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    Abstract— Wireless Mesh Networks (WMN) are emerging as 
an attractive technology for providing broadband connectivity to 
mobile clients who are just on the edge of wired networks, and 
also for building self-organized networks in places where wired 
infrastructures are not available or not deemed to be worth de-
ploying. This paper investigates the joint link scheduling and 
routing issues involved in the delivery of a given backlog from 
any node of a WMN towards a specific node (which acts as a 
gateway), within a given deadline. As in a real WMN, scheduling 
and routing are assumed to be aware of the physical interference 
among nodes, which is modeled in the paper by means of a Sig-
nal-to-Interference Ratio (SIR). Firstly, using a theoretical model 
of a WMN we formulate the problem as an Integer Linear Pro-
gramming (ILP) problem. Secondly, since the problem cannot be 
dealt with using exact methods, we propose and use a technique 
based on Genetic Algorithms (GAs). To the best of our knowl-
edge, GAs have never been used before for working out these 
kinds of optimization problems in a WMN environment. We 
show that our technique is suitable for this purpose as it provides 
a good trade-off between fast computation and the overall good-
ness of the solution found. Our experience has in fact shown that 
GAs would seem to be quite promising for solving more complex 
WMN models than the one dealt with in this paper, such as those 
including multiple flows and multi-radio multi-channels. 

    Keywords- Wireless Mesh Networks, Routing, Link Scheduling, 
Integer Linear Programming, Genetic Algorithms. 

I.  INTRODUCTION 

WMNs are an emerging class of networks, usually built on 
fixed nodes that are inter-connected via wireless links to form a 
multi-hop network [1]. Their main goal is to provide broadband 
access to mobile clients who are just on the edge of wired net-
works. WMNs can be used where cable deployment is not fea-
sible or is too expensive, such as in remote valleys or rural ar-
eas, but also in offices and home environments. End-users are 
served by nodes called mesh routers, which are generally as-
sumed to be stationary. Mesh routers are in turn wirelessly in-
terconnected so as to form a network backhaul, where radio 
resource management challenges come into play. Moreover, 
some mesh routers are generally provided with access (e.g. 
through wires) to the Internet and therefore can act as gateways 
for the entire WMN. Communication between any two mesh 
routers as well as from any router to gateways is multi-hop. 

Many of the WMN issues are thus common to those of 
multi-hop wireless networks, such as determining link schedul-
ing in order to obtain high throughput efficiency [2], [3] or se-
lecting appropriate routes between source and destination [4], 
[5]. However, the fact that mesh routers are fixed makes the 

backhaul of a WMN inherently different from distributed wire-
less networks (e.g. ad hoc networks), where the nodes may be 
portable devices. For example, problems such as energy con-
sumption are no longer an issue. Also, the uncertainty about 
positioning terminals due to mobility or difficulty to communi-
cate, as well as their computational capability, are mitigated. 
This makes it sensible to opt for a centralized network man-
agement, as opposed to the distributed approaches used for ad 
hoc wireless networks. In this case, nodes act in a coordinated 
fashion under the supervision of a network entity which deter-
mines the management based on global knowledge of the net-
work topology and additional conditions. 

A cross-layer approach where the routing and link schedul-
ing functionalities are jointly addressed has been extensively 
studied in multi-hop wireless networks [4]-[7]. However, the 
problem of determining, for example, the shortest deadline 
within which a specified backlog vector can be jointly routed 
and scheduled between WMN nodes and a gateway, does not 
seem to have been analyzed in the literature. This is the pri-
mary objective of the paper, which focuses on two major inno-
vations. 

Firstly, we formulate our problem through an ILP frame-
work [8] by capturing the characteristics both of the WMN to-
pology and of the radio channel, which allows us to determine 
the feasibility conditions for our problem. In the design of our 
framework we give particular emphasis to interference related 
aspects. In particular, we employ the so-called physical inter-
ference model, which computes the Signal-to-Interference Ra-
tio (SIR) at each active node and compares it with an appropri-
ate threshold [9]. ILP formulations generally use another ap-
proach, named protocol interference model, which is simpler to 
apply but in our case may actually lead to oversimplifications. 
To the best of our knowledge, our ILP formulation is the only 
one available that explicitly addresses the physical interference 
model in its original version with linear constraints and binary 
variables. However, we believe that one more merit of our ILP 
framework is to leave room for possible extensions to specific 
cases of interest, in which a given objective function is pro-
posed. 

Secondly, we use Genetic Algorithms (GAs) to solve the 
cross-layer problem, and this technique copes reasonably well 
with our framework. It is known from the literature [2] that 
finding link activation patterns that satisfy traffic requirements 
and keeping interference under control typically causes NP-
complete problems. This means that the solution to the problem 



cannot be guaranteed to be found in polynomial time. Exact 
approaches fail to solve the problem in a reasonable time, even 
with not very large topologies, e.g. with 8-10 nodes. 

GAs are an optimization technique which imitates evolu-
tionary processes existing in nature [10]. They do not guarantee 
to find the best possible solution within a given time: even if 
they are customized appropriately, they only solve the problem 
optimally with unlimited time at their disposal. However, GAs 
often work in practical cases as they are able to provide a 
“good enough” solution in a reasonable time. Moreover, they 
appear to be ideal for handling discrete values, multiple con-
straints and also multiple objectives, as happens in problems of 
network planning [11], [12], as well as with the problem dis-
cussed in this paper. We would like to stress that although GAs 
are often seen as a standard technique that can be used within 
any optimization framework, our problem requires an original 
solution to implement in the GA, which will be examined in 
detail in the paper. 

The rest of this document is organized as follows: in Sec-
tion II we discuss the literature. In Section III we outline the 
basic assumptions of the model by describing the variables and 
the notation utilized. These are employed in Section IV to for-
mulate the ILP model. In Section V we describe GAs and dis-
cuss their application to our case study. Finally, in Section VI 
we present numerical results, and we draw conclusions in Sec-
tion VII. 

II. RELATED WORK 

There are many papers in the literature [2]-[7], [13], [14] 
that can be related to the present work, as they investigate rout-
ing, scheduling, or both, through what can be seen as a Linear 
Programming framework. For example, [4] discusses routing 
optimization for wireless networks, but the main focus is on 
sensor networks, and, as is common for such systems, energy 
efficiency is considered as the objective. Also, there is no con-
sideration about mutual interference of the nodes, which is im-
portant in WMNs.  

The analysis of [13] is, on the other hand, more applicable 
to our scenario, since it deals with throughput maximization 
and focuses on interference relationships. As far as the interfer-
ence model is concerned, using the physical interference model 
is very rare in the literature. A notable exception to this is [2]. 
In this very recent paper, the evaluation of the SINR relation-
ships is used to find feasible schedules in a WMN, and compu-
tationally efficient solutions are proposed to this end. Unlike 
our investigation, a link activation pattern is sought in order to 
meet pre-determined link weights which can correspond to the 
routes, whereas in our analysis we solve both routing and 
scheduling jointly. 

This places our work in the field of cross-layer solutions, 
whose investigation includes also channel assignment, as in 
[14], where a joint channel assignment and routing problem is 
approached, but is solved through heuristics. Exact solutions 
are discussed in [5], where a joint channel assignment and rout-
ing is proposed through an ILP framework. The scheduling is-
sue is considered as the solution to a preliminary optimization, 

where only links that can be scheduled together are used. How-
ever, this paper only accounts for the protocol interference 
model, and in the routing phase non-integer link activation val-
ues are utilized. Similar considerations hold for [3], where a 
two-phase algorithm is introduced. First, a routing LP is solved 
that takes the protocol interference model into account but does 
not do any scheduling. This solution is then scheduled over 
time using a different algorithm.  

In [6], an optimization approach is proposed to jointly solve 
link scheduling and routing, as we do in the present paper. 
However, the meaning of link scheduling is different, as in [6] 
the feasibility of a vector of rates is simply sought, whereas our 
aim is to determine a link activation pattern, which delivers the 
backlog of every node to the gateways within an assigned dead-
line. This framework is further extended in [7] to include chan-
nel assignment as well. However, again the fact that the binary 
variables of link activation are relaxed to rational values is 
shown in [7] to be a limiting assumption, which may lead to 
inaccuracies in the solution. Also, all previous contributions 
presenting a cross-layer approach take into account the protocol 
interference model, whereas we use the more suitable physical 
interference model.  

Finally, our paper also presents an original contribution in 
terms of the technique used to solve the optimization. GAs are 
in fact very commonly used for a preliminary planning of wire-
less networks in general [11], and this is true for WMN as well. 
For example, in [12] there is an overview on how to use GAs to 
help the deployment of inter-urban mesh networks.  Another 
very recent paper [16] employs GAs for sensor networks. Even 
though the kind of network is different, the authors present 
some physical layer considerations about channel activation 
and the mutual interference of nodes.  

However, in all these investigations dealing with network 
deployment, the usage of GAs is mostly motivated by the high 
complexity of the problem, which prevents it from being solved 
with exact techniques. On the other hand, the speed of GA in 
giving good solutions to the problem is not exploited, since the 
time for the optimization process to converge is not as relevant 
as in shorter time-scale problems such as routing or scheduling. 
Indeed, we believe that in our problem we are able to show this 
additional advantage offered by the computational efficiency of 
GAs. To our knowledge, this fact is not very frequently ex-
plored in the literature, thus making our work innovative. 

III. BASIC ASSUMPTIONS OF THE MODEL 

We represent the backhaul of a WMN as a directed graph 

( ),=G N E , which consists of  | |N = N  nodes representing 
the mesh routers of the WMN, connected by directed edges of 
the set E  representing potential links between terminals. Nota-
tion ( , )e i j= ∈E  means that i ∈N  is the transmitter node of 
link e and j ∈N  is the receiver. We denote with ⊂Y N  the 
set of the gateways, which are any-cast end destinations for the 
mesh routers. In general, not all pairs of nodes are connected 
through an edge. We denote the one-hop input and output 
neighbors set of a node i as iS  and iR . In other words, iS  and 

iR  are the set of nodes for which an edge exists in E  to and 



from node i, respectively, i.e. { }| ( , )i j j i= ∈ ∈S N E  and 
{ }| ( , )i j i j= ∈ ∈R N E .  

Note that in a WMN it is reasonable to consider every pair 
of nodes as being connected through an edge in E , which 
means { }( , ) |i j i j= ∈ × ≠E N N  and i =R  { }\i i=S N . 
This is due to the absence, in real WMNs, of transmitting 
power limitations (mesh routers can be easily attached to a 
power outlet), and, through appropriate power control, it is 
therefore virtually possible to reach any other node. Also, the 
edges in E  only describe a virtual link between nodes of the 
WMN, which can even be unused if the routing algorithm de-
tects that they are not worth activating. In general, other tech-
niques often consider an a priori network pruning, but this may 
lead to approximations when formulating the problem, which 
we want to avoid. In fact, our methodology applies without any 
restrictions to every scenario, even strongly connected ones, as 
we leave open the possibility for any route through the set of 
nodes. Of course, this also leads to a heavier problem in terms 
of computational complexity. 

Hereafter for the sake of simplicity we also assume that 
nodes can use a single power level. This is not a limiting as-
sumption, as multiple power levels can be taken into account 
by considering multiple edges for the same pair of nodes, with-
out changing the rationale of the analysis. Similarly, we assume 
that all nodes are homogeneous in terms of the number and 
kinds of radio interfaces they own, as well as the frequency 
bands they are enabled to transmit on. Indeed, the extension of 
WMN management to the multiple channel case looks promis-
ing and several standards are envisioned to explicitly include 
support for such a case. All these extensions (multiple chan-
nels, multiple power levels, etc) can be seen as extensions of 
the basic framework discussed here and are left for future re-
search on this topic. 

We assume that the WMN system operates in synchronous 
time slotted mode where timeslots are labeled via integer num-
bers 0,1,..., ,....t . Every edge ( , )i j ∈E  is also associated with 
a transmission rate ijr  and a path gain ijg . The former de-
scribes the number of packets, assumed to be constant, that can 
be sent during a timeslot over the edge ( , )i j , whereas the latter 
is the inverse of the channel attenuation (transmitted power 
over received power) between nodes i and j and will be used in 
the following when modeling interference between transmis-
sion links. Both ijr  and ijg  variables can be collected into ma-
trices ( )ijr=R  and ( )ijg=G . Another assumption made for 
analytical tractability is that it is not possible to underutilize an 
edge below the available rate ijr , unless the transmitter does 
not have enough packets to send. This generally prevents the 
sender from splitting the data into parts smaller than the whole 
rate of an edge  However, this would be really beneficial in a 
negligible number of cases; thus, this assumption is not restric-
tive at all in practice. 

To solve the joint link scheduling and routing problem, we 
define a 0-1 scheduling variable ( )ijx t  for every ( , )i j ∈E , as 

1 if  is active on time slot 
( )

0 otherwise                                ij

i j t
x t

→�
= �
�

 

In other words, ( )ijx t  denotes whether or not there is a data 
transmission (i.e. the link is activated) on time slot t. These 
variables are bound to be integer, varying over a discrete (slot-
ted) time, so as to determine a time-division scheduling pattern 
for the WMN backhaul [2]. Similarly to the analysis presented 
by [6], we remark that the derivation of a scheduling pattern of 
links implicitly determines the routing as well. However, rather 
than approaching the routes on a per-flow basis, we derive the 
routes by looking at the dynamics of the link activation over 
time. Unlike other papers [5], [7], in this work we impose the 

( )ijx t  variables to be strictly binary and varying over discrete 
time t. In other words, we explicitly avoid relaxing constraints 
about variables to be integer, which is an approximation that 
can lead to strongly sub-optimal results in the ILP.  

For the sake of analytical tractability, we will focus on pe-
riodic scheduling, where a frame of duration T slots is assumed 
to set the cycle of link activations. This means that links are 
activated according to the solution found for t between 0 and 

1T − , and this pattern can be repeated identically every T slots. 
We assume that each node supports a single flow towards a 
gateway. The amount of traffic per node is known in advance 
and is already available at the beginning of the frame at the 
non-gateway nodes. We leave for future work any extension 
about packet arrivals delayed throughout the whole frame. The 
goal within a single frame is to deliver the traffic to the gate-
ways. This can be done by sending it directly to a gateway or 
by relaying to one or more nodes before reaching the destina-
tion gateway, depending on the status of WMN backhaul links. 
In the latter case there is flow traffic aggregation at some in-
termediate node towards a gateway.  

The progress status of the transmission to the gateways is 
modeled through variables ( )iq t , which describe at every time 
slot t the queue length at each node i. In reality, these are more 
like auxiliary variables, since, as shown in the following, they 
can be put in relationship through flow constraints with the bi-
nary variables ( )ijx t . We assume that, for every t in 0, 1, …, 

1T − , ( )iq t  represents the amount of traffic in queue at node i, 
that needs to be delivered to one of the gateways before the end 
of the frame. The connection between ( )iq t  and ( )ijx t  is such 
that ( )iq t  represents the amount of data before the application 
of the transmissions identified by ( )ijx t , whereas ( 1)iq t +  de-
scribes the outcome of these transmissions. For this reason, 

( )iq t  varies over time, so that at the beginning of the frame 

(0)iq  represents the overall amount of data (i.e. the aggregated 
demand from its associated users) to deliver for node i, and 

( )iq T  describes the residual backlog at node i after the applica-
tion of the joint routing and link scheduling pattern. 

IV. PROBLEM FORMULATION AND MAIN CONSTRAINTS 

The problem of assigning meaningful 0-1 values to ( )ijx t  can 
be seen as a flow optimization problem subject to three kinds 
of constraints. The first one is related to the flow conservation 
and delivery of all traffic to the gateways. Also, two other types 
of conditions are needed to check the feasibility of the link ac-
tivation pattern. Both of them are related to the feasibility of 



simultaneous activations of links, which is generally beneficial 
as it improves the transmission parallelism. Only compatible 
transmissions can be scheduled in the same time slot, where 
“compatibility” means “possibility to be used simultaneously.”  
Modeling this property among wireless link transmission is 
challenging, and several models have been proposed [9]. To 
check whether two transmissions can coexist, two conditions 
must be met:  

• the radio equipment of a single node cannot be used for too 
many tasks (i.e., transmission/reception). According to 
whether the channel is full duplex or half duplex [7], it is 
either possible to have at most one transmission and one 
reception at the same node per each slot, or one single task 
comprising both reception and transmission.  

• interference issues also need to be checked. Several mod-
els can be used, and we will refer to the physical interfer-
ence model [9]. 

We classify the three kinds of constraints: flow constraints, di-
rect compatibility constraints, and interference constraints. 
These are discussed in their respective subsections. 

A. Flow constraints 

The flow constraints include flow conservation for every 
time slot t at each node: 

 
 

 ( 1) max 0, ( ) ( )

min( ( ), ( ) ) , 0, , 1( )     

( )
i

i

i i ij ij
j

j ji ji
j

q t q t x t r

q t x t r i t T

∈

∈

+ = − +

+ ∀ ∈ ∀ = −

�

�
R

S
N �

 (1) 

The formulation of this constraint in a linear version ac-
counts for the possibility of having transmission and reception 
simultaneously, i.e. a full duplex case is considered. In fact, the 
right-hand term sum accounts for both incoming and exiting 
packets. However, the fact that the active incoming links (in the 
first term) and the active outgoing links (in the second term) 
can be at most one is implicitly accounted for. If the channel is 
half duplex, no modification is needed, since the condition is 
even more restrictive: at most one among all incoming and out-
going links can be active. 

Additionally, at time T everything has to be delivered to the 
gateways: 
 (0) ( )i i

i i

q q T
∈ ∈

=� �
N Y

 (2) 

We also assume that the gateways do not generate traffic. 
The formulation of a related constraint is not strictly necessary, 
but it is useful to simplify the resulting algorithm. 

 (0) 0,       ,iq i= ∀ ∈Y  (3) 

 ( ) 0,   0,1, , 1.,
i

ij
j

x t i t T
∈

≤ ∀ ∈ ∀ ∈ −�
R

Y  �  (4) 

B. Direct compatibility constraints 

The constraints that we call direct compatibility constraints 
relate to the impossibility of utilizing a transceiver equipment 
of a node for more purposes than is designed for. For full du-
plex links, the direct compatibility constraints can be written as 

 ( ) 1       , 0, , 1
i

ij
j

x t i t T
∈

≤ ∀ ∈ ∀ = −�
R

N �  (5) 

 ( ) 1       , 0, , 1
i

ji
j

x t i t T
∈

≤ ∀ ∈ ∀ = −�
S

N �  (6) 

However, wireless links are intrinsically half-duplex, unless 
special techniques are employed, which implement full duplex-
ing, such as directional antennas [17] or multiple channels [7]. 
If there is no frequency or spatial separation between transmit-
ter and receiver, if a node is transmitting, any simultaneous re-
ception will be destroyed by the self-interfering transmitted 
power. Thus, the right constraint for a WMN is a half duplex 
one. To account for a half duplex channel, the constraints 
above are simply merged so as to form 

 ( ) ( ) 1    , 0,.., 1
i i

ij ji
j j

x t x t i t T
∈ ∈

+ ≤ ∀ ∈ ∀ = −� �
R S

N  (7) 

C. Interference compatibility constraints 

The physical interference model evaluates the Signal-to-
Interference Ratio (SIR) of every transmission and assumes 
that, in order to be successful, the received power at every ac-
tive receiver i has to overcome a SIR threshold called iγ . Even 
though iγ  can be a different value for every node i, if the traf-
fic flows are homogeneous and the modulation techniques are 
the same, it is sensible to use the same threshold for all the 
nodes. Also, for the sake of simplicity and without loss of gen-
erality, we omit ambient noise terms, which could be included 
by considering the SINR (Signal-to-Interference-plus-Noise 
Ratio) instead of the SIR. This does not lead to any significant 
changes in the mathematical formulation. 

The interference compatibility constraint can be written as 

 
{ }{ } \

( )
( )      

( )

( , ) , 0, , 1  ,
j k

ij ij
ij

kj k
k i j

g x t
x t

g x t

i j t T

γ

∈ ∈

≤

∀ ∈ ∀ = −

� �
\S R

E

�

�

�

 (8) 

which is in accordance with the most commonly used defini-
tion of SIR [9]. The physical meaning of this expression is as 
follows. Assuming all links use the same power, the activation 
of link from i to j at time t, corresponding to having ( )ijx t equal 
to 1, is subject to having an SIR on this link greater than or 
equal to γ , which is obtained by checking whether the ratio be-
tween the useful power (numerator term) over the interfering 
power plus noise (denominator) is greater than or equal to γ . 
Note that, to be meaningful, the interference constraint must be 
applied to active links only. This is the reason behind the 
mathematical formulation of (8), where if ( ) 1ijx t = , the above 
inequality holds and the term ( )ijx t can be removed from both 
left-hand and right-hand terms, whereas if ( ) 0ijx t = , the above 
inequality is trivially always verified. 

In order to have a linear constraint rather than a quadratic 
one, the following artifice is employed. Rearrange (8) as: 

 { }{ }\ \

( ) ( ) ( )     

( , ) , 0, , 1  .
j k

ij ij ij kj k
k i j

g x t x t g x t

i j t T

γ
∈ ∈

≥

∀ ∈ ∀ = −

� �
S R

E

�

�

�

 (9) 



This is still a quadratic constraint. However, after some 
manipulations we can derive the following linear relationship 
as the interference constraint:  

 { }{ }\ \

( ) ( ) 1      

( , ) , 0, , 1

( )( )
j k

ij j kj k ij
k i j

g g x t x t

i j t T

γ
∈ ∈

≥ + −

∀ ∈ ∀ = −

� �
S R

E

�

�

�

 (10) 

This formulation can be shown to be equivalent by consid-
ering each possibility of ( )ijx t  being either 0 or 1 and relying 
on constraint (7), which bounds the inner-most summation to 
be always less than or equal to 1. Note that this would also hold 
true in the full duplex case, since the role of constraint (7) 
could be played by (5) and (6) together. 

Even though the problem can be entirely formulated within 
an ILP framework, the solution is hard to find with exact meth-
ods. This happens since the problem can be shown to be NP-
complete [2]. As it will be shown in section VI, the problem 
becomes untreatable even with a limited number of nodes, i.e. 
more than 5 mesh routers including a gateway. The computa-
tional complexity is also strongly dependent on T. Heuristic 
solutions [14] might work in certain cases, but they fail to adapt 
to different network scenarios. 

For these reasons, we propose in this paper a self-
configurable and efficient methodology based on Genetic Al-
gorithms, which will be explained in detail in the next section. 

V. A GENETIC APPROACH 

Genetic Algorithms (GAs) are a meta-heuristic technique 
employed to solve optimization problems, which imitate Natu-
ral Selection, i.e. the process of adaptation to the environment 
performed by living beings [10], [18]. GAs are an appealing 
approach to solve the complex problem stated in the previous 
sections. Among their most interesting features, GAs 

• are able to find “good solutions” to an unconstrained prob-
lem in a reasonable time, and they always find at least one 
“good” suboptimal solution, 

• does not require a differentiable objective functions and 
can be tailored to handle any sort of constraint,  

• can easily handle discrete problems by choosing a discrete 
alphabet of symbols (e.g., integer numbers) for the chro-
mosome, 

• can scale with the problem by changing the setup of some 
parameters (e.g., number of individuals in the population), 

• can be customized to include some heuristics and experts’ 
knowledge in the generation of the initial population and 
in the design of the genetic operators. 

For these reasons, we chose GAs as the heuristic approach 
to solve the problem formulated in Section IV but without re-
laxing any of the constraints, including the integer constraint of 
variables ( )ijx t . 

A. Genetic Algorithms: Background 

A GA determines, rather than a single solution, a whole 
population consisting of individuals, which are all candidate 
solutions to the problem. The distinctive features of each indi-
vidual are coded into a structure called chromosome. The 

chromosome is a string of genes, whose values can be chosen 
in a set of symbols. An application-dependant process gener-
ates the individual by decoding its chromosome. The symbols 
used as values of the genes are usually binary, integer or real 
numbers, depending on the nature of the problem. Once an in-
dividual is generated, a fitness function is used to evaluate its 
goodness as a solution to the problem. Usually, low values of 
fitness function are given to the best individuals (minimization 
problem). For the sake of simplicity, in the following we will 
blur the definitions of individual and chromosome. 

A GA starts with an initial population generated either ran-
domly, or with some heuristic approach that exploits the 
knowledge of an expert in the problem domain. The algorithm 
then proceeds in steps called generations. At each generation t, 
a new population P(t+1) is evolved from P(t). As generations 
pass, the population should improve globally thanks to the ap-
plication of genetic operators that mimic the natural evolution 
mechanisms. To this aim, the best individuals are chosen from 
P(t) (selection) to be mated (crossover) and slightly modified 
(mutation), so as to create the new population P(t+1).  

The selection operator is used to decide which individuals 
in P(t) should be chosen to generate P(t + 1). Optionally, an 
elite of the selected individuals (i.e. a small number of the best 
performing individuals) survives and is moved from P(t) to 
P(t+1) without any change. The crossover operator consists in 
choosing some of the individuals and mating them, that is, sub-
stituting them with their children, i.e., individuals generated by 
mixing the genetic material in the parents’ chromosomes. The 
actual implementation of a crossover operation very much de-
pends on the coding schema of the chromosome. Finally, the 
mutation operator introduces some new genetic material in the 
population by randomly modifying the values of some genes. 
Again, different kinds of mutation operations can be defined to 
handle different sets of symbols. The population continues to 
evolve until a stopping criterion is fulfilled, the simplest being 
a maximum number of generations. The overall basic GA algo-
rithm is shown in pseudo-code in Figure 1. 

 If crossover and mutation are general enough, GAs can be 
shown to allow the exploration of the whole solution space. If 
an optimization goal is set, they are bound to find the optimal 
solution, even though it cannot be guaranteed that it will be the 
optimal one, nor can the time to find it be predicted. However, 
since the execution time is generally rapid, GAs are also inter-
esting for practical purposes as they can be seen as fast proce-
dures to find a “good enough” solution to the problem. This 
gives them an advantage with respect to exact techniques such 
as Branch and Cut used in commercial solvers, since any solu-
tion produced by a GA is directly applicable. Therefore, GA 
could be used to operate online WMN management, where the 
solution may be iteratively updated. This could also be an in-
teresting development of the present analysis for future work.  

B. A GA-based approach for the ILP problem 

While some classes of problems can be solved by directly 
applying a basic version of a GA, more often the development 
of such an algorithm for a specific problem is an engineering 
process that involves a good amount of design and tailoring. 



initialize P(0 ) 
repeat 

   evaluate P(t ) via fitness_function; 
   apply selection to choose parents; 

   apply crossover to generate offspring 

   apply mutation to offspring 

   generate P(t+1) 

   increase t by 1 
until a termination condition is verified 

 
Fig. 1.  The pseudo-code of a basic GA. 

Indeed, the design of a GA includes finding suitable representa-
tion schemas, coding strategies, genetic operators, values of 
parameters, etc. Furthermore, if the problem is constrained, like 
the ILP formulated in Section IV, we are forced to select and 
adapt appropriate constraint-handling methods from the ones 
available in the literature [19], [20]. 

The first step when designing the GA is to identify how to 
mathematically represent a solution as an individual, in order to 
create a population for the algorithm. In our case, given the 
natural binary formulation of the problem, we consider genes to 
be binary digits. Thus, the chromosomes are coded as se-
quences of bits representing the variables ( )ijx t , sorted first 
internally to each frame by any ordering of the edges, then 
frame-by-frame in an increasing order. Formally, the genetic 
map of any individual is: 1 2( (0), (0), , (0),Ex x x� �  

1 2( ) , ( 1), ( 1), , ( 1))e Ex t x T x T x T− − −� � , where indices 
1,2, , E�  refers to a suitable ordering of the set E . 

To generate an initial population, composed of 200 indi-
viduals, we investigated the use of several heuristics for routing 
and scheduling problems, but currently none of them seems to 
significantly improve the solutions with respect to a completely 
random initial population. Nevertheless, we observed that good 
candidate solutions show overall a count of active link that is 
much less than the number of inactive links. Thus, to speed the 
convergence of the GA, we non-uniformly generate the random 
initial population with a ratio of active links equal to 0.2 over 
all links. However, this point may deserve further investigation 
in future research. 

The GA proceeds by iteratively modifying the population, 
that is, by cyclically applying the selection, the crossover, and 
the mutation operators as described in Section V.A. As the se-
lection operator, we use the robust and well-known stochastic 
universal sampling [18]. As regards the other operators (cross-
over and mutation), we developed our customized versions. 
Our coding schema has two granularity levels: the link level, 
represented by a single gene, and the frame level, coded by the 
overall configuration of the network for one time slot. We de-
signed our operators so as to work on both levels of granularity. 

The crossover operator is the 0.5-uniform crossover [18]. 
The standard version of this operator chooses the value of each 
gene in the chromosome of a child between the two values of 
the parents, with a uniform probability. This is a link-level 
granularity. Nevertheless, it can be useful to apply the same 
approach on the frame level, so as to exploit the knowledge al-
ready discovered about whole time slots. Thus, our modified 
uniform crossover may act, with a uniform probability, on one 
of the two different granularities, mixing single bits or whole 
time slots from the two parents to generate the child. 

A similar approach was used to develop the mutation opera-
tor. We recall that the aim of this operator is to introduce some 
new previously unexplored solutions in the population by 
slightly modifying the current ones. Thus, our mutation opera-
tor can perform, with uniform probability, one of the following 
operations: 

 

• mutate the chromosome on a link-level granularity by the 
uniform random mutation [18], 

• scramble some of the time slots of the chromosome (e.g. 
switch slot number 1 and number 5), 

• replace some time slots with a duplicate of other slots of 
the same chromosome (e.g., replace slot number 5 with a 
copy of slot number 1), 

• replace some slots with empty slots. 
To satisfy the constraints, we used two different techniques. 

We divided constraints into two classes: constraints that have 
to be satisfied by each individual generated during the algo-
rithm, and constraints that can be unsatisfied by some individu-
als. The first class includes the direct compatibility constraints 
of (7). The second class includes the flow constraints of (1) and 
(2), and the interference compatibility constraints of (10).  

Constraints in the first class are always satisfied by means 
of a repair process, which is performed after the application of 
any genetic operator that might produce an infeasible individ-
ual. For instance, suppose that the mutation operator generated 
an individual in which, at some time, a node activates two out-
put links in the same time slot. In this case, the repair randomly 
deactivates one of the links, and fixes the individual. Another 
case handled by repair is the activation of an output link by a 
node that has no more packets to send. Since repair is per-
formed each time a genetic operator is applied, it must be de-
signed to be an extremely fast and efficient routine. Thus, we 
decided to deactivate conflicting links in a random fashion, and 
to repair only “easy” constraints that are the basis to derive all 
the ILP problems in Section IV. Nevertheless, further research 
could lead to a more effective repair process based on a pre-
evaluation of all the possible fixed individuals generated by an 
infeasible one.  

Constraints in the second class are handled by allowing in-
feasible individuals to survive in the population. Those indi-
viduals are given higher values in the fitness function by means 
of penalty functions. The penalty is computed in the following 
way: 
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Fig. 2.  Grid topology with 5 or 9 nodes, including a gateway. 

where ( )ijp t describes the interferences violations at time slot t, 
that is  
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The fitness function can also incorporate, by a linear com-

bination, some metrics of the network that we want to optimize. 
Interestingly, the best results, both in terms of convergence 
speed and goodness of the solution found, were given by also 
including a (small) penalty proportional to the number of acti-
vated links per slot, i.e. to the sum of ( )ijx t  over all edges and 
the whole frame. This is because activating too many links not 
only causes more interference, but also prevents the GA from 
trying alternative routes by means of crossover or random mu-
tation, which is due to the reparation. This vanilla approach can 
be easily modified to incorporate any other network measures, 
such as global interference, throughput, minimum number of 
time slots, etc.  

As stated above, the typical termination condition of a GA 
is a fixed maximum number of generations. We used a hybrid 
stopping condition which still stops the GA after a maximum of 
200 generations and tries to perform an early stop in two cases: 

• a good feasible solution is found quickly, or 
• the problem seems to be infeasible. 
The idea is that, if we already are in the feasible region, we 

are not interested in optimizing the network metric much more, 
and that if the problem seems infeasible, we should give up 
early with the best solution found. Thus, in the former case, we 
perform an early stop if, after a first feasible solution is found 
(that is, a solution with � > 0), we do not find any other better 
solution in 5 generations. In the latter case, we perform an early 
stop if we have not found any feasible solution and we have 
noticed no improvements in the last 50 generations.  

VI. NUMERICAL EVALUATIONS 

To evaluate the performance of our GA, we consider a grid 
consisting of 35 m � 35 m squares, as reported in Fig. 2. Each 
square can be occupied by at most one node, according to a 
pre-determined pattern indicated below. A specific square oc-
cupancy identifies a different scenario instance. The node is 
randomly placed (with uniform distribution on both coordi-

nates) within the square. The rational behind this approach is to 
model channel variations through changes in the network to-
pology, while at the same time keeping constant some parame-
ters, e.g., the number of nodes. For this reason, any instance of 
the same scenario can also be viewed as a different topology 
which can be created on the same physical network, where 
nodes have fixed placements but the channel is time-varying. 
We consider two scenarios, both with a gateway placed in the 
black square. In the first one, which consists of 5 nodes, be-
yond the gateway node, 4 mesh routers are placed in each of 
the dark grey squares. Four additional routers are placed in the 
light grey squares so as to form the second scenario, with a 9-
node topology. For each scenario we generated 20 different to-
pology instances by varying the node position within the square 
it belongs to. 

The graph resulting from node placement is also deter-
mined by considering the path gain of each edge of length d as 
proportional to 3.5d −  and its rate as a discrete value function of 
the distance, determined as constantly equal to 8 packets/slot 
for d below 50 meters, 4 packets/slot between 50 and 75 me-
ters, 2 packets/slot between 75 and 100 meters, and 1 
packet/slot for larger distances. We assumed half duplex chan-
nels and SIR target γ  equal to 3.0 (in linear scale) for all the 
receivers. 

We implemented the GA algorithm as discussed in Section 
V, using the procedures contained in the genetic package of 
MATLAB Release 2006a [21] as a basis.  

The GA was run five times for each topology instance, in 
order to avoid particularly unfortunate cases where the GA 
terminates in a dead end of the state space. The plotted results 
refer to the best solution out of the five trials. Whenever feasi-
ble, to test the goodness of the solutions found by the GA, we 
also implemented an exact ILP solution technique using the 
LPSOLVE model solver [22]. Both algorithms were tested for 
the 20 different topology instances mentioned above. 

As performance metrics, we considered both the fraction of 
cases (i.e. topology instances) in which the GA finds a feasible 
solution (i.e., a solution which allows the delivery of the back-
log from any node to the gateway within the frame duration) 
within the above termination conditions, and the delivery ratio 
(i.e., the ratio of delivered packets over the total traffic of each 
node) of the best solution found.  

We show detailed results considering GA performance, and 
also comparing it with exact optimization techniques for the 5-
node topology. It is hard to make a detailed comparison of both 
genetic and exact algorithms on topology with a higher number 
of nodes due to the computational complexity of exact tech-
niques. In a sense, not only is the Genetic Algorithm more 
computationally efficient, but it also has the considerable ad-
vantage of being more scalable. 

In Fig. 3, we show the performance of the GA in the 5-node 
network, for the case where the load to deliver to the gateway is 
fixed for each node to 10 packets, and we vary the frame length 
T. For comparison, exact results are also plotted. 

As expected, the fraction of feasible solutions found is an 
increasing function of the frame length, for both GA and the 



 
 

Fig. 3.  5-node scenario, GA performance as a function of the 
frame length. 

 
 

Fig. 4.  5-node scenario, GA performance as a function of the 
number of packets per node. 

exact technique, since a larger T offers a higher degree of free-
dom in accommodating the packets over the schedule. It is pos-
sible to see that for low and high values of T, the performance 
of the GA matches the exact results perfectly. For intermediate 
values, the GA slightly underestimates the solvability of some 
instances, since it may fail to find an existing feasible solution. 
However, in the worst case the ratio in finding a feasible solu-
tion whenever it exists is 61.3% for T = 9, whereas it is consid-
erably higher for any other case. 

However, even when the GA fails to find an exact solution, 
either because the optimization stops to a suboptimal value or 
since it does not actually exist, the delivery ratio achieved by 
GA is still fairly high. For small values of T, the GA is always 
able to deliver 80% of the traffic or more, whereas for 8T ≥  
this ratio is above 96%. This represents a very important ad-
vantage of GA in practical implementation, as it gives a solu-
tion in any case, and when this is not the optimal one it is still 
very close to it. 

 Fig. 4 shows the result of another similar investigation, 
where T is kept constantly equal to 10 and instead the load per 
node is changed. The trend is reverted, since the higher the load 
the more difficult it is to have a solution and also to find it 
through the GA. However, in this case too the worst perform-
ance of the GA is an exact solution of 60% of the cases, in rela-
tion to a delivery ratio which is very high in any case. For ex-
ample, if the load per node equals 14 packets, only 20% of the 
topologies admit a solution, 75% of which are found by the 
GA. However, the delivery ratio is larger than 95%. From an 
information theory point of view [9], these curves may also be 
used to discuss network capacity. In this case, the "critical" 
load of the network, i.e., the value around which the fraction of 
feasible allocations drops significantly, is 12 packets per node, 
which corresponds to a maximum capacity of around 4.8 pack-
ets/slot. 

In Fig. 5 the same results as Fig. 3 are reported for the 9-
node scenario. The trend is more or less qualitatively similar, 
though due to the larger number of nodes the time to deliver all 
packets becomes larger. Here, it was impossible to include ex-

act results as well, since the network is already too large to 
keep the execution time of any exact algorithm within reason-
able bounds. Likewise, Fig. 6 reports the same analysis as Fig. 
4 for the 9-node scenario. Due to larger network size, in this 
case the time frame was fixed to T = 20. Again, the range be-
tween 8 and 12 packets per node is critical for the network. The 
solutions found by the GA indicate that the 9-node scenario is 
able to accommodate 10 packets per node in 50% of the cases, 
that is, the capacity is approximately 4.0 packets/slot. The 
slight decrease with respect to the 5-node topology is perfectly 
in line with the larger network size and also with the fact that 
the nodes added in this scenario are further from the gateway 
(so they have both a lower rate for their connections and a 
higher number of hops). 

These results seem to suggest that the GA scales suffi-
ciently well for larger topologies. To understand in more detail 
the complexity of the algorithm, and in order to have compari-
son results with the exact techniques, we can refer to Fig. 7, 
where a complexity analysis is performed. Here, we focus on 
the only instances of the 5-node scenario where a feasible solu-
tion was found by both algorithms, and we measure the com-
plexity through the following performance indices: a) number 
of evaluations of the fitness function made by GA; b) simplex 
iterations performed by LPSOLVE. This gives a rough idea of 
how the algorithms scale when the size of the problem in-
creases. Moreover, we vary the frame size T, since the com-
plexity of the problem strongly depends on it. 

As shown in the figure, whereas the exact technique ex-
plodes already when T is changed from 7 to 10, the GA com-
plexity stays more or less constant. Indeed, it even slightly de-
creases when the frame length is very high, since in these cases 
a solution is found very rapidly, as is reasonable to expect. This 
proves how good the GA is in finding a quick valid solution to 
easy problems. In practical cases, it is possible that the network 
resources are not fully utilized, e.g., the traffic per node is sig-
nificantly lower than what can be allocated over an entire 
frame. However, exact techniques can fail to quickly solve the 
problem, due to its large size  In this case, GAs can be seen as a 



 
 

Fig. 5.  9-node scenario, GA performance as a function of the 
frame length. 

 
 

Fig. 6.  5-node scenario, GA performance as a function of the 
number of packets per node. 

 
 

Fig. 7.  Computational complexity benchmark. 
 

very good alternative to heuristics, since by modifying their 
meta-parameters they are able to adapt themselves to different 
problem instances.  

VII. CONCLUSIONS 

In this paper we have investigated joint link scheduling and 
routing strategies for Wireless Mesh Networks. We have pro-
posed an optimization framework making use of an entirely 
ILP formulation, where we particularly aimed at keeping the 
integer constraint of link activation variables and adopting the 
more realistic physical interference model. This led us to the 
formulation of an ILP problem whose solution captures both 
levels of link scheduling and routing in a cross-layer fashion, 
by supplying a periodic link activation pattern which is able to 
deliver a given amount of traffic to the network gateways.  

The main findings are that the physical interference model 
is still treatable within the ILP framework. The hard part of the 
problem is due to the integer constraint, which causes the com-
putational complexity to grow exponentially, both in the num-
ber of nodes and in the length of the time frame. Due to the in-
herent complexity of solving such a problem, we also proposed 
a fast and efficient solution technique, namely Genetic Algo-
rithms. After having discussed theoretical principles of GAs, 
we introduced several original implementation parts in order to 
obtain efficient GAs for the problem under investigation. 

Finally, the proposed GA has been tested in two wireless 
mesh network scenarios. The numerical evaluations show that 
the GA is able to solve both scenarios reasonably well, and also 
scales well, whereas exact optimization techniques are unable 
to solve the larger topologies. The solution found by GA is not 
always optimal. However, it is always very close to the opti-
mum. Moreover, the GA is a very good approach for realistic 
cases where feasible solutions are easy to find, since in these 
cases they converge very rapidly, compared to other tech-
niques, to a solution which is good in practice. For these 
reasons, we believe that GAs could be very useful tools for a 

centralized management of WMNs due to their good level of 
efficiency in a reasonable computational time.  

Future research could be devoted to further optimizing the 
proposed GA, for example to enable it to deal with non-binary 
structure in order to better manage larger networks and/or de-
crease the computational complexity even more. Also, we envi-
sion that GAs could be used in more complex problems charac-
terized by multiple flows and multi-radio multi-channels, due 
to their ability to cope with multi-dimensional constraints and 
objectives. 
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