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Abstract This paper explores analytical Radio Resource
Management models where the relationship between users
and services is mapped through utility functions. Compared
to other applications of these models to networking, we fo-
cus in particular on specific aspects of multimedia systems
with adaptive traffic, and propose a novel framework for de-
scribing and investigating dynamic allocation of resources in
wireless networks. In doing so, we also consider economic
aspects, such as the financial needs of the provider and the
users’ reaction to prices. As an example of how our ana-
lytical tool can be used, in this paper we compare different
classes of RRM strategies, e.g., Best Effort vs. Guaranteed
Performance, for which we explore the relationships between
Radio Resource Allocation, pricing, provider’s revenue, net-
work capacity and users’ satisfaction. Finally, we present a
discussion about Economic Admission Control, which can
be applied in Best Effort scenarios to further improve the
performance.
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1 Introduction

The evolution of wireless communication systems is very
rapid, and more and more services are being offered through
the wireless medium. This implies an increasing importance
of the Radio Resource Management (RRM), which must con-
sider not only technical efficiency but also whether different
constraints given by users’ preferences are met. This and
other economic aspects (e.g., the provider’s income, which
makes the business model sustainable) can have a heavy
impact on the entire system. In particular, this is a strong
point when rate adaptive traffic [1, 14] is considered, i.e., the
system allows a tunable allocation, with possibly different
degrees of service.

In the recent literature, several researchers have proposed
to introduce utility-based RRM to take these facts into ac-
count [6, 10, 17, 19]. In these approaches, utility functions
are used to describe the relationship between the users’ ser-
vice appreciation and the allocated resource, which is an
effective means to mathematically represent the Quality of
Service (QoS) provided. In this way, in fact, one can both
control the QoS requirements of every user and also evaluate
the overall network welfare, defined as an aggregate of the
utilities (e.g., their sum).

The introduction of utility functions offers an analytical
tool to represent the relationship between users and services.
However, it is arguable whether such a connection can be
realistic if the pricing issue is neglected. Since the services
do not come for free, users would likely prefer to have a
cheap service. Hence, we need to include into the model
the trade-off between offered QoS (seen through utilities)
and price paid. In the present paper we will refer to the
MEDUSA (Micro-economic Elastic Decentralized Users’
Service Acceptance) model proposed in [2], even though
the conclusions are more general, i.e., other models can be
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used as well. The only required aspect is to represent in
some way the choices of each user according to both utility
and price in a reasonable manner (i.e., users always prefer
higher utility and lower price). The important aspect of the
MEDUSA model we will use here is that it introduces a
satisfaction probability for each user, and allows the eval-
uation of every performance metric for the satisfied users
only.

In this paper, we expand the previously defined model
to gain theoretical insights about the RRM in the case of
dynamic resource assignment. We propose in particular to
introduce what we call backward utility functions, which
effectively represent the effect of service degradation. As
is well known, service degradation for ongoing connections
might be very annoying, thus penalizing the perceived QoS.
Under this framework, we analyze the goals of achieving
both satisfactory revenue for the provider and welfare for the
users, implying that a trade-off has to be cut between offered
QoS and pricing.

Moreover, we consider two possible approaches to utility-
based RRM, which are a reservation scheme in which the
initial allocation is kept constant (which leads to no degrada-
tion, but potentially also to refusing many connection) and a
best effort strategy where the allocation is adapted dynam-
ically according to the incoming requests from the users.
We show how this latter policy depends on the degrada-
tion of the utilities when the allocated resource is changed.
Thus, our proposed utility model is able to account for the
degradation of the utilities due to decreased assignment. The
performance of the resulting allocation schemes is discussed
and compared by means of an extensive simulation campaign
in a wireless cellular scenario.

This comparison is further analyzed under the point of
view of Admission Control techniques using economic cri-
teria [8, 11, 17], In particular, we show that such an Eco-
nomic Admission Control (EAC) can be applied to the Best
Effort scenario, being able to significantly improve the per-
formance. At the same time this approach obtains a more
efficient resource management with respect to an allocation
with fixed guarantees on the QoS.

The application of the model depends on the network ca-
pacity, which in turn depends on how multiple users access
the channel. Throughout the paper, we will use, where pos-
sible, very general capacity models for wireless networks.
When specific assumptions are required, e.g., in the numer-
ical evaluation, we will refer to a Code-Division Multiple
Access (CDMA) case, since it is often considered in pre-
vious work on this subject [5, 14]. However, our approach
can be applied without significant changes to any centralized
interference-limited system (e.g., to Wireless LANs in [3]).
Moreover, due to its generality, it can be applied to other
systems with centralized management as well, with slight
modifications.

Note that for such systems it is also very important to
determine the optimal allocation in the sense of many met-
rics (throughput, fairness. . . ) which is challenging due to the
so-called soft capacity property [16]. For this reason, contri-
butions employing utility functions often apply optimization
techniques and game-theoretical approaches [11] to seek the
maximal performance of the system. Since the purpose of
this paper is to introduce backwards utilities and to discuss
their role in driving the RRM and economic behavior of the
system, we will adopt a simpler approach, leaving more re-
fined optimizations (which are of course of interest in this
context) as a topic for future research.

The paper is organized as follows: in Section 2 we in-
troduce the model to represent the allocation of the radio
resource and the users’ appreciation of their assignment. In
Section 3 we extend this static model in order to take into
account also rate degradations. This results in the original
proposal of backward utilities, i.e., a memory effect to ac-
count for degradations in the assignment. Section 4 theoret-
ically discusses and compares possible strategies to allocate
resources, and investigates the concept of Economic Admis-
sion Control, whereas Section 5 applies these issues to a
given simulation scenario. Finally, in Section 6 some con-
clusions are drawn.

2 The MEDUSA model

We give here a short summary of the MEDUSA model,
whose basic idea is to quantify the level of satisfaction for
each of the N users, which depends on both the perceived
QoS and the price paid. For each user i , an Acceptance value
Ai ∈ [0, 1] is defined, that depends on the utility ui and on
the paid price pi and is a mathematical evaluation of the
satisfaction for the i th user.

Similar concepts can be found also in [6, 14]. However,
differently from these contributions, our use of Ai aims at the
same time at the analytical evaluation of QoS as well as eco-
nomic quantities. Moreover, we do not investigate optimality
conditions, but rather we explore the dynamic allocation of
radio resource. In fact, we adopt the following statistical
interpretation: every user has a probability of reaching satis-
faction equal to Ai . Moreover, only the resource allocated to
satisfied users is efficiently used. In the following, we will
assume that allocation to unsatisfied users is wasted, since,
for example, they leave the service. This impacts on every
metric related to resource allocation, such as throughput and
revenue earned by the provider, which must be evaluated only
on users accepting the service. In other words, we implic-
itly assume that dissatisfied users do not pay for the service.
This is true if we focus on the long term objective of the
provider: dissatisfied users are lost customers and represent
an economic loss.
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Several expressions are possible to define a sensible ac-
ceptance function. In [2] the following one was proposed:

A(ui , pi ) � 1 − e−k·(ui /ψ)µ·(pi /φ)−ε

, (1)

where k, µ, ε, ψ, φ are appropriate positive constants. The
exponents µ and ε determine the sensitivity to utility and
price, respectively, whereas ψ , φ and k are merely normal-
ization constants (a reference utility, a reference price, and
the opposite of the logarithm of a reference value for A, re-
spectively). Note that both ui and pi depend on the allocated
resource ri . Thus, the shape of the acceptance probability
as a function of ri depends on the functions ui = ui (ri ) and
pi = pi (ri ).

The MEDUSA model can be exploited to study different
aspects of the Radio Resource Management. In particular, in
this work we focus on rate assignment in centralized (e.g.,
cellular) wireless networks. This choice will allow us to in-
vestigate different general policies for service provisioning,
as well as Admission Control. Also, we focus on systems
where the central provider has the possibility of renegotiat-
ing the allocation. In wireless networks carrying multimedia
traffic, although rate allocation is performed at the beginning
of a connection, reallocation may occur during the connec-
tion lifetime as well. In this sense, this framework is more
general than more traditional schemes in which calls can
only be blocked or dropped.

For the sake of simplicity, we identify ri with the trans-
mission rate of terminal i considered on average, i.e., without
tracking the instantaneous channel variations due to fading.
Several statistical metrics coming from each user allocated
with rate ri , with corresponding utility ui and price pi , can
be evaluated directly. For example, the average revenue R
earned by the provider can be computed as

R =
N∑

i=1

pi A(ui , pi ) , (2)

and similarly the average number S of admitted users is

S =
N∑

i=1

A(ui , pi ) . (3)

In these evaluations, Ai s are employed with a statistical
meaning. Likewise, it would be possible to evaluate other
metrics, such as the average amount of allocated resource T
or the average total utility or network welfare U , which are
obtained by replacing pi in (2) with ri and ui , respectively.
The entire analysis which we will develop in the following
can be readily adapted to any of these metrics by following
the same rationale.

This framework can also be used to compare different ob-
jectives of the RRM, e.g., as in [19], where it is shown that
the maximization of the total revenue leads to different con-
clusions than the maximization of the network welfare, or to
derive multiple-objective optimizations, since the short-term
goal can be different from that in the long-term. However,
note also that all these metrics are inherently correlated, since
in general the higher the users’ satisfaction, the more the al-
located resource, and hence the higher the potential revenue.
For these reasons, many of the results shown for one met-
ric can be inferred also for the other ones in a qualitatively
similar fashion.

Consider the goal of maximizing the revenue,1 defined
in (2). The following intuitive property is implicitly repre-
sented: too high prices drive customers away (Ai decreases)
and yield very little revenue, whereas too low prices can
easily be afforded by all users, but also with low revenue
as a result. This suggests that there exists an optimal pric-
ing policy, i.e., an expression for pi (·) which maximizes the
revenue. In general, a purely analytical investigation of the
problem is hard. Moreover, if done under the assumption of
having pi ’s as general as possible, it will result in an unreal-
istic model, since pi (·) should be the same function at least
within the same service class, and in general similar for all
users.

Note that technological constraints impose that ri is be-
tween 0 and a maximum value rmax, which is assumed to
be the same for all terminals for the sake of simplicity, and
which depends on the considered technology. We will also
consider additional assumptions for the utility and pricing
functions. These choices are only for the sake of analyti-
cal convenience, but other assumptions can be used as well
(provided that the basic properties previously discussed are
satisfied).

To model the utilities, we employ sigmoid curves, which
are well-known functions often used to describe QoS per-
ception [17]. The following expression will be employed to
represent them:

u(r ) � ψ
(r/xs)ζ

1 + (r/xs)ζ
. (4)

The parameters ζ ≥ 2 and xs > 0 tune the utilities, so that
they might be different for different users. Note that the value
xs is such that u(xs) = ψ/2. In our simulations, xs and ζ are
random variables for each user. With this definition, utilities
are in the range [0, ψ]. This aspect will be extended in the
next section to allow a broader meaning of utility.

For what concerns the pricing schemes, several contribu-
tions [12, 13] have shown that the tariff setup has the double
role of achieving revenue and coordinating users. In this

1 As discussed, similar conclusions can be derived for any other metric.
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work we want to discuss a pricing function defined a priori,
which is applied in the same manner to every user. In gen-
eral, a realistic pricing function is also often required to be
simple, as users usually do not like to deal with complicated
tariff plans. For the sake of simplicity, we consider in our
practical evaluations a usage-based linear pricing scheme,
i.e., we assume p(r ) = ξr , with the same constant unit price
ξ for all users. However, other more realistic tariffs can be
used [5, 7] with the same approach. The reason of our choice
is merely its conceptual simplicity.

We assume that users arrive at separate instants. We do
not investigate in detail the impact of the different traffic
patterns: for our purposes, it is sufficient to think of a list
of users to be allocated sequentially in the network. This
roughly models the queue of users entering the system, re-
questing a connection and hence either accepting or refusing
the rate proposed by the provider. We also assume that the
users accepting the assignment remain in the system for an
indefinitely long time, in order to investigate the system per-
formance at saturated capacity. We assume that the resource
manager tries to allocate any new user, say user i , by giving
an assignment ri . Since the allocator can not exactly predict
the requests of the upcoming users in the queue, we might
think that it adopts a greedy strategy fixed a priori, for exam-
ple the one described as follows (this reasoning is applicable
however to any other conceptually equivalent strategy). We
consider a rate allocation strategy based on the derivative of
the utility, since u′(r ) describes the subjective perception of
changes in the rate assignment. We assume that the provider
determines a single threshold value ϑ > 0. The initial rate
assignment for user i , called ri0, is:

ri0 � max({0} ∪ {r ∈ ]0, rmax] : u′
i (r ) ≥ ϑ}) . (5)

Equation (5) means that we choose the highest rate which
gives a marginal utility larger than ϑ . If there exists no rate
with such marginal utility, we give a rate assignment equal
to 0. Due to the saturation of the utility functions, the greater
the value of ϑ , the lower the initial rate ri0 proposed to user
i . This implies that ϑ → 0 means, roughly speaking, very
high utility supply, whereas higher values of ϑ imply the
allocation of lower rates. Note that this strategy is meant
to be simple, and intentionally not related to any optimiza-
tion of the allocation policy, which is a well known topic in
micro-economics, but is beyond the scope of the present pa-
per, which simply discusses a framework to evaluate users’
reaction to any allocation policy. However, further investiga-
tion about how to efficiently select ϑ may be an interesting
subject for future work.

The allocation rule operates jointly with the feasibility
constraints given by system capacity. Since we mostly refer
to interference-limited systems, which are characterized
by the so called soft capacity property, we take a general

approach, in order to avoid further relationships due to
power values and interference conditions, which would
complicate the description. Thus, we use the well-known
Shannon’s capacity formula to translate the assigned rate ri

to user i into a signal-to-interference ratio (SIR) value:

γt,i = 2ri /B − 1 , (6)

where B is the system bandwidth. In this way, we obtain the
target SIR γt,i for user i . It is possible to check if the initial
value ri0 determined for the i th user by Eq. (5) is feasible
if considered together with the values assigned to the previ-
ously allocated i − 1 users. To do this, we simply consider
the feasibility of solving the Power Control problem [18]
when the vector of SIRs for all users is determined through
(6) and all propagation parameters (which will be given later
in Section 5) are known. For the rest of this paper, we will
refer to the uplink of a cellular system, and therefore we
will check if the powers found through the Power Control
solution are between 0 and a value Pmax which is assumed
to be the maximum power that a terminal can use. Note that
the downlink allows a very similar formulation where this
feasibility check is replaced by one on the sum of all powers
and the available power at any base station.

If the set of the target SIRs for all users is feasible, this
rate assignment is kept. Else, a decision has to be made,
according to the different RRM policies as will be shown
in the next section. Note that in every case we will come
up with an assignment r = {r1, r2, . . .} which is iteratively
updated (e.g., by decreasing some of the rates assigned). For
generality, we do not introduce any lower bound for the SIR,
which can be indefinitely decreased by repeated admissions.
However, there is actually an inherent limitation due to the
rate degradation, which occurs together with the SIR descent
and at a certain point will no longer be accepted by the users.
This is evaluated through the MEDUSA framework to deter-
mine whether users are satisfied with their rate assignment or
refuse the service and leave the system. Since the allocation
can be dynamically changed, also this decision can change
during time, and this will be addressed in the next section.

3 Dynamic rate allocation and backward utilities

In the previous evaluations, the focus is on user i , which is the
one being considered for admission. To have a realistic anal-
ysis however, we should consider that in interference-limited
systems every new admission may decrease the quality of al-
ready connected users [16]. A way to see the degradation is
to consider that the interference increase might lead to the
infeasibility of the SIR requirements for some of the exist-
ing users, due to the newly admitted one. We can assume
a dynamic soft tuning of the initially offered QoS, but in
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this case, we also need to see how users react when their
assignment (or quality) is reduced. Hence, as a result of a
new admission, previously admitted users might even decide
to leave the system, if they refuse to accept the degradation
in their perceived QoS.

The model previously shown needs to be extended to
incorporate also the reaction to a dynamically variable as-
signment. In particular, this is necessary to capture situa-
tions where new admissions cause infeasibility of the as-
signments for previously connected users. This might be due,
in interference-based scenarios, to an SIR below the target
given by (6). However, as already said, our model does not
explicitly prevent these situations from arising, but rather
captures this as a dynamic degradation which is statistically
evaluated. In fact, depending on users’ reactions, a small
degradation might be acceptable, even though in general this
is an annoying effect.

To apply rate variations policies which avoid unnecessary
degradation, we consider different options. Assume that user
i is currently requesting service, and this allocation would
cause some of the already existing connections to become
infeasible. A first possibility to deal with infeasibility would
be to lower the rate assignment for user i . Decreasing ri

would allow to reduce the interference that the new admission
causes to the already connected users. In this case there is
a slight QoS guarantee for ongoing connections, whereas
the rate of new connections can be decreased and become
unsatisfactory. This point is eventually reached when a new
user can not be admitted at all, or equivalently its rate must
be reduced to 0.

From a greedy point of view, the provider might how-
ever be interested in exploiting rate adaptation not only to
deal with infeasibility of interference constraints, but also
to squeeze as many users as possible into the system, to
ultimately increase the revenue. This adaptation is possi-
ble only if the assignment is not fixed for the whole con-
nection, but might be changed, which again requires to
take into account the reaction of the users to assignment
variations.

As a first step, consider an extension of the Acceptance
probability according to the definition of conditional proba-
bility [15]. Assume what follows: if two assignments r (0) and
r (1) are characterized by a value of Acceptance probability
equal to A(0) and A(1), respectively, we define a conditional
Acceptance probability of accepting r (1) given that r (0) was
acceptable, called A(1|0) and equal to:

A(1|0) =
{

A(1)/A(0) A(1) ≤ A(0)

1 A(1) > A(0)
(7)

This equation only exploits the concept of conditional prob-
ability with the implicit assumption that users will never

refuse a quality improvement captured by higher A(u, p),
hence it still works for static assignments.

However, (7) is not completely appropriate to describe
dynamic variations of the QoS. If the service is improved, the
conditional probability of accepting the variation is correctly
1, but if the value of r is decreased during service, this will
make the service even less valuable. Whereas (7) states that
the probability of accepting a degradation is proportional to
the extent of this degradation, we claim that in this case the
utility perceived by a decreased service and the probability
of accepting the decrease must be even lower. Thus, (7)
should consider a lower value of A(1|0) when degradations
occur dynamically, i.e., when the service has already started.
A more detailed scheme would consider the duration of the
interval in which the service evaluation has been equal to
A(0), and take into account that different services behave
differently in this respect.2 For the sake of simplicity, we
will neglect these differences in this discussion.

According to this rationale, we explicitly model the fact
that the utility of an assignment is different according to
whether it is the result of a degradation or an initial assign-
ment. In the following we will speak of backward utility, i.e.,
we have different utility curves for increasing or decreasing
quality. The initial assignment always increases the resource,
hence u(r ) is the forward utility, which is an increasing func-
tion such that u(0) = 0, as discussed in Section 2. On the
other hand, the backward utility can even go below 0. If this
happens, the acceptance probability will be surely 0.

For simplicity, in the following we model the added an-
noyance of the QoS degradation during a connection, with a
term included in the utility and depending on a positive loss
parameter called L . Its value can be seen as, e.g., the relative
weight of the two different annoying events of being served
at first with low quality or of experiencing a degradation to
that same quality during an ongoing connection. This is a
generalization of the well-known trade-off between block-
ing and dropping probability in Admission Control [4]. If
u(r ) is the forward utility function, we can define the back-
ward utility as a modified version of it, called υ(r, u, r (0)), as
follows:

υ(r, u, r (0)) =
{

u(r ) − Lu(0)(u(0) − u(r )) r ≤ r (0)

u(r ) r > r (0),
(8)

where u(0) = u(r (0)).
When L = 0, the reaction of the users is always the same,

regardless of the time in which the service is re-evaluated.
Hence, the a priori evaluation is the same as the real-time

2 For example, data transfer sessions are probably kept alive if the
degradation occurs almost at the end. However, for real time data, like
a sport match, such a quality decrease might be very annoying.
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evaluation. If L > 0 we have a fragile QoS, i.e., the utility
is lower if the current assignment results from a degrada-
tion. For an infinitely fragile QoS (L = ∞), the utility de-
creases suddenly to 0 if any degradation occurs, no matter
how small. Other values of L obtain intermediate behaviors.
At this point, we also need to slightly modify the definition
of A(u, p) given by (1), by considering the case in which u(·)
is replaced by υ(·), which can assume negative values. Thus,
A(υ, p) = 0 if υ < 0, whereas we use the same definition
(and henceforth we still call the function A) when υ ≥ 0.

Figure 1 reports the backward utility for ψ = 1 and L = 2
when the rate r is allocated between 0 and rmax = 8 units,
and the utility is sigmoid-shaped. Figure 2 shows instead
the behavior of the acceptance value A(υ, p) with backward
assignments from different r (0)’s. Note that the backward ac-
ceptances are always below those in the forward case, i.e.,
A(υ(r, u, r (0)), p(r )) ≤ A(u(r ), p(r )) for every r (0). It is also
true that a decrease of the rate does not always imply a lower
value for A(u, p). In fact, remember that when r decreases
the price is in general lower. For example, if the assigned
rate goes from r (0) = 4.8 to r (1) = 3.2, Fig. 2 shows that

A(υ(r (1), u, r (0)), p(r (1))) is still considered an improvement
with respect to A(u(0), p(r (0))). However, this happens only
since the assignment r (0) = 4.8 is not the most preferred
by the user. This effect is mainly due to the fact that the
price is decreased, even though the quality is slightly de-
creased too (and this latter effect is emphasized by having
L = 2). Having modeled the (amplified) users’ reaction to
dynamic assignment in addition to QoS and pricing per se, it
is possible to compare different policies of dynamic resource
management, as we do in the next section.

4 Dynamic RRM strategies and economic admission
control

Consider a network where users are characterized by back-
ward utilities when rate degradation occurs. In this scenario,
we identify two main classes [1] of management, charac-
terized by a different behavior with respect to congestion
control and elasticity. The first one is called Guaranteed
Performance (GP), since it assures a reservation of a fixed
resource for the whole connection. Reservations or priorities
are widely used in communication networks [9]. In particu-
lar, a GP approach can neglect the backward utilities, since
the resource assignment is never decreased. Also, GP man-
agement implements only a simplified form of congestion
control, since users are conservatively admitted but the as-
signment is static. The second class is a Best Effort (BE)
allocation, which provides no guarantee about possible fu-
ture variations of the QoS after admission [10, 13, 14].

The GP management has the advantage of keeping a con-
stant grade of service, i.e., the satisfaction level of the con-
nected users is fixed. On the other hand, the main drawback
is that it is not possible to re-negotiate the assignment even
when this would be beneficial, e.g., when users with low
utility or low contribution to the revenue have already been
allocated. The BE management instead provides only partial
QoS guarantees. On average, we expect this latter policy to
allow admission of a larger number of users, though their
quality is possibly subject to degradation.

A more precise comparison between these two strategies
can be obtained by considering the performance metrics pre-
viously defined, e.g., as per (2). The Best Effort RRM is
supposed to try to allocate as many users as possible, by
exploiting the system soft capacity, which indeed allows to
admit new users even when the capacity limit of the sys-
tem seems to be reached. From a naı̈ve point of view, one
might erroneously think that the Best Effort RRM would
have the advantage of always allowing improvement of the
metrics, at least theoretically. This should happen since R,
and any similar metric, seem to be non decreasing if N is
increased (i.e., more users are considered). Indeed, we must
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consider that, due to the quality decrease of already admit-
ted users in case i is admitted, there is an increase in these
metrics due to user i’s term but also a possible decrease for
some other users’ terms. This depends on how the rate of
a generic user j already in the system is decreased as a re-
sult of user i’s admission into the system. Assume that the
resource allocation vector (considered to have i elements)
is r(0) = (r (0)

1 , r (0)
2 , . . . r (0)

i−1, r (0)
i = 0) before the admission of

user i and r(1) = (r (1)
1 , r (1)

2 , . . . r (1)
i−1, r (1)

i ) afterwards. More-
over, before the admission of the i th user, we can evaluate,
e.g., S(i,0) by simply counting the users allocated before i
which have accepted the service conditions. On average,
we expect to have S(i,0) = ∑i−1

j=1 A(u j (r
(0)
j ), p(r (0)

j )). At this
point, it is possible to write:

S(i,1) =
i−1∑

j=1

A(υ j (r
(1)
j , u j , r (0)

j ), p(r (1)
j ))

+ A(ui (r
(1)
i ), p(r (1)

j )) , (9)

which is the total satisfaction (or also the average number of
admitted users) after the admission of the i th user. The sum
can be made over all users which have requested admission
before i , since if a user j < i has already terminated its
call or has refused the proposed QoS we assume to have
r (0)

j = r (1)
j = 0.

Similar equations can be written for the metric R. The
evaluation after the admission is made not only by consid-
ering the contribution of the i th user (which is always an
improvement), but also a possible degradation, taken into
account by considering the backward utilities υ j instead of
u j for the already admitted users. Equation (9) also indicates
that the performance of the BE RRM depends on how the
rates are translated from r(0) to r(1). When deciding about the
actual strategy in which this degradation is performed, as we
aim at possibly keeping all the users in the system even after
the admission of the new call, we should try not to penalize
some users more than others. Moreover, we should avoid
to decrease some allocations more than what is necessary,
which can be done, e.g., by adopting an iterative approach
which decreases the allocation in small steps until a feasi-
ble allocation is found. In the following, we will consider a
degradation from r(0) to r(1) by decreasing the SIR of con-
nected users with rate larger than 0, whose average number
is S(i,0), in steps of 1 dB/S(i,0), until the vector of the powers
is feasible. This means that we choose to apply the ratio-
nale above to the allocated powers, so as to better account
for Power Control issues [18], and the decrease amount is
chosen to obtain a good trade-off between a reasonably fast
convergence of the degradation procedure and its accuracy.
Note however that results produced with other policies still
respecting the aforementioned criteria, i.e., fair and small

degradations, are still in very good qualitative agreement
with the ones shown in the following.

One might argue that the variation in the acceptance prob-
ability implies that users may completely refuse the service,
considered unsatisfactory due to degradation. Hence, to have
a full evaluation of the performance of r(1), the resource left
by the first user who quits the service should be reassigned to
the users who stay in the system. This study however would
imply iterative (and possibly long) evaluations of these ne-
gotiations, hence it is left for further research. In the sequel,
we will always assume that if a user j accepts the assignment
r (0)

j but considers the degradation to r (1)
j unacceptable, this

user is forced to leave the system without any iteration. This
is a conservative approach as it considers the worst case in
which all dissatisfied users simultaneously leave the system
after the degradation. Note that this only means that no nego-
tiation is considered in order to alleviate the dissatisfaction
of the users. However, the resource that dissatisfied users
leave is made available to the network manager and can of
course be allocated to new incoming users.

Finally, this procedure can be iteratively repeated for every
new user which can not be feasibly allocated. At this point
however, we should consider “backward backward utilities”.
That is, assume that also user i + 1 can not be admitted
into the system and we want to represent the degradation
of the service for a user j who has already experienced a
degradation from r (0)

j to r (1)
j during admission of user i . In

this case, the backward utility to consider for user j is not
represented by υ j (r, u j , r (1)

j ) but rather by υ j (r, υ
(0)
j , r (1)

j ),

where υ
(0)
j = υ

(0)
j (r, u j , r (0)

j ).
The BE approach can be further improved by consider-

ing a strategy which blocks all users whose admission is
estimated to have negative impact on the system. As we are
considering users arriving one at a time, it is possible to de-
fine a general Admission Control as follows. Assume that
we are looking at the admission for the i th user. This user is
admitted if:

R(i,1) > R(i,0) (10)

where R(i,0) and R(i,1) are the values of the revenue be-
fore and after the admission of the i th user, respectively.
The choice of R among the possible performance metrics is
made without loss of generality, as any other metric could
be considered instead. Note that R(i,0) can be known ex-
actly, as it depends on the current user behavior, whereas in
some cases R(i,1) needs to be estimated as the future behavior
of the users following a potential admission is known only
statistically.

The online evaluation of (10) can be regarded, by abstract-
ing from the choice of R, as a framework to perform Ad-
mission Control, that we will call in the following Economic
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Admission Control. In light of the above discussion, we are
now able to describe the loss due to the quality decrease of
already admitted users in case user i is admitted. This value
depends on how the rate of a generic user j already in the
system must be decreased in order to admit user i into the
system. With the same notation used before, a translation of
the allocation vector from r(0) before the admission of user i
to r(1) implies that the new value of the revenue is estimated
as:

R(i,1) =
i−1∑

j=1

p
(
r (1)

j

)
A
(
υ j (r

(1)
j , u j , r (0)

j ), p
(
r (1)

j

))

+ p
(
r (1)

i

)
A
(
ui

(
r (1)

i

)
, p

(
r (1)

j

))
. (11)

The above equation applies to the revenue the same rationale
as (9), so that the revenue after the admission is evaluated by
considering the backward utilities υ j instead of u j for those
users that have a dynamically decreased allocation.

If we use the already mentioned mechanism of decreasing
the SIR of the S(i,0) connected users in steps of 1 dB/S(i,0)

when the admission of the i th user would make the SIR
target vector no longer feasible, the Economic Admission
Control framework is completely specified by Eqs. (10) and
(11). Thus, we can compare it with the two basic GP and BE
techniques.

5 Results

We now present comparative results for GP and BE RRM,
which show the performance achievable by such strategies.
We perform simulations in a cellular wireless system, with
N users placed with uniform spatial distribution over an area
subdivided into hexagonal cells, wrapped around as usually
done to avoid border effects. Table 1 shows the propagation
parameters of the simulation scenario and Table 2 reports
the parameters of the MEDUSA model. In this scenario, we
evaluate the RRM performance over a large number of in-
stances, repeating the allocation in the same network instance
for every RRM strategy.

Table 1 List of parameters of the simulation scenario

Parameter (symbol) Value

Number of cells 19
Bandwidth (B) 20 rate units
Max assignable rate (rmax) 8 rate units
Max terminal power (Pmax) 2 W
Cell radius (d) 500 m
Gain at 1 m −28 dB
Path loss exponent (α) 3.5
Shadowing parameter (σ ) 8 dB
Mean SNR at cell border 20 dB

Table 2 List of micro-economic parameters

Parameter Value

Number of users (N ) 160
Utility parameter ζ (curvature) uniform in [2, 20]
Utility parameter xs (middlepoint) uniform in [0.1, 0.9]
Normalization constant k − log 0.9
Normalization utility ψ 1.0
Normalization price φ 1.0
Utility sensitivity µ 2.0
Price sensitivity ε 4.0
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BE RRM (with L=1): revenue for different marginal utility thresholds (160 users)
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Fig. 3 BE management: revenue R for linear price p(r ) = ξr as a
function of ξ

First of all, the revenue (metric R) is considered in
Figs. 3–5. Figure 3 investigates the BE resource manage-
ment, with different values of the threshold ϑ . In this case
the impact of the users’ reaction to dynamic allocation has
been taken into account by letting the loss parameter L equal
1. The same analysis is carried out in Fig. 4, but for the GP
strategy. Here, the value of L has no impact on the results,
being the allocation for every user untouched while it is in
the system. As can be seen, both strategies exhibit better
performance when ϑ = 2.0 is considered. More in general,
for this particular case the larger the allocation threshold, the
higher the revenue. However, this conclusion depends on the
system parameters, and can not be generalized. In general
the best threshold setup depends on many factors, e.g., the
number of potential users in the network and the shape of
their utilities. A detailed study of these relationships, though
a worthwhile effort, is out of the scope of this paper and is left
for future research. Figure 5 compares the performance of GP
and BE RRM (the latter by considering different values of L ,
whereas the former does not depend on L). In particular, as
will be done in the following for the other metrics, we com-
pare the two approaches for the case ϑ = 1.0 (different val-
ues of ϑ present entirely similar results). It is emphasized that
when no loss occurs, i.e., L = 0, the BE strategy outperforms
GP in terms of revenue. However, the revenue decreases as L
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Fig. 4 GP management: revenue R for linear price p(r ) = ξr as a
function of ξ
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Fig. 5 Revenue R for linear price p(r ) = ξr : comparison of different
RRM approaches

increases. So, the BE RRM performs better only when users
are not overly sensitive to dynamic quality degradations.

Secondly, we investigate in Figs. 6 and 7 the average
number of admitted users S as a function of the price, for
different values of the threshold. The two figures represent
the normalized value of S for the BE and GP strategies,
respectively. It is clearly emphasized that the BE approach
outperforms GP in this respect. In particular, if the price is
relatively low, BE can admit a percentage of users close to
90%, even though the capacity is scarce. For more reasonable
price values, the number of admitted users is anyway larger
for the BE RRM policies than for GP. Hence, the only way
to have an efficient RRM in terms of number of admitted
users is to fully exploit the traffic elasticity by applying rate
tunability every time it is possible. In other words, if having a
large number of customers is included among the provider’s
goals, it is very difficult to allocate them with guaranteed
QoS. It can also be said that the two allocation strategies lead
to quantitatively comparable revenue, as shown in Fig. 5, and
in particular the exact value for BE very much depends on
L , but the revenue is originated in totally different ways.
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Fig. 6 BE management: admission rate S/N for linear price p(r ) = ξr
as a function of ξ

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
ra

ct
io

n 
of

 a
dm

itt
ed

 u
se

rs

Unit price

GP RRM: admitted users for different marginal utility thresholds (160 users)

ϑ=0.5
ϑ=1.0
ϑ=1.5
ϑ=2.0

Fig. 7 GP management: admission rate S/N for linear price p(r ) = ξr
as a function of ξ

As shown in Figs. 6 and 7, in the GP case few users are
admitted, which therefore pay a considerable amount, in
return for performance guarantees. Instead, BE builds the
revenue by admitting more users who pay a lower price.
These conclusions are summarized in Fig. 8, where the two
RRM policies are compared for the case of ϑ = 1.0. It is
shown that this general conclusion is still valid even if L has
a higher value, i.e., when users are very sensitive to service
degradations.

To evaluate the performance of Economic Admission
Control applied to BE techniques, we show again results
by varying ϑ , and also comparisons with the other man-
agements (GP and plain BE). All the simulations have been
performed in the same multi-cell scenario by always consid-
ering L = 1. Figures 9–10 show the evaluation metrics for a
BE system with EAC algorithm based on the revenue, as in
(10). In more detail, Fig. 9 presents the revenue earned by
the BE management with EAC. It is interesting to observe
that the behavior is different from Figs. 3 and 4, where, in the
range of interest, the larger ϑ the better. Here, variation of ϑ

changes the curve but the peak performance is similar, so that
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Fig. 9 BE management with EAC: revenue for linear price p(r ) = ξr
as a function of ξ

the best value (reached for ϑ = 1.0) is approached anyway.
This is reasonable, since the goal of EAC is to increase coop-
eration among the users. For the previous cases of GP and BE
without EAC, the only way to force cooperation is to assign
less resource to the users (by choosing a higher ϑ , which is
shown to be preferable in Figs. 3 and 4). However, this is
limiting for the users, which are bound to experience lower
quality, and also it introduces some sensitivity to the param-
eter values. The EAC approach instead makes the system
more robust, and also the maximum achievable revenue less
sensitive to the management setting (however, there is still a
degree of freedom in the choice of ϑ for what concerns the
optimal price variations). Figure 10 presents an oscillatory
behavior when the price is changed. The reason for this is in
the superposition of two different admission control mecha-
nisms, i.e., EAC and implicit admission control given by the
price setup [2, 8]. Increasing the price decreases the num-
ber of admitted users at first, but, as long as the price does
not increase too much, this is compensated by EAC which
tries to admit more users by performing resource sharing in
an efficient manner, i.e., by always improving the revenue.
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Fig. 10 BE management with EAC: admission rate for linear price
p(r ) = ξr as a function of ξ
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Fig. 11 Comparison of the total revenue obtained with ϑ = 1

This compensation results in the almost constant number of
admitted users as the price increases. When the price is very
high, the EAC capabilities are overtaken by the mechanism
of dissatisfied users leaving the system, but in this case a
strong decrease of the number of admitted users can also
be observed for the plain BE case, see Fig. 6, which clearly
gives an upper bound for the number of admitted users with
respect to the case with EAC.

Finally, Figs. 11–12 compare the three approaches for the
case ϑ = 1.0 (different values of ϑ present entirely similar
results). EAC is shown to be able to significantly improve
the total revenue (analogous results also hold for other met-
rics). The admission rate is lower than in the simple BE
management, but this trivially follows from the goal of BE
to obtain an admission rate as high as possible. BE and
BE + EAC tend also to coincide when the price increases.
In any case, the number of admitted users for BE + EAC
is significantly higher than for the GP policy. For what
concerns the comparison with BE instead, also note that
large admission rates are inefficient, since they decrease the
total revenue, which is caused by the admission of users
with poor QoS that do not pay high tariffs and cause more
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Fig. 12 Comparison of the admission rates obtained with ϑ = 1

interference to other users. For this reason, Economic Admis-
sion Control offers a very interesting possibility of improving
network management. Importantly, the results shown here
represent only one among the several possibilities to per-
form Admission Control based on micro-economic criteria.
Besides this simple revenue-based approach, other possibil-
ities are still to be studied and can be investigated by future
research.

6 Conclusions and future work

In this paper we have explored some capabilities of utility-
based RRM and have presented a model to describe a user-
centric management of rate allocation and highlight pros
and cons of different allocation strategies. This theoretical
approach is useful from the analytical point of view to design
efficient RRM strategies. As a further contribution, our work
has strengthened the analysis with practical examples, by
investigating in particular the comparison between two pos-
sible allocation strategies, the RRM with Guaranteed Perfor-
mance (GP) and the totally Best Effort (BE) RRM.

In general, the choice between these two approaches
might be related to choices made a priori by the provider.
It is true that the BE strategy allocates more users, but the
quality is poorer and especially the revenue is lower. In the
analyzed scenario, the BE is penalized by the introduction
of the backward utilities. In other words, when decreasing
the allocated resource has a strong negative effect on users’
satisfaction, it seems that a Guaranteed Performance could
be the only solution. Otherwise, users may want to leave the
system, and the provider’s revenue is decreased. On the other
hand, if the provider’s goal is mainly to keep its own users
and to also acquire new customers, the GP RRM is clearly
inappropriate. Thus, none of the two approaches can be the
ultimate solution, rather a trade-off between them could be
more suitable.

A possible strategy can be to conservatively admit users
with a smarter criterion, such as the Economic Admission
Control, which tries to predict the impact of the admission
on the system. In this way the system is still Best Effort,
since there is no guarantee on the achievable performance.
However, our results prove that this methodology allows to
combine the advantages of the Best Effort and of the Guar-
anteed Performance techniques. In other words, it allows to
improve the performance of the BE management by increas-
ing reliability, while still being able to satisfy a larger number
of users. As a consequence, the revenue is significantly in-
creased with respect to both GP and BE approaches.
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