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Abstract—This paper discusses a result for error control tech-
niques based on retransmissions, most notably Hybrid Automatic
Repeat reQuest schemes. We assume that the underlying coding
technique is described by the so-called reliable region. Under this
assumption, we derive the channel distribution after a frame
is either acknowledged or discarded. This is derived within
an entirely analytical framework, where we show that such a
distribution can be found as the result of an iterative process.
Remarkably, this distribution is not the same as the steady-state
channel distribution, and can be significantly different from it.
Thus, using one instead of the other can lead to evaluation errors,
which instead are avoided by our model.

Index Terms—Channel coding, error correction, automatic re-
peat request, forward error correction, communication channels.

I. INTRODUCTION

In this paper, we present a result concerning retransmission-
based error control techniques, with particular reference to Hy-
brid Automatic Repeat reQuest (Hybrid ARQ), and especially
Incremental Redundancy Hybrid ARQ (IR-HARQ) [1]. Such
techniques counteract channel errors by using data coding and
transmitting fragments of a longer codeword, which encodes
an information frame. If the first transmission attempt fails,
i.e., the receiver is unable to retrieve the information frame
from the received fragment, another fragment is transmitted
over a different channel realization. This time, the fragments
are combined at the receiver’s side in a longer codeword. If the
receiver is still unable to decode the frame, another fragment
is requested. This process continues until either a successful
decoding happens, or a maximum number of transmission
attempts is reached, in which case the frame is discarded.

Hybrid ARQ techniques are deemed to be effective es-
pecially for the wireless channel, and in this context they
have been widely studied in the literature. Most of the in-
vestigations are performed from the physical layer standpoint,
and usually by means of simulation [2], [3]. Nevertheless,
there is a flourishing interest for analytical models [4], [5],
which, however, generally use fading models with independent
channel coefficients at every transmission.

To apply Hybrid ARQ techniques in higher layer contexts,
analytical representations must track the evolution of the
communication process over multiple transmissions. This can
be done by means of Markov chains, as proposed in [4], [6];
however, this approach can be complicated, as the memory
of the system may become very large [7]. Moreover, it is
important, as we will argue in the following, that channel

correlation between multiple retransmissions is properly kept
into account [8].

Finally, we need a model to determine the outcome of each
combined codeword, where it is considered that different code-
word fragments are sent over different channel realizations. To
this end, we exploit recent findings on practical near-capacity-
achieving codes, which have drawn a significant research effort
to derive information theoretic coding performance bounds.
In particular, we consider the so-called good code ensembles
[9], such as Turbo codes [10] and Low–Density Parity–Check
(LDPC) codes [11], whose performance can be characterized
by a threshold behavior. A code is said to be good when
its block error probability asymptotically approaches zero
as the codeword length increases, provided that the channel
parameters fall within the so-called reliable region [12]. As the
specific structure of good codes is usually not given, bounds
are often derived for ensembles of codes, i.e., classes of codes
characterized by basic features of structure and construction,
such as the distance spectrum and the input-output weight
enumeration function [13], [14].

The analytical study of an IR-HARQ scheme implies check-
ing whether multiple, say n, codeword fragments transmitted
over different channel conditions can be correctly decoded at
the receiver side. This translates into checking whether the
n-tuple of corresponding channel parameters falls within the
reliable region. Even when the channel distribution and its
evolution in a correlated fashion are known, this setup presents
a further problem for the analysis, namely, how to determine
the channel distribution of the first transmitted fragment. In a
naı̈ve setup, one can think of choosing this as the steady-state
channel distribution, which is, however, incorrect.

Intuitively, the first fragment of a codeword is transmitted
when a previous frame has been correctly decoded in the previ-
ous transmission, thus, if the channel distribution is correlated,
it is more likely that the channel was, and is, in a “good”
state, i.e., one that enables decoding with higher probability.
Actually, this holds also for the case where the frame is
discarded after a given number of failed incremental decoding
attempts. However, in this case the channel is more likely to
be in a bad state. Both these cases are taken into account by
our analysis, where we derive the channel distribution after the
acknowledgement or discard of a Hybrid ARQ frame, which is
also directly correlated to the channel distribution encountered
by the first fragment of the next Hybrid ARQ codeword.
We show, with a formal proof making use of Banach fixed
point theorem, that this distribution exists and can be derived



through an iterative procedure. Numerical results are presented
to show that the distribution sought is considerably different
from the steady-state channel statistics.

The rest of this paper is organized as follows. In Section II
we describe the IR-HARQ mechanism assumed in the analysis
and we introduce some notation and terminology. Section III
presents the main contribution of this paper, i.e., the analytical
derivation of the channel distribution sought. In Section IV we
present numerical evaluations where we compare the steady-
state distribution with the one found by our analysis, showing
that they are indeed considerably different. Finally, we draw
the conclusions in Section V.

II. SYSTEM MODEL

Assume that we have a flow of data, subdivided in what
we call information frames, which are exchanged between a
transmitter and a receiver. The realization of an IR-HARQ
scheme implies that the frame transmission is translated into
that of multiple HARQ packets [15]. This means that every
information frame is coded into a single long codeword, which
is in turn split into multiple fragments. Each fragment is
transmitted individually as a single HARQ packet. For this
reason, we will use the terms “codeword” and “fragment” as
synonyms for “information frame” (or simply “frame”) and
“HARQ packet,” respectively. In the following, we assume
that F fragments (and therefore F HARQ packets) are gen-
erated from each codeword. Moreover, we assume that each
single fragment contains the entire information amount of a
codeword, so that its fully correct reception is sufficient to
decode the frame. When this assumption holds, the IR-HARQ
scheme is also said to be of Type III ARQ [1].

Also, the Incremental Redundancy (IR) property means that
the receiver can decode the codeword combining symbols
contained in different fragments; therefore, upon reception
of a HARQ packet, the receiver sends a feedback packet
to the transmitter. This indicates either positive or negative
acknowledgement; the feedback is referred to as ACK in
the former case, and NACK in the latter. Due to the IR
property, the acknowledgement message refers to the whole
information frame. Thus, an ACK means that the receiver was
able to decode the frame based on all received HARQ packets
associated with this frame (in this case, we speak of frame
resolution), whereas a NACK means that the frame could
not be decoded since the channel impairments exceeded the
correction capability of the code formed by the set of currently
received fragments. Due to the IR property, unlike in other
retransmission-based techniques, a NACK does not trigger the
retransmission of the same data; instead, a physically different
HARQ packet (though associated with the same information
frame) is transmitted. In such a case, we adopt a slight abuse
of terminology and speak of frame retransmission.

In the present paper, we focus on Stop-and-Wait (SW)
HARQ, i.e., the transmitter and receiver alternate in exchang-
ing HARQ and feedback packets. The extensions to other
ARQ schemes, such as Go-Back-N and Selective Repeat, are
straightforward along the same lines.

Thus, we assume that, as long as the receiver sends back
NACKs, HARQ packets associated with the same information

frame are sequentially transmitted. However, two different
events can cause the transmitter to move to the next in-
formation frame. One happens when the information frame
is acknowledged, so that the receiver sends back an ACK.
The other occurs when a maximum number of transmission
is reached without the receiver being able to decode the
information frame. We set this number to F , i.e., all generated
fragments are transmitted exactly once without success. The
information frame is then discarded.

For each frame, we define the resolution instant, denoted
as τR, as follows. If the frame is resolved at the kth trans-
mission, the resolution instant is equal to k. If the frame is
discarded, τR is conventionally set to F + 1. Note that this
notation distinguishes the resolution instant from the number
of transmissions experienced by a given frame, which is called
τT = min(τR, F ). In other words, if the frame is resolved, τR

is equal to τT . However, since the frame cannot be transmitted
more than F times, we need to distinguish the case where the
frame is resolved at the F th transmission (i.e., the last possible
one) from the case where it is discarded. In the former case,
τR = F , whereas in the latter τR = F + 1 (while τT = F
in both cases). For any k ∈ {1, 2, . . . , τT }, we will use the
symbol wk to denote the codeword fragment sent at the kth
transmission. For completeness, we will denote with w0 the
codeword fragment (related to the previous frame) which has
been transmitted previous to the first one of the current frame.

One important application of Hybrid ARQ techniques is
to control errors in data transmissions over wireless fading
channels. Thus, the scenario of reference in the following will
consider that the transmission outcome, according to which the
receiver sends either ACK or NACK, depends on the Signal-to-
Noise Ratio (SNR) at the receiver. However, the same rationale
is directly applicable to other kinds of noisy channels.

In the rest of the paper, we assume a block flat fading
channel, i.e., each HARQ packet experiences a single SNR
coefficient, denoted with sk ∈ R+ for the kth fragment,
k = 0, 1, . . . , τT . Similar block fading models have been
investigated, for example, in [16] for coded modulation.
However, since we consider a block duration equal to the
transmission time of a HARQ packet, our model is more
similar to that of [17]. For the sake of simplicity, feedback
packets are instead considered to be error-free. Indeed, they
are shorter packets and just contain a binary information
(ACK/NACK) so that they can be protected with strong
encoding. The additional effect of erroneous feedback, which
is reasonably quite limited, can be evaluated as shown in [18].

Therefore, a description of the channel statistics, i.e., of the
SNR values, is required. We consider the cumulative distribu-
tion function (cdf) and the probability density function (pdf)
of the SNR, and denote them with FΓ and fΓ, respectively.
This means that, if Γ is the random variable describing the
channel SNR,

FΓ(s) = Prob{Γ ≤ s}, fΓ(s) =
dFΓ(s)

ds
. (1)

Note that FΓ(s) takes values in [0, 1] and is zero for s ≤ 0.



Moreover, fΓ(s) is integrable since

lim
s→+∞

FΓ(s) =
∫ +∞

0

fΓ(s)ds = 1 . (2)

A key aspect of our analysis is that we want to take
correlation of fading effects into account. This means that
we also consider conditional SNR statistics and we write
fΓ(sk|sk−1) to denote the conditional pdf of sk given that
the SNR was equal to sk−1 during the previous transmission.
We assume that the evolution of the SNR has the Markov
property [19], which means that the knowledge of sk−1 makes
any other condition on previous SNR values irrelevant. This
includes the particular case where the channel state is selected
independently from block to block, according to a known prior
distribution [15], [17], if fΓ(sk|sk−1) = fΓ(sk).

Finally, we need a model to describe the outcome of the
decoding process, i.e., to determine if the receiver is able
to correctly reconstruct the codeword from the reception of
k fragments, i.e., w1 through wk, whose SNR coefficients
are s1, s2, . . . , sk. To this end, we utilize the reliable region
model [12], [20]

The reliable region at the kth transmission, denoted with
R(k), is defined as a subset of Rk

+ which contains the k-tuples
of SNR coefficients where the failure probability becomes
negligible if the packets sent are sufficiently large. Hence, the
receiver is able to decode the codeword after the reception of
w1, w2, . . . , wk if (s1, s2, . . . , sk) ∈ R(k). The reliable region
R(k) is specifically determined by the code used, the decoding
algorithm and the codeword fragments construction [12].

However, some general properties hold. For example, it is
easy to show that if (s1, . . . , sk−1, sk) ∈ R(k) and s′k > sk,
then also (s1, . . . , sk−1, s

′
k) ∈ R(k). In fact, if sk enables the

receiver to decode the codeword, any SNR value better than
sk does so. Therefore, we represent R(k) through a threshold
function ϑk : Rk−1

+ → R+, defined as follows:

ϑk(s(k−1)) = inf{sk : (s1, . . . , sk−1, sk) ∈ R(k)}, (3)

where s(k−1) = (s1, s2, . . . , sk−1). That is, the edge of R(k)
is the graph of sk = ϑk(s(k−1)) in Rk

+. When one transmission
is considered, this curve degenerates to a single point ϑ1 ∈ R+,
which is the value of s1 associated with the (constant) SNR
threshold to obtain correct decoding with a single fragment,
and the reliable channel region R(1) corresponds to the
interval [ϑ1,+∞[.

Similarly to the property mentioned above, it is also true
that if (s1, . . . , sk) ∈ R(k), then (s1, . . . , sk, sk+1) ∈ R(k +
1) for all sk+1 ∈ R+. In other words, if the fragments
w1, w2, . . . , wk are sufficient to decode the codeword, adding
another fragment cannot worsen the decoding process. Actu-
ally, when the frame resolution is acknowledged, no further
fragment is sent, but the transmitter moves to the next infor-
mation frame.

III. THE CHANNEL DISTRIBUTION AFTER THE FINAL
FRAGMENT TRANSMISSION

We denote with ψτR,S|S0(j, s|s0) the joint pdf of the res-
olution instant τR and the SNR S being equal to j and s,
respectively, when a frame is either resolved or discarded,

conditioned on the SNR of the final transmission of the
previous frame S0 being equal to s0. Similarly, we denote
with ψS(s) the pdf of the SNR S being equal to s in the
global case of frame resolution or discarding. For brevity, we
refer to this pdf as the one for the final fragment. What is
meant with “final” is that the current transmission attempt is
the last one for this specific information frame, because either
the frame becomes resolved or the fragment is the F th one
(and henceforth no further retransmission is allowed). Thus,
the next transmission will involve a new frame.

If X ⊆ Rk
+, we define 1(s(k),X ) as equal to 1 if s(k)∈X ,

and 0 otherwise. We have [1]:

ψτR,S|S0(j, s|s0) =





fΓ(s|s0) 1
(
(s),R(1)

)
if j = 1

∫

R
j−1
+ \R(j−1)

fΓ(s|sj−1) 1
(
(s(j−1), s),R(j)

)

j−1∏

`=1

fΓ(s`|s`−1) ds` if 2≤j≤F

∫

RF−1
+ \R(F−1)

fΓ(s|sF−1) 1
(
(s(F−1), s),RF

+ \ R(F )
)

F−1∏

`=1

fΓ(s`|s`−1) ds` if j =F +1

⇒ ψS(s) =
∫ +∞

0

ψS(s0)
F+1∑

j=1

ψτR,S|S0(j, s|s0) ds0 . (4)

If we take β(s, s0) =
F+1∑

j=1

ψτR,S|S0(j, s|s0), we can write

(4) in the form

ψS(s) =
∫ +∞

0

ψS(s0)β(s, s0)ds0 , (5)

that is, ψS(s) must be an eigenfunction of the transform
operation, which maps a generic function ζ : R → R into
its transform ζ̂, given by

ζ̂(s) =
∫ +∞

0

ζ(s0)β(s, s0)ds0 . (6)

In the following, we prove that such an eigenfunction exists
and can be determined by a recursive strategy, so that we also
provide an operational method to determine it. The reasoning
is a direct consequence of Banach fixed point theorem [21].
Consider K as the set of all pdfs over the real non-negative
semi-axis and denote with d the Lebesgue measure, i.e., the
distance related to the norm-1. This means that, for any x(s),
y(s) ∈ K

∫ +∞

0

|x(s)|ds =
∫ +∞

0

|y(s)|ds = 1 (7)

d(x, y) =
∫ +∞

0

|x(s)− y(s)|ds . (8)

The function ψS(s) such that ψS(s) = ψ̂S(s) is found as a
suitable fixed point in the metric space (K, d), whose existence



is guaranteed by the application of Banach fixed point theorem.
The only missing part is to prove the following theorem.

Theorem 1: The transform ̂ : ζ → ζ̂ is a contraction in the
metric space (K, d).

Proof: We need to prove that either d(x, y) = 0 or
d(x̂, ŷ) < d(x, y), where the inequality is strict. We observe
that d(x, y) = 0 only if x and y are the same pdf; otherwise,
since they both are density functions, both sets Ux = {s ∈
R+ : x(s) ≥ y(s)} and Uy = {s ∈ R+ : x(s) < y(s)} have
non-zero measure. At this point we evaluate d(x̂, ŷ) as

d(x̂, ŷ) =
∫ +∞

0

∣∣∣
∫ +∞

0

(
x(s0)− y(s0)

)
β(s, s0)ds0

∣∣∣ds

Since the innermost integral is equal to
∫

Ux

(
x(s0)− y(s0)

)
β(s, s0)ds0

+
∫

Uy

(
x(s0)− y(s0)

)
β(s, s0)ds0

with both terms being greater than zero, we can write a strict
inequality

d(x̂, ŷ) <

∫ +∞

0

∫ +∞

0

∣∣x(s0)− y(s0)
∣∣β(s, s0)ds0ds . (9)

Note that
∫ +∞
0

x(s0)β(s, s0)ds0 has a finite integral as a
function of s. Hence, Fubini’s theorem can be applied, i.e., we
can reverse the integration order. Thus,

d(x̂, ŷ) <

∫ +∞

0

∣∣x(s0)− y(s0)
∣∣
( ∫ +∞

0

β(s, s0)ds

)
ds0

=
∫ +∞

0

∣∣x(s0)− y(s0)
∣∣ds0 = d(x, y) (10)

Therefore, the metric space (K, d) and the contraction ̂
satisfy the hypothesis of Banach fixed point theorem, which
guarantees the existence of a fixed point ψS(s) for the con-
traction, i.e., ψS(s) = ψ̂S(s). Moreover, the theorem enables
a recursive strategy to determine ψS(s) as the limit of a
sequence

{
ζn(s)

}
n∈N of functions where ζ0(s) = fΓ(s) and

ζ`+1(s) = ζ̂`(s), as per (6). Finally, the pdf for an SNR value
s1 for a newly transmitted fragment can be determined as

∫ +∞

0

ψS(s)fΓ(s1|s)ds . (11)

Such a result can also be used to extend related analytical
studies, for example those reported in [1], to the case of
correlated channels.

IV. NUMERICAL EVALUATION

In this section we show, by means of some numerical
examples, that the channel probability density function in
steady-state, i.e., fΓ(s), can be significantly different from
ψS(s) derived in the previous section even for moderate values
of the channel correlation.

Fig. 1. The channel distribution after the last fragment for F = 2.

We assume that the source uses a capacity achieving code.
The reliable channel region is then described by the following
SNR thresholds:

ϑ1 = 2R − 1

ϑ2(s1) =
2R − 1− s1

1 + s1

ϑ3(s1, s2) =
2R − 1− s1 − s2 − s1s2

(1 + s1)(1 + s2)
, (12)

where R is the transmission rate in bit/s/Hz. The channel
evolution has been computed according to a bivariate Rayleigh
joint pdf fΓ(s1, s2) [22], equal to

fΓ(s1, s2) =
4s1s2

(1− ρ)Ω2
e
−Ωs21+Ωs22

Ω2(1−ρ) I0

(
2
√

ρs1s2

Ω(1− ρ)

)
(13)

where Ω is the average SNR of the link, ρ=J0(2πfdTp) is the
correlation of two samples of the underlying Gaussian process,
spaced by Tp seconds, with Tp being the transmission time of
a HARQ packet, fd is the Doppler frequency, and J0(·) and
I0(·) are the Bessel function and the modified Bessel function
of the first kind and order zero, respectively.

To represent the probability density functions in a simple
manner, we subdivided the positive real semi-axis R+ into
50 bins, determined with an equal probability criterion with
respect to the Rayleigh distribution. This means that if the
channel is Rayleigh, each of the bins has 1/50 of probability of
containing the SNR value in steady-state. Thus, the behavior of
a Rayleigh pdf is flat to 0.02, which is exactly what we expect
from the steady-state function fΓ(s). Conversely, the pdf of the
SNR at the final fragment transmission will be different, and
in this way it is possible to appreciate the differences. In the
following plots, we set the transmission rate and the average
SNR to R=2 bit/s/Hz and Ω=3 dB, respectively. Thus, the
“good channel states”, i.e., those where the frame is solved
even with a single transmission, are in the bins above 1 −
e−3/2 ≈ 0.78.

Figs. 1 and 2 report such evaluations for multiple values of
ρ, i.e., for different correlation between two subsequent SNR
values. Fig. 1 considers F=2, i.e., at most two transmission
attempts are performed for each frame, whereas Fig. 2 con-
siders a maximum of F=3 attempts. As is visible, the curves
are significantly different already for low correlation values.



Fig. 2. The channel distribution after the last fragment for F = 3.

As argued in the introduction, we see an increase of the
probability that the channel state is good at the final transmis-
sion of a packet, meaning that a bad channel is more likely to
imply a retransmission, and therefore not be the final state. For
F = 2 note also that very bad channel states are also slightly
more likely than other bad channel states, which is due to the
possibility of packet discarding, which is also included in the
analysis. In fact, it is more likely that the frame is discarded
after a burst of very bad channel states. The gap which makes
good states more likely, which was already present for F = 2,
is even more acute for F = 3. Also, it is no longer true that
very bad channels are more likely, instead we see an interesting
behavior with a local maximum in some intermediate channel
value. All these effects are worth of further analysis, which
will be an interesting subject for future work.

V. CONCLUSIONS

In this paper, we discussed the channel statistics at the
final fragment transmission attempt of an Incremental Re-
dundancy Hybrid ARQ codeword. Our proposal is motivated
by the strong research interest around retransmission-based
error control schemes and the renewed attention gained by
practical coding techniques, such as LDPC and Turbo codes,
that show a threshold behavior, i.e., they have error probability
asymptotically going to zero if the channel parameters fall
within the so-called reliable region.

To properly evaluate such schemes, a correct characteriza-
tion of the channel statistics is required. We presented an
analytical investigation, where the channel pdf at the final
transmission attempt is found through a recursive methodology
based on Banach fixed point theorem, and is shown to be dif-
ferent from the steady-state channel pdf. Finally, we reported
numerical evaluations to highlight this difference.

One immediate practical implication is that over correlated
channels IR-HARQ frames experience, at their first transmis-
sion, an average SNR which is in generally slightly above the
steady-state value of the channel, due to the interdependence of
IR-HARQ transmissions; other relationships are also present,
depending on the maximum number of transmissions. These
aspects must be carefully taken into account when deriving
statistical properties of HARQ to avoid incorrect estimations of

the error correction capabilities; therefore, they are important
for the design of both coding and error control schemes.
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