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Abstract

There is wide consensus that properly taking into ac-

count wireless interference is necessary to design high

performance link scheduling algorithms for multi-hop net-

works. However, most approaches in the literature use sim-

plified models, which significantly abstract from the phys-

ical behavior of wireless links. Indeed, the main problem

in representing the wireless propagation conditions with a

proper level of detail is the very large amount of informa-

tion needed, that includes the wireless link gains between all

node pairs. In this paper, we propose a greedy, centralized

scheduler which is based on the physical interference model

but aims at exploiting local information available at each

node, in order to reduce global information exchange and

therefore the overhead as well as the computational com-

plexity of the algorithm. We prove the effectiveness of our

approach by extensive simulation results. We also show that

our system outperforms the most up-to-date benchmark in

realistic interference aware schedulers for wireless multi-

hop networks.

1 Introduction

In multi-hop wireless networks, routing strategies are

used to identify the best paths to deliver information from

source to destination terminals. Moreover, since the radio

channel is shared, access to it must be managed through

proper scheduling algorithms. These two problems can be

combined in order to realize a joint routing and scheduling

framework, whose theoretical basis has been posed by the

pioneering work reported in [11, 20].

In this context, the network is represented as a graph

G = (N , E), where nodes in N are the network terminals

and edges in E ⊆ N 2 are the communication links. In the

following these terms (nodes and terminals, or edges and

links, respectively) will be used interchangeably. Schedul-

ing and routing are addressed by considering a transmission

over a given link e ∈ E as corresponding to activating, i.e.,

“turning on,” e, which is conversely inactive / turned off,

when the link is not used for transmission. By looking at

the activations of links in a sequential manner over time,

one can determine scheduling for a Time Division Multiple

Access (TDMA). The subsequent activation of links from

a source node to a destination also implies routing. This

framework can address, e.g., the minimization of the time

required for the information delivery; this corresponds to

an efficient utilization of the network capacity, i.e., allowing

the simultaneous activation of a large number of transmis-

sions, while checking at the same time that the active links

bring information toward the desired destination.

Even though these theoretical principles are well stud-

ied, the network descriptions commonly used often abstract

from a detailed characterization of the wireless medium.

The only requirements used to determine the admissibility

of a scheduling pattern relate to flow conservation and to

avoiding the simultaneous utilization of a node for transmis-

sion when it is receiving a packet, or vice versa, a condition

which in most of the literature [6, 16] is referred to as pri-

mary interference constraint. Note that this terminology is

somehow improper, since this condition does not really de-

pend on wireless interference, but rather on the half-duplex

transceiver capability, which limits the number of simulta-

neous operations which can be performed at a time [2].

In fact, multi-hop radio networks may suffer a severe ca-

pacity limitation due to wireless interference phenomena.

The majority of the approaches to model wireless interfer-

ence beyond the primary constraint, e.g., involving at least

two disjoint pairs of nodes, follow the classification made

in [10], which distinguishes between the so-called proto-

col and physical interference models. Other variations have

been proposed [12], e.g., to take into account additional as-

pects such as the capture effect, but these proposals can also

be related to the aforementioned distinction.

The protocol model describes wireless interference by

means of conflict sets (sometimes this representation is also



translated into graphs called conflict graphs). For every

edge e ∈ E the conflict set I(e) ⊆ E \ {e} is defined as

containing all links whose simultaneous activation with e is
forbidden due to interference. This is simply modeled as a

binary relationship: given a link f ∈ E \ {e}, it can either

interfere with e, thus is put into I(e), or not. However, this
representation fails to capture that interference has a cumu-

lative effect, since the simultaneous activation of multiple

links may cause too high an interfering power for link e,
even though none of these links alone is to be considered as

interfering with e, and thus does not belong to I(e).
In spite of this problem, such a model is adopted in most

of the literature which deals with routing and scheduling

issues to capture wireless interference [4, 8, 15, 17]. How-

ever, the more realistic physical interference model should

be preferred, as pointed out in [5]. The main problem in

applying the physical interference model is instead on the

complexity side, because it requires to check the Signal-

to-Interference Ratio (SIR) at the receiver’s side of all ac-

tive communication links and to evaluate if it is above a

given threshold. This requires a large amount of informa-

tion, namely the link gains between any pair in N 2.

To overcome this problem, in the present paper we pro-

pose to exploit an alternative model proposed in [19] to re-

duce the complexity of the physical model and enable its

use when certain interference terms are difficult to quan-

tify exactly, especially because they consist of many small

contributions to the overall interfering power. The rationale

behind this model is to define, for each node, a number K
of dominant interferers, which are, typically, the K clos-

est neighbors. For each node, the channel gains towards its

dominant interferers must be known precisely, whereas the

rest of the network is simply described in statistical terms.

If K is properly chosen, the approximation introduced by

this representation is almost negligible, while the complex-

ity of the description can be significantly reduced.

To validate our model, we evaluate the scheduling time

on graphs G = (N , E) having different kinds of topolo-

gies with single-path routing and where the destination set

contains only one node. All edges in E are also directed

toward the root, possibly via multi-hop relaying, without

multi-path. This choice can be justified by several reasons.

On the one hand, this allows us to focus on scheduling only,

without being involved in considerations about routing op-

timality, since in such a topology there is only one possible

route from any node to the root. This also allows a sim-

pler implementation of the scheduler, since it is reasonable

to use, as will be argued in the following, greedy schedul-

ing strategies which maximize the number of packets for-

warded toward the sink. On the other hand, this kind of

topology is still realistic, and can actually be envisioned

in many implementations of wireless multi-hop networks,

such as the IEEE 802.16 Mesh mode operating with cen-

tralized scheduling [6].

We will compare our interference model with alternative

techniques, using either the protocol model or a different

implementation of the physical model [5] and we also use,

as a benchmark, the optimal scheduling computed through

exhaustive search. We perform several evaluations with the

Network Simulator 2 (ns-2) [1]. Numerical results show

a very good agreement between the performance limit and

our proposed strategy. At the same time, our interference

model obtains a significantly better scheduling with respect

to the protocol model and we are also able to improve the

results obtained in [5], where a physical model is used. This

justifies our model as a practical strategy to use the physical

interference model in wireless multi-hop networks.

The rest of this paper is organized as follows: after dis-

cussing in Section 2 other related papers, we outline in Sec-

tion 3 the model for the evaluation of interference based

on the K dominant interferers. In Section 4 we instan-

tiate the problem for single-path routing topologies and a

greedy scheduler, and we discuss how this choice could be

extended in a more general context. In Section 5 we dis-

cuss implementation details for the greedy schedulers, em-

phasizing parameter tuning and sensitivities. We present a

detailed report of our performance evaluation campaign in

Section 6 and finally we conclude in Section 7.

2 Related Work

The general approach used in the literature to describe

TDMA scheduling in multi-hop wireless networks can be

found in [11, 20]. In [11] the scheduling problem is stud-

ied through linear programming, and a polynomial com-

plexity algorithm which solves the pure scheduling problem

is given. In [20], and all the extensions to this framework

proposed in other works by the same authors, the problems

of routing and scheduling for wireless packet networks are

framed in the more general context of identifying a suitable

link activation patternwhich satisfies certain optimality cri-

teria and is subject to certain constraints, so that a linear pro-

gramming framework can be derived. The main goal of this

approach is to minimize the delivery time from all sources

to all destinations; to this end, the network capacity must be

efficiently exploited.

The contribution we give in the present paper can be

viewed as an extension of this approach to a more realistic

wireless environment. In fact, in [20] a more accurate char-

acterization of wireless interference is left open; in most

of the developments derived from this framework, simpli-

fied approaches such as the protocol interference model are

used. For example, different theoretical aspects of schedul-

ing in multi-hop networks are investigated in [4,8,15,17] by

means of link activation schemes which rely on the protocol

interference model only.

In more detail, in [8] the problem of delay guarantees

in wireless multi-hop networks is studied. Differently from

our approach, which closely follows [20], in this paper the

per-flow delay is considered instead of the overall time to



deliver all the packets to their respective destinations. In

[15], the authors outline and investigate from a high level

perspective certain bottleneck problems which arise in joint

routing and scheduling scenarios. In this way, related per-

formance bounds are highlighted. However, the analysis

heavily relies on the protocol interference model, so it is

unclear which conclusions can be extended to general wire-

less scenarios where a different interference model is to be

adopted. The contribution of [4] is an analysis of optimal

scheduling conditions, again based on the protocol interfer-

ence model. With this background, a fair scheduling mech-

anism is proposed and discussed to activate wireless links,

based on the maximal clique search over a graph. Finally,

the contribution of [16] is to discuss a linear programming

approach in order to solve routing and scheduling and to

introduce practical algorithms based on efficient heuristics.

Similarly to the analysis reported in [20], the only limita-

tion imposed by wireless interference is that nodes can not

be active in more than one operation (which can be either

a packet transmission or a packet reception). This ratio-

nale is extended by the authors in [17] to a case where

wireless interference is considered in a broader sense, but

again this involves the protocol model only. In this pa-

per instead we consider the problem of obtaining efficient

scheduling heuristics when more realistic wireless interfer-

ence models are considered. Note also that this poses an is-

sue in terms of computational complexity and information

exchange, which we will address in the following.

In this sense, our approach is similar to [5], which also

focuses on the physical interference model, even though

it introduces a simplification to prioritize the links in the

scheduler. However, in that paper the challenge of multi-

hop transmission is mitigated since intermediate nodes have

a backlog equal to the aggregate backlog of all previous

nodes. This simplification makes explicit relaying unneces-

sary (i.e., a packet can be forwarded even if it has not been

received by the relay, because the relay backlog has been

suitably increased to take these forwarded packets into ac-

count). Thus, the algorithm was run on a set of single-hop

flows, whose traffic demands were sized so as to take rout-

ing into account. In our analysis, we consider multi-hop

more explicitly, as nodes are also required to relay packets

and therefore the status of the information delivery has to

be constantly monitored also at intermediate nodes.

Finally, paper [6] also presents some similarity with

our analysis, mostly in the fact that a similar application

scenario is considered. In fact, in that paper the specific

case of IEEE 802.16 Mesh mode operating with centralized

scheduling is addressed, which might result in node place-

ments similar to the topologies considered in the present

paper. However, we remark that in [6] again only primary

interference constraints are taken into account. For this rea-

son, our investigations can be seen as an extension of this

work to a more realistic interference description.

3 Overview of the Interference Model

In this section, we give a brief overview of the interfer-

ence model reported in [19], which will be used throughout

this paper. The interested reader may refer to [19] for fur-

ther details. In the model, we focus on a specific link (i, j),
for which we perform an approximate computation of the

interference at receiver j caused by all nodes which trans-

mit packets at the same time as the intended transmitter i.
We assume that all nodes transmit with the same power PT .

This assumption is utilized only for the sake of simplicity,

but it can easily be removed by a proper scaling of link gains

between nodes. If g(i, j) is the channel gain between i and
j, we denote with PR(i, j) = g(i, j)PT the power received

at j when i is sending a packet, with 1[i](t) the indicator

function that node i is transmitting at time t, and with πi

the so-called activity factor of node i, i.e., the long-run frac-
tion of time that the i-th node spends transmitting a packet.

Hence, E[1[i](t)] = πi, where E[·] is the expectation op-

erator. Therefore, the power received by node j because

of the i-th terminal is PR(i, j)1[i](t). Consider now a link

(i, j) ∈ E . The interference at receiver j is caused by all

other transmitting nodes in the network, except i. Thus, the
aggregate interference, called Ξi,j(t), is the sum of the con-

tributions coming from these nodes:

Ξi,j(t) =
∑

k 6=i

PR(k, j)1[k](t) (1)

and its mean and variance are:

Ξi,j =
∑

k 6=i

PR(k, j)πk (2)

σ2
Ξi,j

=
∑

k 6=i

P 2
R(k, j)πk(1 − πk) (3)

In the second equation, the interferers are assumed to be

uncorrelated, so that the variance of the sum of the received

powers is the sum of the variances.

Since the aggregate interference power is the sum of

many interferers, we postulate that the power statistics can

be described by a multimodal Gaussian random variable,

also called a Gaussian mixture [18]. At each node we se-

lect the K closest nodes which generate the largest amount

of interference. These nodes will be referred to as the K
dominant interferers (whose index w ranges between 0 and

K − 1) of node j. If it is known which of these K nodes

are transmitting, it is also possible to compute the level of

interference generated by them. Since the model assumes

to know whether the dominant interferers are transmitting

or not, their activity factor is either 1 or 0. Thus, they do

not contribute to the interference variance but only to the

mean, see (3). On the other hand, all other interferers are

assumed to create a Gaussian background interference. The

overall statistics can be computed by (2) and (3). It is clear



that the interference is a Gaussian mixture random variable,

where 2K modes are present, each corresponding to a pos-

sible combination of the dominant interferers states (active

or inactive). The key purpose of this model is to estimate

the probability of error at the tagged node. We assume

that the interference statistics has been computed, and that

p(I) is the value of its probability density function evalu-

ated at a given interference level I . Also, suppose that the
packet error rate (PER) vs. SIR curve of the employed mod-

ulation/coding scheme is known. Then, the PER over link

i→ j can be computed as:

PERi,j =

∫ +∞

0

PERi,j(I)p(I)dI (4)

This expression can be simplified if a capacity achieving

code is employed. For these codes, the PER is 0 if the re-

ceived SIR is above a certain threshold, and is 1 otherwise.

In this case, if the received signal power is P and the thresh-

old SIR is Λ0, then PER(I ≤ P/Λ0) = 0 and PER(I >
P/Λ0) = 1, and (4) reduces to 1 − F (P/Λ0). If we as-

sume that the interference is a Gaussian mixture, each Gaus-

sian mode implies a PER equal toQ[(P/Λ0−Ξ
(m)

i,j )/σΞi,j
],

where Ξ
(m)

i,j is the average value of the interference for that

mode and σΞi,j
is its standard deviation. Note that σΞi,j

does not depend on the specific mode but on the statistics of

the background interference, equal for all modes. Finally,

the overall PER is:

PERi,j =
2K−1
∑

m=0

ρ(m)Q[(P/Λ0 − Ξ
(m)

i,j )/σΞi,j
] (5)

where ρ(m) is the probability associated to them-th mode,

determined by the activity of the K dominant interferers,

which is assumed to be known.

The evaluation of this expression is much simpler than

the exact PER evaluation based on all received gains, be-

cause the model for the background interference is well de-

fined as soon as its mean and standard deviation are known.

This means to estimate the statistics of the aggregate inter-

ference, while the gains of the single links are not needed.

Moreover, apart from the dominant interferers activity, the

model is simple as it only requires to compute complemen-

tary Gaussian functions. For this reason, it can be easily

incorporated within a scheduling algorithm, which will be

performed in the following.

4 Scheduler Design

In designing the scheduler, we have considered different

kinds of node placements, both deterministic and random,

in an assigned area. A realistic propagation model (e.g., also

including fading effects) has been considered, both in the

analytical model presented in Section 3 and in the numerical

evaluations in the following. Thanks to this accurate radio

propagation description, even when the node deployment

is regular, channel impairments occur in an unpredictable

manner. For what concerns the random placement, the ob-

tained topologies are even more variable as they are rather

different in terms of node degree and length of the links. We

also remark that we have kept a quite general approach for

what concerns lower layers than the scheduler.

About higher layers instead, and more specifically rout-

ing, we focused in this paper on graphs G = (N , E) with

only one destination node and where a single path is avail-

able from any node to the destination. The main reason to

consider single-path topologies is in order to abstract the

evaluation of the scheduling performance from routing. In

fact, as shown in [13], there are many considerations which

would advise for a cross-layer approach where routing and

scheduling are performed jointly. If TDMA scheduling is

coupled with a sub-optimal routing, it can achieve very low

efficiency; even worse, a comparison of scheduling strate-

gies obtained in this case may not reflect reality, since it

is biased by routing inefficiencies. In our scenario this

problem does not occur, as the routes are uniquely deter-

mined, and every non-root node can only transmit over a

single edge, i.e., the one toward its parent node. This al-

lows us to decouple the scheduling from the routing prob-

lem and to investigate in a more direct manner the applica-

tion to a scheduling problem of the interference evaluation

framework presented in Section 3. In our opinion, study-

ing single-path networks is a first necessary step in order to

gain valuable insight on the problems related to scheduling,

but our future work will extend these findings to multi-path

networks where a routing algorithm is also included.

This scenario corresponds to having a tree topology (ei-

ther inherently derived from the radio propagation or su-

perimposed by a Minimum-Spanning-Tree algorithm as is

done by many routing algorithms [7]), where the root can

be seen as a gateway node, reachable via multi-hop by all

nodes, and in charge of collecting the information from

them. Exchange of packets is allowed only from a node

to its parent node in the tree hierarchy; however, all nodes

can generate some interference at a receiver node, depend-

ing on their physical placement and not on the logical posi-

tion in the tree. This actually happens in many scenarios,

such as Wireless Mesh Networks operating with central-

ized scheduling in IEEE 802.16 Mesh mode [6], or Wireless

Sensor Networks for distributed measurements [3]. In the

former case, the gateway (i.e., the root node) is the access

point of the wireless network backbone to a cabled connec-

tion to the Internet, in the latter it is the central data collect-

ing unit; in general, it is sensible to think of it as the location

where the centralized scheduling algorithm is run.

As a consequence of focusing on single-path topologies,

we can simplify the computational complexity of the search

for the minimal time schedule. In particular, even sim-

ple greedy scheduling strategies can be utilized as efficient



schedulers, as justified by the following discussion. If ℓ

= (ℓ1, ℓ2, . . . , ℓN ) describes the queue lengths at all non-

root nodes in N , we denote with τ(ℓ) the minimum time to

deliver all the packets of ℓ to the tree root. Also, we call ek

the canonical base vector equal to 1 at the kth entry and 0
otherwise. It is easy to prove that, if i ∈ N is the parent

node of j ∈ N , for any fixed vector ℓ the value of τ(ℓ+ei)
is not greater than τ(ℓ+ej). In fact, the transmission of

ℓ+ei can be achieved with the same optimal activation pat-

tern for ℓ+ej by turning off link j → i in one of the slots

where it is active.

In order to reduce the computational complexity of the

scheduling, we might want to define a slot-wise activation

criterion. Of course different criteria are possible for the

specific choice of which links to activate. However, the rea-

soning above implies that, within an already existing acti-

vation set, turning on another link which is compatible with

interference conditions is always beneficial on single-path

routing topologies. We can generalize this, when determin-

ing the link activation pattern for a given time-slot, stating

a practical rule of thumb that the more active links, the bet-

ter. Therefore, greedy schedulers appear to be appropriate

for the scenario under study, since they offer very good per-

formance and also seem to be better implementable in prac-

tical scenarios. Also, they allow comparisons to test the

goodness of our proposed interference model against ex-

isting solutions present in the literature, which also rely on

heuristic schedulers often with a greedy rationale. However,

we stress that the choice of focusing on heuristic greedy

scheduling does not give any advantage to our proposed

model, and we may reasonably infer that a similar compari-

son would also hold for more detailed theoretical investiga-

tions performed within an optimization framework, which

are however out of the scope of the present paper, being far

more difficult to implement and compare.

Finally, we remark that our scheduler is a centralized

one. However, nodes employ accurate local information

(about the dominant interferers) and the rest of the network

is modeled in statistical terms. Thus, our scheduler makes

some important steps toward the goal of a distributed system

based on the physical model, rather than the oversimplified

protocol model.

5 Implementation Issues

In this section, we describe a low-complexity, central-

ized scheduler for transmitting data in the uplink of the tree

topology (i.e., from all nodes to the root). In our setting,

time is slotted and in each slot a centralized controller, e.g.,

located at the tree root, activates some links to transmit

data. The key concept in our scheduler is that the nodes

are selected in a greedy manner according to their chances

of successfully transmitting a packet. This probability is

estimated by means of the interference model reported in

Section 3.

The scheduler knows the queue status at all nodes. We

remark that this is the only information for which a shared

knowledge is required: this can be important if a distributed

implementation is sought. We also point out that it is pos-

sible to achieve good performance also with rather coarse

information about queue status; it is often enough to know

if the queue is empty, or its length is below or above a cer-

tain congestion threshold. Simulation traces show that such

a strategy often leads to satisfactory results. Each terminal

i is associated with a weight ψi, which is the sum of two

factors: the probability of successful packet transmission

and a function of the queue status. The success probability

at a node is computed by means of (5) and multiplied by a

constant suppression factor α ∈ [0, 1] if a node transmitted

a packet in the previous slot, in order to improve fairness

for nodes who are in disadvantaged positions, which oth-

erwise would have fewer transmission opportunities. The

queue status obviously influences the scheduler in the sense

that nodes with empty queues are not eligible for transmis-

sion. Additionally, in order to keep the queue lengths under

control, we assign a bonus b to the nodes with long queues.

The weight ψi is equal to this bonus b plus the success prob-
ability, multiplied (if necessary) by α. In the following nu-

merical evaluations, for a given queue length ℓ, this bonus b
follows a linear piecewise function:

b =











0 ℓ < ℓA
ℓ−ℓA

ℓB−ℓA
ℓA ≤ ℓ ≤ ℓB

1 ℓ > ℓB

(6)

The thresholds ℓA, ℓB have been empirically set to, respec-

tively, 150% and 250% of the value of the initial node back-

log. Note that this additional term is particularly useful in a

tree topology since the nodes closer to the root have a higher

traffic to deliver, since they also act as relays, but the leaves

generally have a greater chance of being scheduled, because

they have fewer neighbors and thus less interference.

This is the main loop the scheduler performs in each slot:

1. select the candidates

2. compute the queue size bonuses

3. while (the candidate queue is not empty)

for (nodeIndex = 1:allNodes)

(a) update the interference statistics and the packet

success probability: for every node j, compute

(5) by estimating the probability that each dom-

inant interferers w of j transmits, as equal to its

weight ψw. Add to all weights the queue bonus.
(b) pick the best node
(c) is this link compatible with the existing commu-

nications?

yes) include it in the list of scheduled nodes. For

the rest of the time-slot, its activity factor is 1 (i
will surely transmit) and the activity factor and

weight of every node k which is a neighbor of



i will be set to 0 (k will not transmit). All the

neighbors are removed from the candidate list.

no) remove it from the candidate queue. Set its

activity factor and weight to 0.

end for

end while

In phase 1, the scheduler selects which nodes may be

eligible to be scheduled. In the default implementation of

the scheduler, only nodes whose weight ψi is larger than

0 and whose queue is not empty continue in the following

steps.

Step 3 (the while loop) can be fully understood realiz-

ing that the interference model is completely specified when

the number of dominant interferers K and all the received

powers and activity factors are defined. The first term is

a constant and the second does not change within a slot.

However, the activity factors must be given suitable values.

If a node cannot be scheduled in this slot (e.g., it has an

empty queue or there is a direct link with a node which has

been scheduled to transmit), then it is assigned the value 0.

Otherwise, the activity factor can be equal to 1 if the node

has been scheduled to transmit. In all other cases, when it

is not yet defined whether the node may or may not trans-

mit, the activity factor is set to 1/2 if the node has not sent a

packet in the previous slot or α/2 if it has. Please note the

inclusion of the suppression factor α. This reduces, in the

interference model, the transmission probability (and there-

fore, the weight ψi) of the nodes which transmitted in the

previous slot. Thus, the other terminals will predict a higher

SIR and will compute a higher success probability. Finally,

if α = 0, then weight ψi for certain nodes will be 0 and they

will not have a chance to transmit in the next slot. We shall

discuss the impact of α in Section 6.

In step 3a, all the nodes update their interference model,

which means to set the activity factors of the dominant inter-

ferers. In step 3c, if the new link does not decrease the SIR

of the other nodes below the target level, it will be scheduled

in the incoming slot. However, its father and all its chil-

dren in the tree must have their weight ψk set to 0 because

they will not transmit due to the half-duplex constraint. If

instead the candidate link is incompatible with the links al-

ready scheduled, it is discarded and it will not be consid-

ered for the rest of the slot as a possible candidate. Thus its

weight ψi is set to 0.

We point out that step 3c is carried out taking into ac-

count all ongoing transmissions in the network. This step

is not distributed and requires global knowledge. How-

ever, [5] is subject to the same requirement, while in the

other steps our scheduler requires less knowledge than the

algorithm in [5].

The computational complexity of the scheduler with re-

spect to the network size N depends on the interference

statistics model, which affects step 3a. Its complexity is

O(K), since the weights of the dominant interferers are up-

dated. Steps 3b and 3c have a constant complexity with

respect to N . These operations must be repeated until the

queue becomes empty, thus the outer loop is run O(N)
times, leading to a total ofO(NK). We state thatK weakly

depends on N , and this statement will be proved in the re-

sults section. Thus we approximate in this analysis K as

a constant factor, independent of N . Finally, the scheduler

must compute the queue size bonus at the beginning of the

slot, and this is an O(N) operation. Therefore the compu-

tational complexity is linear in the network size N .

Since we assume that the scheduler has perfect channel

state information, scheduling errors (that is to say, some

links turn out to have an insufficient SIR) cannot happen

in our settings.

6 Performance Evaluation

We have quantified the performance of our scheduler in

a number of different situations. Our goal was to compare

the absolute performance of our proposed scheduler against

some recognized benchmarks and to explore which factors

impact its performance.

Scenario Description—All our tests have been run on tree

topologies composed by a number of nodes ranging from

16 to 31. For all links, we assume a path loss proportional

to d−3.5, where d is the distance between transmitter and

receiver. Additionally, we superimpose a correlated shad-

owing term modeled as in [9], with a variance of 5 dB and

a correlation at 100 m equal to 0.6. Moreover, two classes

of topologies have been created. The first type corresponds

to the regular node deployment depicted in Fig. 1a. In such

a case, each node is 300 m away from its next hop, and

the tree is binary and balanced (the difference between the

depth of any two leaves is at most one). Observe that, even

though the nodes’ positions are fixed and regular, the pres-

ence of the correlated shadowing, which is introduced in

all the investigated topologies, allows us to obtain different

values of the path gain for each topology instance. In the

second class of topologies, nodes are randomly placed in a

1000 m × 1000 m square. A tree topology is generated by

means of a spanning tree algorithm which chooses the clos-

est node to the center of the square as the root, and allocates

children nodes to the already built tree, with a limit on the

node degrees set to 3. An example is shown in Fig. 1b.

Differently from the previous scenario, the tree is no longer

binary and balanced. In spite of these differences, most of

the conclusions we derive for these two scenarios are quite

similar, so we infer that they are likely to hold true for other

cases as well.

Given an N node topology, an N − 1 node topology is

created by removing a leaf picked at random. According to

this procedure, given a base tree consisting of 31 nodes (i.e.,

a full tree where all leaf nodes have depth 4), we generate

a sequence of smaller topologies by successively removing
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Figure 1. A sample regular (a) and random (b)
tree topology

one leaf, until as few as 16 nodes are left (i.e., exactly one

leaf node has depth 4). All the curves reported in the numer-

ical results are averaged over 30 different samples, which

ensures adequate statistical confidence. Where meaningful,

95% confidence intervals are reported.

The performance of our link scheduling algorithm is as-

sessed by means of the following indices:

• schedule length: the duration of the schedule produced

by the algorithm in number of slots.

• end-to-end system throughput (or simply throughput):

the overall amount of net user data delivered by the

system per unit time.

• fairness index: (
∑n

i=0 xi)
2/

(

n
∑n

i=0 x
2
i

)

[14], where

n denotes the number of data flows to the gateway, and

xi the throughput of the i-th flow. By definition, the

fairness index is bounded in [0, 1] and for equal parti-

tioning of bandwidth is equal to 1.

To investigate the performance of our algorithm in terms

of schedule length, we assume that nodes have an integer

number of packets in their queues (whose initial sizes need

not be equal) and the link rates are normalized to 1. All

nodes transmit at a fixed power of 10 dBm. The goal of

the scheduler is to transfer all data as quickly as possible

from the nodes to the tree root/gateway. If not stated oth-

erwise, the interference model employs K = 2 dominant

interferers, the suppression factor α is 0 and each node ini-

tially has 8 packets in its buffer. The number of dominant

interferersK was chosen to be 2 because for higherK per-

formance improvement was found to be negligible. Such a

low K strikes a good balance between computational com-

plexity and performance. Moreover, especially in random

topologies, it is hard to find many strong interferers which

generate comparable interference so that they should all be

regarded as dominant. Hence a higher K does not lead to

significant performance improvement in this setting. The

set of results will explore the scheduler performance as a

function of network size, SIR threshold andK.

In addition, the system throughput is analyzed under

realistic traffic conditions. Two types of data traffic are

used in the simulations, namely Web and Constant Bit Rate

(CBR). In the former case, traffic is modeled as a Web

source generating variable size packets at variable inter-

arrival times. The packet size is distributed as a truncated

Pareto random variable with location 10.3 kB, shape 1.1,

and cut off 1500 kB. Packet inter-arrival time is exponen-

tially distributed. In the latter case, the source produces

packets with length equal to 1000 B at a constant average

rate of 50 kB/s. The analysis was carried out by means of

Network Simulator 2 (ns-2) [1]. Note that, since we deal

with physical realism of the interference models, we uti-

lized, within ns-2 simulation, a more detailed implementa-

tion of the physical level, including in particular the additive

behavior of the interference. This means that, according to

Section 3, the packets need an SIR above the threshold Λ0

at the receiver’s side to be correctly decoded.

Numerical Results — The first test compared the time to

empty the node queues for four different systems: our pro-

posed scheduler, the optimal link activation, the protocol

model and the physical-model based scheduler by Brar et

al. [5]. The scheduler by Brar et al. is the present bench-

mark for scheduling based on the physical model. The pro-

tocol model is implemented as in [5]; that is to say, when-

ever a tagged link is activated, it silences all other links

whose transmitter or receiver lie inside the interference ra-

dius to the tagged link receiver. Observe that, whereas our

proposed scheduler and also the one by Brar et al.mandato-

rily verify the feasibility condition for the SIR being above

Λ0 for each activated link, the protocol model, which per-

forms just an approximate computation of the interference,

may instead obtain infeasible link activation patterns. When

this happens, we assume that an ideal ARQ recovery mech-

anism is available, which means that the erroneous packets

are always detected and immediately (i.e., without delay)

notified at the transmitter, which can retransmit them al-

ready in the next time slot. This is clearly an optimistic

assumption, so the behavior of the protocol model is over-

estimated; actually, in practical environments, a realistic er-

ror recovery mechanism would imply an even worse perfor-

mance.

The optimal link activation sequence is found by means

of an exhaustive search over all possible schedules that are

feasible under the physical model.

Figs. 2 and 3 report the results for the regular and ran-

dom topologies, respectively. They show the ratio between

the lengths of the schedules computed by the different ap-

proaches and the optimal schedule length. Note that all of

the approaches achieve an approximately linearly increas-

ing schedule length in the number of nodes, but with differ-

ent slopes, that is to say the heights of the curves in Figs. 2-3

(which is the most interesting aspect, as it tells us also how

the scheduling algorithms scale with the network size). First

of all, the curve relative to our scheduler with queue bonus

is usually within 1.1. This means that our schedule is about
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Figure 2. Performance comparison for the
regular topologies, Λ0 = 2.5 dB, K = 2
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Figure 3. Performance comparison for the
random topologies, Λ0 = 2.5 dB, K = 2, α = 0

10% longer than the optimal one (and often less than that).

This is a non-trivial result, since there is no easy way to

predict the performance of our scheduler, which could have

been anywhere between the lower bound and the protocol

model. This fact points out that our algorithm can harness

the potential spatial reuse and achieve results which are very

close to the optimal scheduling. Moreover, the performance

of the algorithm by Brar et al. is 20% worse than the opti-

mal schedule. Therefore, we are able to halve the gap with

the lower bound, and we can often do better. Incidentally,

Brar et al. proved that the performance of their algorithm

was within a constant multiplicative factor from the opti-

mal schedule. This is confirmed by our graphs. Finally, the

protocol model performs rather poorly, because of the low

degree of spatial reuse.

Similar reasonings can be applied to Fig. 3, where the

random topology case is considered. Again, our scheduler’s

curve is very close to the optimal policy and thus confirms

the adaptability of our method to realistic topologies. In this

situation, the algorithm by Brar et al. does not significantly

improve its performance over the previous case, while we
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Figure 4. Performance dependence on the de-
coding threshold, K = 2, α = 0

approach the lower bound more tightly.

Fig. 4 compares the performance of the optimum link

activation sequence and our scheduler when the target SIR

is changed, in the regular topology case. We note that the

curve corresponding to our scheme remains close to the op-

timal one for all the SIR values. This shows that our ap-

proach is robust to the SIR choice. The schedule length in-

creases with a higher SIR because the lower tolerable level

of interference decreases the spatial reuse.

A key issue for our scheduler is the determination of the

minimum number of dominant interferers used by the inter-

ference model necessary for satisfactory performance. It is

reasonable to expect that the more the dominant interferers,

the better the scheduler performance because the interfer-

ence model becomes more accurate. However, the compu-

tational complexity increases. Fig. 5 explores this tradeoff

for the regular topology when the queue size bonus is set to

zero. This bonus has been removed in this context because

we want to study the influence of the interference model ac-

curacy in isolation. The queue size bonus can mask the dif-

ferent impacts and so it has been turned off for these experi-

ments. Therefore, the curves here do not extend those in the

previous graphs (e.g., Fig. 2 or 3). First of all, the mixture

model (K > 0) yields non negligible improvement over the

single mode model (K = 0) only for rather large networks

(at least 20 nodes). The reason is the following: as pointed

out in [19], the Gaussian mixture model works well when

there are a few nodes whose power received by a certain

terminal is larger than all the rest of the combined interfer-

ence. When the nodes are few (less than 20) they are usually

confined in a small area, and the range of powers received

at any point in the tree from all the nodes is within one or-

der of magnitude. Thus, the final interference is not multi-

modal, but can be already predicted fairly well by a simpler

single-mode Gaussian estimator. However, for larger net-

works dispersed in a wider region, the ratio of the powers

between two interferers may become significantly large and

result in some noticeable performance difference. This is
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only partially captured by the average schedule length. In

fact, due to the choice of a tree topology, the main bottle-

neck of the delivery is the tree root, which is independent

of the interference evaluation. Thus, also other quantities

such as the second order moments should be considered. In

any case, the reported difference is about 5–10%. Also note

thatK is quite low, because no significant performance im-

provements can be achieved with higher K. Actually, the

curves for K ≥ 3 are not plotted because they are almost

indistinguishable from the caseK = 2. The graphs suggest
that the dependence of K on the network size is weak. We

conjecture that it is in fact sublinear, but further investiga-

tion is still needed in the area. Finally, observe also that

the slope of the curves changes, thus we infer that for larger

networks the gap would increase, which is also confirmed

by preliminary results.

We have also explored how the scheduler performance

changes when the queue size is modified. In particular, all

our previous simulations considered all nodes to be equally

backlogged. We have tested two more scenarios: in the for-

mer case, the nodes closer to the root have a longer queue

than the leaves, and vice versa for the latter. In the first

case the scheduler length is on average shorter (the packets

are closer to the root) and the opposite happens in the lat-

ter case. But no matter what the load distribution could be,

the gap between the optimal scheduling and our system is

always in the order of 10% as in the previous cases. There-

fore our scheduler is robust to the backlog location.

So far we have proved that our system offers excellent

performance compared to the optimal scheduler and [5]. We

complete our study by an analysis of our scheduler perfor-

mance with realistic traffic sources, CBR andWeb bymeans

of ns-2.1 In addition, further insight about the dependence

1We point out that for web-browsing, UDP has been used as transport
protocol, because TCP excessively influences the system performance and
its impact on protocol activity would cancel many of the phenomena we
are interested in.
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Figure 7. Performance of our scheduler for
different values of the suppression factor α.

of the scheduler behavior with respect to its fairness param-

eter α has been sought. In Fig. 6 we have studied the system

throughput as the tree size is increased from 8 to 15 nodes.

We note that the throughput already saturates at 15 nodes,

so we have not analyzed larger networks. Each link has a

data rate of 1 MB/s, and the maximum possible capacity

in the tree topology is exactly 1 MB/s, because only one

of all the links that go into the root can be active per slot.

Our scheduler achieves around 45% of this value, which is

a significant result considering the interference and topol-

ogy constraints. As can be seen, when the network becomes

overloaded, i.e., the number of nodes is greater than or equal

to 11, the overall throughput achieved with the Web source

is slightly higher than that with CBR. This is mainly due

to the fact that flows experience random bursty arrivals of

packets followed by periods of inactivity. Therefore, it may

happen that not all flows are active at the same time and

traffic experiences a better statistical multiplexing. Fig. 7

shows the throughput in overload conditions versus the fair-

ness index while changing the suppression factor α. We

note that there is a tradeoff between the two. This is due to

the fact that when α is large (close to 1) all nodes are eligi-



ble to be scheduled. This implies that those link activations

that enjoy a high spatial reuse may be used very often, and

thus the throughput will eventually benefit. However, this

also favors those nodes whose interference is inherently low

because of their position. Therefore the fairness index will

drop. It is also evident that CBR traffic is more affected by

α. We believe that this fact is due to the time distribution of

the packet arrivals: Web traffic is bursty, and thus terminals

in unfavorable positions just have to wait for some traffic

to be delivered before having their chance to transmit. On

the other hand, CBR will keep busy those nodes in low in-

terference locations, and thus the fairness-throughput curve

will be shifted toward the low-right corner of Fig. 7. Inci-

dentally, we observe that when no constraints on node se-

lection are imposed (α = 1) the system fairness is nonethe-

less acceptable (0.65). On the other hand, the ratio between

the maximum and minimum saturation throughput is 0.78.

This means that even when the candidate selection is strict

(α = 0) the achieved throughput is still a significant frac-

tion of its best possible value. Hence the scheduler achieves

simultaneously high fairness and throughput. Moreover, it

is really possible to trade off the two quantities (the curve

is smooth and there is no sudden change as the suppression

factor changes) and thus α is a design parameter that can be

tuned to achieve a desired point in the tradeoff curve. All

these observations and findings lead us to concluding that

the proposed scheduler is flexible and can perform well in a

wide range of scenarios.

7 Conclusions

We have proposed a high performance centralized sched-

uler for wireless multi-hop networks based on the physical

interference model, rather than the protocol model. The

scheduler is based on a low complexity model for aggre-

gate mutual interference between nodes, whose complexity

is linear with the network size. We have evaluated the ro-

bustness of our algorithm with respect to some important

system parameters (detection SIR and backlog distribution

in the network) and we have shed some light on the depen-

dence of the scheduler’s performance on some of its param-

eters (number of dominant interferers or suppression fac-

tor). We are also able to outperform other proposed mod-

els which represent the benchmark for computationally ef-

ficient, physical-model based schedulers, achieving a gain

larger than 50% in approaching the theoretical optimum.

Our future work will study the relaxation of some as-

sumptions (for instance the perfect channel state informa-

tion assumption). Moreover we are working toward a dis-

tributed version of our algorithm, for which problems like

disseminating information about queue sizes, obtaining the

status of the dominant interferers or coping with imperfect

channel state estimates in the previous slot must be solved.
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