to
the previously received sequence.

For simplicity, we also assume that the size L of the
packets is always the same, independent of their being either
a first transmission or a retransmission. Indeed, allowing a
different packet size for retransmissions would lead to a
more cumbersome mathematical formulation, but would be
conceptually straightforward. Instead, with this assumption we
consider in the following a discrete (slotted) time, where a
time slot equals the time required for transmitting one packet,
and the round trip time equals a fixed number of slots m, in
general greater than 1.

We analytically investigate the system under the assumption
that packets are obtained through error-correcting codes, de-
signed to re-transmit the same information content at most F
times (the first transmission corresponds to re-transmission 0).
This means that, for every i = 0, 1, . . . , F , we have a code Ci

which is ideally seen as a ((i + 1)L, k), where k ≤ L is the
number of information bits in a single packet. Indeed, Ci+1

codewords follows from the ones of Ci with the juxtaposition
of L incremental redundancy bits.

We assume that it is possible to neglect the case of
undetected errors, or misinterpretation of the codeword due
to excessively high number of errors: In general, codes are
properly designed exactly to keep these situations very unfre-
quent. Furthermore, we assume that the receiver’s feedback is
errorless, which might be seen as an abstraction of the case
where it never happens that a NACK is transformed by errors
into an ACK, but all feedback errors correspond to erasures,
which are contrasted by using a time-out. In this way, the
feedback errors can be neglected and simply moved to a higher
error rate of the forward link. Finally, our work assumptions
include that the receiver’s buffer is unlimited and the sender
always has a packet to transmit. These simplifications have
been shown in the literature [8] to affect the analysis only
simplifying it, but without changing the qualitative behavior.

For the Markov analysis purpose, we focus on a hard
decision decoding process. In this case, we quantize the
number of errors which can be present into a packet of length
L in K + 1 levels, i.e., a received packet can have an “error
level” equal to 0, 1, . . . , K. However, since we deal also
with juxtapositions of packets (at most F + 1), on a generic
sequence of J packets of length L, 1 ≤ J ≤ F + 1 we have
JK + 1 levels.

Finally, for every i = 0, 1, 2, . . . , F we define θi (which
satisfies 0 ≤ θi ≤ K · (i+1)) as the error correction threshold
of the codes Ci, i.e., a packet is correctly received after its
first transmission if its error level is below θ0 (if it is not, a
retransmission will occur); at the ith retransmission, the error
level, which is evaluated by summing the previous error level
evaluated on a (K · i)-step scale with the new one with K
levels, must be below θi in order to have complete error-
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Fig. 1. The ARQ chain and its evolution

correction. The right definition of the θis depends on the actual
way in which HARQ packets are coded and also on the error
correction code used. This point will be further discussed in
Section IV.

The above assumptions are suitable to describe the error
process of the packets with an N -state Markov Chain, which
is fully specified by an N×N matrix T whose generic element
tij , 0 ≤ i, j ≤ N − 1, describes the probability of transition
from state i to j. The N -state Markov Chain is used together
with an integer function ξ which assigns an error level ξi in
0, 1, . . . ,K to every state of the chain i = 0, 1, . . . , N − 1.

This channel Markov chain describes the channel transition
only, but, as already discussed, the selective repetition induces
higher order memory. To derive the ARQ chain describing
completely the state information, we follow an approach akin
to the one used in [3], where we proved that one can use a
Markov approach in which the status of last m transmissions
plus the channel state is tracked. However, to realize this
approach for the HARQ case, we have to consider more
possibilities depending on the error level quantization and the
maximum number of transmissions.

The derivation of the ARQ chain works as follows: we
consider a state vector v = (a, S), comprising two parts. S is
the channel state, which takes a value in 0, 1, . . . , N − 1 and
whose transitions are regulated by the N ×N matrix T. Also,
each state S is associated with its error level ξS , taking values
in 0, 1, . . . ,K. The term a is an m-sized array describing the
outcome of the last m packet transmission. Every value of
the array contains an ordered pair of integers, (�i, ri), with
i = 1, . . . ,m. In particular, the right-most pair, i.e., (�m, rm),
refers to the current transmission, whereas (�1, r1) describes
the outcome of the oldest transmission considered, i.e., the
transmission that occurred m − 1 slots before. In general,
(�i, ri) refers to slot t − m + i, where t is the current time
index. The element ri, between 0 and F , corresponds to the
number of retransmissions already performed for this specific
packet. Values higher than F are not permitted since packets
still in error after the F th re-transmission are discarded. The
first element �i of the pair is the error level associated with
this specific packet, thus it is between 0 and (ri + 1)K (at
most, there are (F + 1)K + 1 possible values when ri = F ).
To help understanding this process and the employed notation,
look also at Fig. 1, where the system state at a given time and
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its cyclical evolution are sketched. In the figure, it is shown
that everyone of the past m time slots is assigned to the pair
(�i, ri) which is cyclically clocking as the time goes by, and
the system state is also described by the channel state, which
evolves following a Markov chain.

Note that a further simplification is possible, in order to
describe the state with a lower number of possible values. In
fact, since the impact of values of � lower than θr is the same
(they describe a packet which is anyway considered resolved
once the ACK reaches the transmitter), we might identify with
(0, ri) every entry in the array a of the form (�i, ri), where
�i ≤ θri

.
On a discrete time axis, the evolution of v = (a, S) is

fully described by a Discrete-Time Markov chain. We will
call G its transition matrix. We omit the proof of this for
brevity. However, it can be easily proven by showing that
every transition depends on the current state only. For this
Markov chain, balance equations can be written, to describe
ACK/NACK of a packet at the first transmission, ACK/NACK
of a packet after a retransmission and finally probability equal
to 0 for the infeasible states.

Thus, if σ(v) is the steady-state probability that the state
vector is v:

if (ξS ≤ θ0) : (1)

σ((�1, r1), . . . , (0, 0), S) =

=
N−1∑
c=0

tcS

( F∑
x=0

σ((0, x), (�1, r1), . . . , (�m−1, rm−1), c) +

+
K(F+1)∑
x=θF +1

σ((x, F ), (�1, r1), . . . , (�m−1, rm−1), c)
)

if (ξS > θ0) : (2)

σ((�1, r1), . . . , (ξS , 0), S) =

=
N−1∑
c=0

tcS

( F∑
x=0

σ((0, x), (�1, r1), . . . , (�m−1, rm−1), c) +

+
K(F+1)∑
x=θF +1

σ((x, F ), (�1, r1), . . . , (�m−1, rm−1), c)
)

if 0 < x ≤ F and θx − ξS > θx−1 : (3)

σ((�1, r1), . . . , (0, x), S) =
N−1∑
c=0

tcS ·

·
θx−ξS∑

y=θx−1+1

σ((y, x − 1), (�1, r1), . . . , (�m−1, rm−1), c)

if 0 < x ≤ F , θx < y ≤ xK + ξS :
σ((�1, r1), . . . , (y, x), S) = (4)

=
N−1∑
c=0

tcS · σ((y − ξS , x − 1), (�1, r1), . . . , (�m−1, rm−1), c)

in any other case : (5)

σ((�1, r1), . . . , (�m, rm), S) = 0

Note that these equations can be put into a matrix form,
therefore obtaining the matrix G.

III. EVALUATION OF SR ARQ METRICS

We can now proceed to the evaluation of several metrics of
interest for the SR ARQ analysis. The set of balance equations
(1)–(5) can be used to derive the steady-state probabilities,
solving σG = σ. In particular, this is obtained by imposing
also the normalization condition, i.e.∑

v

σ(v) = 1 (6)

since the balance equations are homogeneous. After having
derived the values of σ(v) for all possible vs, the following
performance metrics can be evaluated: Average throughput T ,
Average number of transmissions per packet Ntx, probability
of packet discarding Ppd.

The average throughput can be evaluated as the sum of the
steady-state probabilities of the states in which a packet is
correctly received and a new one is sent over the channel.
This happens when �1 = 0, so if we define the set A as
collecting all states where a correct packet is received, i.e.,
A = {v | v = ((0, r1), (�2, r2), . . . , (�m, rm), S)}, we have:

T =
∑
v∈A

σ(v) (7)

An equivalent description of this metric may be obtained by
considering a different position than the first, i.e., �i with
1 < i ≤ m instead of �1, due to the fact that the shift of
the locations from m through 1 is deterministic. However,
we indicate �1 in the previous expression since it corresponds
to the instant when the correct reception is known at the
transmitter, so that a new packet is sent. Equivalently, the
condition �m = 0 would have the physical meaning of
describing when the destination node correctly receives the
packet.

Since r1 describes the number of retransmissions of the
packet whose feedback is currently arriving at the transmitter,
we can evaluate the average number of transmissions as

Ntx =
∑
v

(r1 + 1)σ(v) = 1 +
∑
v

r1σ(v). (8)

Note that, as for the throughput, any ri with 1 < i ≤ m can
be used instead of r1.

Analogously to the calculation of the average number of
packet transmissions, the condition of packet discarding is
instead described by having (x, F ) as the first pair of the
vector a, where θF < x ≤ (F +1)K. Defining B as the set of
states where the received packet is going to be discarded, i.e.,
B = {v|v = ((x, F ), (�2, r2), . . . , (�m, rm), S) with θF <
x ≤ (F + 1)K},

Ppd =
∑
v∈B

σ(v). (9)

Again, a different choice of the position where to identify the
pair (x, F ) is also possible, since having this pair in another
position of the vector a means that the corresponding packet
is bound to be discarded, even though this is not happening
in the current time instant.
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IV. NUMERICAL RESULTS

The evaluation presented in the previous sections relies on
the availability of an N -state Markov chain which describes
the channel so that every state i is characterized by an error
level ξi. Moreover, these levels have to be compared with the
threshold θj , where j is the number of transmissions. For
the numerical evaluations, we adopt a simple and practical
approach, which derives an N -state channel chain from a
simple two-state chain. This is just an example to directly
validate the model presented before and show how this can
be used to evaluate and compare different Type II Hybrid SR
ARQ strategies with hard decision.

For the error correction we consider an (n, k) Reed
Solomon (RS) linear erasure block code, with symbols from
the Galois Field Z2M , where k and n are the number of
symbols of the uncoded and coded message, respectively. In
order to encode a binary message F of kM bit, we first split F
in k blocks of M bits, corresponding to k symbols of Z2M .
After that we apply the code to the k symbols, obtaining a
coded message C of nM bit. The described code is equivalent
to a binary linear code (nM, kM). The minimum distance of
an (n, k) RS code is dmin = n − k + 1; thus, assuming that
in a coded message of n symbols there are c erasures, i.e.,
symbols that are known to be in error, and e unknown errors,
the message is successfully decoded if

2e + c ≤ dmin − 1 = n − k. (10)

Our numerical evaluation is referred to a case of known error
positions (KEP), which means that, similarly to [9], we tail
a Cyclic Redundancy Check (CRC) to each block. Thus, the
decoder knows the location of the symbol errors by detecting
the bit errors contained in each block thanks to the CRC.
Hence, the receiver knows which symbols it failed to detect,
and e = 0. Thus, the correct reception of at least k symbols
is sufficient for the message reconstruction.

Assuming that an information packet contains k symbols,
for the HARQ system under analysis, we take n = (F + 1)k,
recalling that F is the maximum number of retransmissions
before packet discarding. In this way we may divide the
overall codeword into F +1 parts, containing k symbols each,
which are sent out in order at every transmission. With the
notation used in Section II, L, K, k are all the same value,
for simplicity. Thus, code C0 corresponds to a (k, k) code,
i.e., to information symbols only, C1 is a (2k, k) RS code and
so on, and proper thresholds θi are defined as θi = ik.

To model the channel with a Markov approach, we consider
the errors at symbol level to be described by a two-state
Markov process with transition matrix P = {pij}, i, j ∈
{0, 1}, where state 0 means error-free channel and 1 on the
other hand describes always erroneous condition. For this
model, the steady-state error probability is ε = p01/(p10+p01)
and the average error burst length is B = 1/p10. In this way,
the K +1 error levels on a packet are obtained by considering
its K symbols, each one of which could be correct or not
according to the outcome of the two-state Markov chain.

This indeed determines K + 1 possible outcomes for what
concerns the number of errors which are present in a single
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Fig. 2. SR Type II HARQ performance for RS codes in the KEP case:
impact of channel burstiness on the probability of packet discarding

packet, that is level 0 is obtained when all symbols are correct
(i.e., the two-state chain stays in state 0 for K subsequent
instances), level 1 corresponds to all K possibilities where
only one sub-packet is erroneous, and so on. However, to
keep the Markov property of the model, we also need to
memorize the outcome of the last symbol separately. In fact, all
transitions to the next error level only depend on the outcome
of the last symbol, since the two-state chain is Markov.

Thus, this approach is able to obtain a suitable N × N
transition matrix T with N = 2K, since the N states describe
all possibilities of error level (K + 1 values) and last symbol
outcome (2 possibilities), but two cases never happen, since
all correct (erroneous) symbols always imply that the last
one is also correct (erroneous). We assume that the states are
numbered so that 0 means that the error level of the packet is
0 (which implies last symbol is correct), 2K − 1 means that
the error level is K (which implies last symbol is erroneous).
For every other intermediate case 0 < j < 2K − 1, state j
means that the error level is �j/2� and the last sub-packet is
correct or erroneous according to ((j))2 being 0 or 1, where
((·))2 denotes the modulo 2 operation.

Considering a transmission of K consecutive symbols, with
time indices 1, 2, . . . ,K, one can denote with ϕxy(s,K),
x, y ∈ {0, 1} the probability that s symbols out of K are
successful and the channel state is y for the Kth, given that
the channel state was x at time 0 (i.e., for the last symbol
transmitted before the sequence of K symbols starts), which
is a well-known function that can be derived as shown in [10].
This allows to promptly compute the matrix T since tij is set
equal to

tij = ϕxy(j,K) (11)

where x = ((i))2, y = ((j))2.
In the following, we set the value of m to 3. To show the

impact of the channel correlation [1] on the Type II HARQ
performance, we mainly choose the value of B (average
length of symbol error bursts) as the independent variable. We
will speak in particular of i.i.d. (independent and identically
distributed) case, referring to the choice of B = 1/ε which
causes the symbol errors to be i.i.d. The parameter ε has
been taken equal to 0.1. This choice means that the steady
state probability of the Markov channel chain being in the
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Fig. 3. SR Type II HARQ performance for RS codes in the KEP case:
impact of channel burstiness on the average number of transmissions

good state 0 is 38.7% in the i.i.d. case, but increases if the
channel is bursty. For example, for B = 20 it will be 86.1%.
Note that this value is the complement of the packet error
probability if only one transmission is allowed. Therefore,
the error probability for the single transmission case would
be too high for any reasonable application; however, in this
way we can show the capability of Type II HARQ of dealing
with highly impaired channel conditions, obtaining lower error
probabilities when retransmission is allowed.

Fig. 2 reports the packet loss probability. This figure high-
lights that even in the case of high error probability, a HARQ
mechanism is able to significantly reduce the probability of
discarding a packet if a sufficiently high number of retrans-
missions is allowed. For the case of weakly correlated channel,
when 4 transmissions are allowed, the value of Ploss can be
pushed down to less than 10−12. 1 However, note that bursty
channels have worse performance in this sense since their
probability of not resolving a packet even with 4 transmissions
may be still significant.

Fig. 3 shows the average number of packet transmissions,
which generally presents a slight increase with F , especially
when the channel is correlated. Indeed, the average number of
packet transmissions is generally lower for correlated chan-
nels. This is because when the channel is correlated it is also
likely that it stays in the good state for a longer time; thus,
it is more likely that the packet is delivered upon its first
transmission.

For what concerns throughput, we do not report absolute
values since the curves are too difficult to distinguish. Rather,
we plot in Fig. 4 the relative improvement obtained by
comparing the throughput with the steady state probability
of the Markov channel chain of being in state 0: recall that
this corresponds to the throughput in the case of a single
transmission. With our numerical choices we obtain the largest
incremental improvement by allowing F = 2. The further
increases in the throughput performance for F = 3 or F = 4
are very low. Note, in particular, that significant improvements
are obtained only when the channel tends to the i.i.d. case,
whereas the throughput variations for the correlated case are
marginal. As a general conclusion, the channel correlation

1Actually, compatibly with the numerical precision of the computation tool,
we found that Ploss is lower than 10−19 for the i.i.d. channel when F = 4.
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Fig. 4. SR Type II HARQ performance for RS codes in the KEP case:
relative throughput increase from the single transmission case.

strongly affects the performance, which justifies the worthiness
of our analysis.

V. CONCLUSIONS

We presented a Markov analysis for Selective Repeat Type
II Hybrid ARQ techniques, which allows to study from a gen-
eral perspective the behavior in terms of throughput, number
of transmissions and delay. The presented analytical frame-
work is entirely tunable and adaptable to different channel
models; moreover, it can be promptly extended to consider
also different assumptions for what concerns the transmission
process or the employed coding. Exact results have been
presented in order to evaluate Selective Repeat truncated Type
II HARQ for the case of Reed Solomon linear erasure block
codes with known error position. These results can be useful
to gain precise understanding about the behavior of HARQ
mechanisms.
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