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On the Impact of Correlated Arrivals and Errors on ARQ Delay Terms
Leonardo Badia, Member, IEEE

Abstract—We analytically investigate the packet delay statistics
of the Selective Repeat ARQ scheme with non-instantaneous
feedback, with correlation both in the channel errors and the
packet arrival process. We highlight interesting trends of the
delay terms, which can be extremely useful for multimedia real
time services over wireless.

Index Terms—Queueing analysis, automatic repeat request,
Markov processes, error analysis.

I. INTRODUCTION

THIS letter discusses the delay statistics for Selective
Repeat Automatic Retransmission reQuest (SR ARQ).

The way to counteract errors using the SR ARQ technique
is to trigger the retransmission of non-acknowledged packets
and then to resume transmission from the last packet sent [1].
Non-instantaneous feedback at the transmitter is accounted for,
i.e., the round-trip delay is larger than the packet transmission
time. For this reason, packets are not always transmitted in
numerical increasing order, and this forces the receiver to
keep the received packets in a buffer, from where they can
be released only when all packets with lower identifiers have
been acknowledged. Thus, the delay τD between the first
transmission of a packet and its release from the receiver
buffer, which we call delivery delay, can not be computed triv-
ially, since it also depends on the outcome of the transmission
of all packets with lower id. The analysis discussed in this
letter introduces a Markov approach to evaluate the statistics
of the delay terms. Importantly, the overall delay experienced
by a packet also comprises the time spent in the transmitter’s
queue [1], which we denote as queueing delay (τQ). Again,
characterizing this term requires a joint analysis of all packets
in the system, i.e., ahead in the queue or already transmitted
but still pending.

The evaluations of delay performance and other related
aspects in such a scenario has been subject of many inves-
tigations [2]–[6]. In the 1970s, Towsley and Wolf investigated
the statistics of the queueing delay in [2], where they consider
a Poisson arrival process and an independent error model for
the channel. They use queueing theory to derive the statistics
of the time spent in the queue. In [3], Kim and Krunz present
an extended analysis, also using queueing theory, for a source
characterized by a Markov process and a correlated channel.
However, they employed approximations to derive certain
terms, e.g., the feedback at the transmitter is assumed to be
instantaneous and/or the transmitter’s queue is considered to
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be always full. Seo et al., in [4], derive the delay statistics of
a system very similar to the one considered here, with two
Markov chains describing arrival and channel error processes,
though they focus on Hybrid ARQ. A matrix geometric
approach [7] has been used by Le et al. [5] to evaluate the
performance of ARQ techniques in a radio link with adaptive
modulation and coding. To derive the queueing statistics it is
observed that the process is Quasi-Birth and Death (QBD),
which holds also for the system studied here. Finally, in [6],
Luo et al. discuss the ARQ delivery delay by focusing on
the impact of the link layer ARQ on the performance of
upper layers, i.e., the service data unit (SDU) delay. Though
their focus is different, they obtain some results by means of
simulation, which in what follows will be derived analytically.

Our goal here is to formulate a framework which assembles
different aspects which have never been investigated jointly.
More precisely, one contribution of the present letter is to
present an exact analysis to evaluate the impact of correlation
both in the channel errors and in the arrival process on the
SR ARQ statistics. This formulation is then used to show
and discuss some counter-intuitive results which emerge in
the statistics and which, to the best of our knowledge, have
never received an analytical characterization.

In particular, in the numerical results’ section, we compare
the SR ARQ delays with various intensities of the arrival
rate and the arrival correlations at the transmitter’s queue.
Similarly, we investigate the effect of the error correlation
in the channel, and we show that the delivery delay may
actually decrease for an increasing arrival rate when the
channel is moderately correlated. Therefore, in certain cases
error correlation may imply a general decrease of the overall
delay. These aspects are remarkable to achieve a correct delay
estimation in real time multimedia services over wireless.

II. SYSTEM ASSUMPTIONS

We consider SR ARQ over a slotted time where each slot
corresponds to the transmission of a packet. We assume that
the round-trip time equals m slots, with m > 1. This is also
the value of the ARQ window size. This means that packets are
transmitted continuously as long as they are available, but their
outcome is known only m slots later, henceforth the system
memory consists of the status of the last m transmissions,
including the current one. Without loss of generality, we omit
the constant propagation delay term, as in [8].

We assume that packets arrive at the transmitter’s queuing
buffer according to a process described through a Discrete
Time Markov chain with two states, referred in the following
as “0”=no packet arrival and “1”=packet arrival. Note that
multiple arrivals are not possible during the same time slot.
As in [4], we denote a transition probability from state i
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to state j with gij ; these values can be collected into the
transition matrix G = (gij), i, j ∈ {0, 1}. The analysis
can be easily extended, without changing the rationale and
obtaining qualitatively similar results, to a higher number of
states. The matrix G can be fully characterized by means
of two independent parameters, the average arrival rate λ =
g01/(g10+g01) and the average arrival burst length A = 1/g10.
The case where A = 1/(1 − λ) corresponds to independent
identically distributed (iid) arrivals with probability λ and will
be referred as iid arrival case, or as A = iid. Newly arrived
packets are immediately available for transmission, although
retransmissions are prioritized. This means that a packet may
be transmitted directly when it arrives, provided the queue is
empty and no retransmission takes place.

The data sent from the transmitter’s queue arrive at the
receiver through a noisy channel. This is modeled through
a Discrete Time Markov Channel, which is for example
appropriate for fading channels in mobile environment [9] so
as to account for error correlation. In general, any channel
description through Markov models can be reduced to the
introduction of ν “good” states corresponding to error-free
transmission and η “bad” states where the packet is always
in error. For example, in the Gilbert Elliott model [10] two
channel conditions are considered, but they are not error-
free or always erroneous. Therefore, there are four possible
combinations of channel condition and packet status, which
can be represented through a Markov chain with 4 states
(ν = η = 2) and appropriate transition probabilities. For
simplicity, we focus here on a case where ν = η = 1, i.e.,
we have only two channel states, one good (state 0) and one
bad (state 1). This two-state Markov channel is similar to the
one of [6]. However, the analysis can be easily extended to a
higher number of states with qualitatively equivalent results.
Transition probabilities pij from state i to state j are collected
in the transition matrix P = (pij), i, j ∈ {0, 1}. In the follow-
ing we will describe P through the following parameters, the
steady-state channel error probability ε = p01/(p10 + p01)
and the average error burst length B = 1/p10. Similar to that
discussed above, the case where B = 1/(1 − ε) is the iid
error case, indicated as B = iid. In order for the queue to be
stable [7], the condition λ < 1 − ε must hold.

The receiver answers with positive or negative acknowl-
edgement (ACK/NACK) according to the correct/erroneous
reception of these packets, respectively. After a full round-trip
time, i.e., after m slots, ACK/NACKs arrive at the transmitter’s
side, and either a new packet or a retransmission is sent over
the channel. We assume error-free ACK/NACKs and unlimited
transmitter and receiver buffers. These assumptions are quite
standard and do not limit the analysis. On the other hand,
by introducing correlation in both the arrival process and the
channel error process, we remove simplifications used in many
studies, where the focus is on iid arrivals and iid errors only.

III. MARKOV MODEL FOR SELECTIVE REPEAT ARQ

The mathematical framework can be obtained by generaliz-
ing the analysis presented in [8]. Under the assumptions made
in the previous section, it is possible to show that the whole SR
ARQ system is a Markov chain with a system state comprising
the outcome of the last m transmissions, the transmitter’s
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Fig. 1. The SR ARQ system and the whole Markov chain state.

backlog length q, the channel state c and the arrival state
r. We denote with bi a binary variable corresponding to the
outcome of the transmission of m− i slots before, where that
bi = 1 implies that the transmission is not acknowledged
and therefore a retransmission is triggered, 0 otherwise. If
b = (b1, b2, . . . , bm), the SR ARQ system state is therefore
(q,b, r, c). The system, as well as the variables representing
the SR ARQ state, is depicted in Fig. 1.

To prove that the system is Markov, observe what follows.
The value of q at time t depends on the backlog at time t− 1
plus possible arrivals (depending on the arrival state r), and
possible retransmissions (depending on the entry b1). All of
these terms are part of the system state at time t−1. Moreover,
the value of bi at time t for i = 1, 2, . . . , m − 1 is equal
to bi+1 at time t − 1 by definition. The value of bm instead
depends only on q, b1 and c, since a retransmission is required
if a packet is transmitted (which requires a check whether
the transmitter’s queue is empty and/or a retransmission is
triggered) and the channel is in error. Finally, r and c are
clearly Markov, so the whole process is also Markov. Indi-
cating with π(q, b1, b2, . . . , bm, r, c) the stationary probability
of state (q,b, r, c) we can write the following set of balance
equations:1

for q > 0: π(q, b1, b2, . . . , β, c, 0, c) (1)

=
1∑

α=0

1∑
x=0

π(q + 1 − α, α, b1, b2, . . . , β, x, β)pβcgx0

π(0, b1, b2, . . . , β, c, 0, c) (2)

=
1∑

α=0

max(α,1−c)∑
μ=α

1∑
x=0

1∑
y=β

π(1−μ, α, b1, b2, . . . , β, x, y)pycgx0

π(q, b1, b2, . . . , β, c, 1, c) (3)

=
min(1,q)∑

α=0

1∑
x=0

1∑
y=β

π(q − α, α, b1, b2, . . . , β, x, y)pycgx1

1The script bm−1, which occurs often, has been replaced by β, to simplify
the notation.
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π(0, b1, b2, . . . , β, 0, 0, 1) (4)

=
1∑

x=0

1∑
y=β

π(0, 0, b1, b2, . . . , β, x, y)py1gx0

in any other case: π(q, b1, b2, . . . , β, bm, r, c) = 0 (5)

The balance equations for such a system can be derived
directly from the following observations. The status of the
last m − 1 transmissions is deterministically updated, since
their information bit is simply clocked one step in the past.
In other words, the binary value referring to the ith previous
transmission at time t refers to the (i + 1)th last transmission
at time t + 1. Analogously, the evolution of the queue length
corresponds with the arrival process and the presence or lack
thereof of a retransmission indicated by the value of b1.
The values of r and c evolve according to the matrices G
and P, respectively. Moreover, the outcome of the current
transmission follows the channel evolution, so that only three
combinations of bm and c are permitted: it is in fact impossible
that bm = 1 if c = 0. Instead, the condition bm = 0,
c = 1 is possible, but only if the queue is empty and no
retransmission or new arrival take place. In this case, we
need to track c = 1 to account for the bad channel state,
but no retransmission is scheduled since no packet is actually
transmitted. This explains why we need to separate (1) from its
counterpart for q = 0, (2), as in the latter the past channel state
y can differ from β. Additionally, (2) considers an additional
summation term in μ to account for the possibility where the
queue is empty, the channel is good, and no retransmission or
new arrival take place. This is the only case where μ �= α,
otherwise this summation includes just one term. For the case
with r = 1 it is sufficient to consider only (3), where the
condition q = 0, however, implies that no retransmission
occurred: this is the reason for the minimum as the upper limit
of the outer sum. Finally, a separate evaluation is required for
the case where q = 0, bm = 0 and c = 1, which is done in
(4), whereas in (1)–(3), bm is always equal to c.

By adding the normalization condition, i.e., that the sum
of the πs over all states equals one, we derive the stationary
probabilities. Since q can increase or decrease by 1 at most,
and thus the whole process is QBD, this can be promptly
obtained by putting the equations in a matrix-geometric form
and following the approach presented in [7]. Rearranging (1)–
(5) one can also write down the SR ARQ system transition
matrix T(G,P), which is in turn a function of the matrices
G and P.

After the transition matrix is determined, we derive the
delay statistics, both for the queueing and the delivery delay.
The basic idea is to consider a tagged packet entering the
queue. When this happens, the system can be in any state but
the value of r must be 1 (due to the tagged packet’s arrival). At
this point, the arrival process can be “turned off,” as the delay
terms of the tagged packet are not affected by subsequent
packet arrivals. Thus, define Λ(q,b, r, c) as the conditional
probability of being in state (q,b, r, c) given that r = 1
(trivially, all Λ(q,b, 0, c) are 0). Moreover, consider a matrix
G0 whose entries are set to g00 = g10 = 1, g01 = g11 = 0
and take the Markov chain defined by the transition matrix
T(G0,P).

Define Q = {(0,b, r, c) : b ∈ {0, 1}m, r, c ∈ {0, 1}} and
G = {(0,0, r, c) : r, c ∈ {0, 1}}, where 0 is an m-sized zero
vector. Both Q and G are absorbing sets for the Markov chain;
set Q is entered when the tagged packet is released from the
queueing buffer, where set G is entered when the tagged packet
and all packets transmitted prior to it are acknowledged. We
have

CQ[k] = Λ · [T(G0,P)]k · eQ, k ≥ 0 , (6)

where Λ denotes the row vector collecting all Λ(q,b, r, c)’s
and eQ is a column vector of indicator functions of the set Q,
i.e., its values are 1 in correspondence with states belonging
to Q and 0 elsewhere. The distribution CQ[t] is the probability
that the queueing delay is lower than or equal to k slots. Thus,
the probability Prob{τQ = k} is determined as:

Prob{τQ = k} =
{ CQ[0] if k = 0

CQ[k] − CQ[k − 1] if k > 0 (7)

The statistics of the overall delay τG can be evaluated by
following the same approach by taking a column vector eG

containing indicator functions of the set G instead. Finally,
the delivery delay τD , corresponding to the delay between the
first transmission of the tagged packet over the channel and
the resolution of every pending packet, is τG − τQ.

IV. NUMERICAL RESULTS

In this section we present some interesting and in certain
cases counterintuitive results derived from the Markov ap-
proach reported above, in an entire analytical manner. For
all of the reported results, m and ε are taken to be equal to
10 and 0.1, respectively, even though other values have been
tested and the results agree with the ones shown here. The
findings presented are only examples, yet they prove the ability
of the analytical model to describe correlated arrivals and
errors. Moreover, they show the strong impact of channel and
arrival correlation, so as at times the joint effect of particular
choices of A and B might lead to unexpected delay behavior
(queueing, delivery, or overall).

Fig. 2 shows the queueing delay and the delivery delay as
functions of A in the case B = 3 (a mildly correlated channel).
The delivery delay curves show that the value of τD does
not significantly change when λ or A varies. The queueing
delay, instead, is shown to increase with λ, which may be
somehow expected, but also it exhibits a linearly increasing
behavior in A. This can be explained by considering that
when the arrival process is correlated, packets arrive in bursts
and therefore are likely to find many other packets ahead in
the queue, which results in a higher τQ. This implies that
this delay term (and therefore also the overall delay, as the
delivery delay is more or less unaffected), may be higher
for correlated arrivals with low rate than for iid arrivals with
high rate. Thus, the average arrival rate alone is insufficient
to determine if delay requirement are met, since correlation
can cause delay increases. In the figure, simulation results are
also plotted for comparison. They are obtained by averaging
the delays experienced by ten million transmitted packets,
generated with the same arrival process and transmitted over
the same Markov channel, as per Fig. 1. As the analysis is
exact, we notice almost perfect agreement between analysis
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Fig. 2. Average values of the queueing and delivery delay for m = 10,
ε = 0.1, B = 3 as a function of A, for various values of λ.
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Fig. 3. Average values of the delivery delay for m = 10, ε = 0.1, A = iid
as a function of λ, for various values of B.

and simulation results. This holds also for the other figures,
where, in order to have better distinguishable curves, only the
analytical results are shown.

Fig. 3 analyzes instead the delivery delay as a function of
λ. We consider A = iid, but other values obtain very similar
results, since as shown above, A does not affect the delivery
delay very much. In this figure, a counterintuitive behavior is
emphasized: one might expect that the delay increases with
λ, since the system is more heavily loaded. This reasoning is
correct for the queuing delay, but not for the delivery delay.
Indeed, when the channel is correlated the delivery delay
may decrease with increasing λ. This phenomenon can be
explained by considering that when the channel is strongly
correlated, it is also likely to have long sequences of slots
where the channel is in a good state, thus it is easier to solve
an entire sequence of packets directly. This behavior is even
more acute for large values of B. However, for more realistic
cases where the average burst length is lower (e.g., comparable
with m), the delivery delay is almost independent of the packet
arrival rate. These theoretical observations are very important
to understand transmission systems based on ARQ techniques.
In fact, they imply that the performance of a correlated system
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Fig. 4. Comparison between the queueing delay, the delivery delay, and the
total delay for m = 10, ε = 0.1, λ = 0.6, as a function of B, for both
A = iid and A = 7.

is different from the iid case [3], though not always worse
than it. For the transmission of large amounts of data, like in
video-streaming applications, the channel correlation might be
helpful, since it reduces delivery delay.

A combination of these considerations can be applied to the
results shown in Fig. 4, where the different delay terms are
compared for the specific case λ = 0.6 as a function of B,
both in the case of iid and correlated (A = 7) arrivals.

It is possible to see that moderate channel burstiness
achieves a lower overall delay than the iid channel. Similar
curves have been presented in [6], even though they were
derived only numerically, and the authors themselves point out
the need for an analytical justification. Moreover, in [6] it was
observed that the delay decreases at first and then increases
linearly. By looking at the figure, we are now able to recognize
that this depends on the dominant delay term being either the
delivery or the queueing delay. In fact, while τD is decreasing
when the channel burstiness increases around moderate values,
τQ is linearly increasing, which becomes the prominent term
for high B. In the case of correlated arrivals, the queueing
delay increases, as per Fig. 2, but the behavior is similar. As
a result, the presence of correlation both in the arrival process
and in the channel errors can lead to non-trivial results, which
is a fact to consider carefully when designing communication
links.
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