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Abstract— In this paper, we present a methodology to obtain
a channel description tailored on performance evaluation for
Incremental Redundancy Hybrid Automatic Repeat reQuest
schemes. Such techniques counteract channel errors by using
data coding and transmitting parts of the codeword over different
channel realizations. We focus on coding performance models
where the error probability is asymptotically zero if the channel
parameters of these realizations fall within a given region. To
map this region in a compact but still precise manner, we adopt
a finite-state channel model. This approach is quite common
in the literature; however, differently from existing work, we
propose a novel method to derive efficient channel partitioning
rules, i.e., a code-matched quantization of the channel state. Such
a representation enables the use of accurate Markov models to
study the system performance. Compared to existing channel
representation methods, our proposed technique leads to a more
accurate evaluation of higher layer statistics while at the same
time keeping the computational complexity low.

Index Terms— Channel coding, error correction, Markov
processes, automatic repeat request, forward error correction,
communication channels.

I. INTRODUCTION

THIS paper attempts to bridge fields which are of extreme
interest for the scientific community working on wireless

communication, yet are rarely investigated from a common
viewpoint, namely, coding theory on the one hand, and error
correction techniques applied to finite-state radio channel
models on the other hand. We propose a channel representation
methodology aimed at Hybrid Automatic Repeat reQuest
(HARQ) [1], [2], based on recent advances in coding theory,
where a renewed interest has arisen in deriving performance
bounds for a broad class of practical codes [3]. In particular,
it has been shown, for example, that for so-called good codes
[4], such as Turbo codes [5] and Low–Density Parity–Check
(LDPC) codes [6], the performance can be characterized by
a threshold behavior. This leads to the definition of reliable
region [7], i.e, the subspace of channel parameters where
the error probability asymptotically vanishes as the codeword
length becomes large.

Inspired by these findings, we propose in this paper a
novel methodology for studying HARQ schemes, where we
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exploit this characterization of the code to determine a proper
channel quantization. This allows to track the channel state
through subsequent transmissions with an index spanning
over a discrete set and therefore reduce the required sys-
tem memory. Moreover, it enables an elegant and compact
representation through a Finite-State Markov Chain (FSMC)
of the HARQ process. We now describe some basics of
the code performance bounds and HARQ, and point out the
contribution of the present work.

A. Coding Performance Bound

Tight bounds on coding performance play a key role in the
investigations about communication systems. New findings on
this matter, leading to practical near-capacity-achieving codes,
have drawn a considerable research effort aimed at deriving
information theoretic coding performance bounds. Since the
recent introduction of Turbo codes and the rediscovery of
LDPC codes, the analytical derivation of tight bounds for
good code ensembles has gained momentum. A code is said
to be good when its block error probability asymptotically
approaches zero as the codeword length increases if chan-
nel parameters fall within the reliable region [7]. As the
structure of good codes is usually not available, bounds are
often derived for ensembles of codes, i.e., classes of codes
characterized by basic features of structure and construction,
such as the distance spectrum and the input-output weight
enumeration function [8], [9].

In [10]–[12], some tight bounds for good code ensembles
with Maximum Likelihood (ML) decoding are proposed. An
overview about these findings can also be found in [13].
Even though ML decoding requires unaffordable computa-
tional complexity, these bounds are useful to evaluate the
ultimate performance limit. Moreover, performance evaluation
through simulation shows that this limit may be approached
by practical codes and decoding algorithms in several cases
[10].

The success of iterative decoding algorithms, which harvest
a considerable portion of the channel capacity with limited
complexity, is one of the reasons of the success of Turbo–like
codes. Recent work [14]–[17] computing the noise threshold,
i.e., the reliable region boundary, for this decoding algorithm
allows the evaluation of the performance loss with respect to
optimal ML decoding.

B. Background on Incremental Redundancy HARQ

The performance of plain ARQ can be improved by using
channel coding so as to realize Hybrid ARQ schemes [1]. Es-
pecially, Incremental Redundancy (IR) implementations have
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been widely employed for error control [2]. These techniques
require codes with variable length, so that the first transmission
utilizes the highest rate; then, additional redundancy bits are
used whenever necessary for retransmissions. Several practical
codes can work to this end; e.g., Turbo codes [5] fulfil the need
for adaptive coding gain by means of puncturing schemes pro-
viding rate-compatible codes [18]–[20]. IR-HARQ schemes
can be found in [21] and [22], where Turbo Codes and LDPC
codes are used, respectively.

The growing interest in HARQ requires the derivation of
bounds accounting for the fact that different parts of the
codeword are sent over different channel realizations. In this
case, the noise threshold becomes a multi-dimensional barrier
that delimits the reliable region, and the asymmetry due to
the diverse degrees of degradation suffered by the codeword
symbols poses new difficulties. In [7], this is circumvented
through the randomization of the symbol assignment to the
codeword fragment to be sent over the different channels.
Thus, the weight enumerator does not depend on a specific
assignment, and the bound can be evaluated directly from the
weight enumerator of the whole codeword. In [23], improved
bounding techniques are proposed based on the random as-
signment as in [7].

The performance of Hybrid ARQ has been analyzed in
several papers [24], [25] using a Markov chain to model the
evolution of the transmission process. This approach may be
complicated, since each state must convey all the information
about the memory of the system, which may be very large
[26]. Especially, tracing the channel evolution may require
to store a huge amount of information. Thus, it is important
to opt for a compact channel representation, able to preserve
the tractability of the problem while obtaining meaningful
results. A solution in this sense may be to apply a finite-state
channel description, employing a proper channel quantization
rule, i.e., representing the channel state with an index spanning
over a discrete set. This methodology enables the creation
of a FSMC exploiting the finite-state channel model. Markov
techniques have gained foothold in both analytical and simula-
tion frameworks, due to their good trade-off between accuracy
and complexity [27], [28]. We remark that the most common
approaches presented in the literature [29]–[31] to obtain a
Markov representation of the channel use quantization criteria
related to physical layer aspects, such as the equiprobability
of the intervals.

C. Contribution and Organization of the Paper

We propose to approach the issue presented above employ-
ing a novel methodology, i.e., a Code-Matched (CM) channel
quantization, meaning that we explicitly take into account
the coding performance when selecting how to partition the
channel. We directly aim at giving an efficient approximation
of the reliable region, so as to properly characterize the
performance of IR-HARQ.

In particular, in this paper we give a detailed investigation
for the specific case of an independent identically distributed
(i.i.d.) channel where the HARQ system adopts a two-
transmission limit, for which we are able to derive closed-form
analytical results. Moreover, we instantiate our framework

for an IR-HARQ scheme based on a Stop-and-Wait policy.
The CM representation of the channel allows to efficiently
evaluate the system performance by means of a proper Markov
chain. Finally, we present numerical evaluations, where we
bring examples of different codes, namely LDPC and Turbo
codes, which can be used in the IR-HARQ scheme, and we
quantify the goodness of our proposed approach in assessing
IR-HARQ performance, compared to existing channel quan-
tization techniques, such as equiprobable states [29]. These
evaluations show that, compared to other techniques, the CM
quantization obtains the same or a better characterization while
employing a very limited number of states, thus achieving a
channel description characterized by much lower complexity
and/or memory requirements. Therefore, such a model can
be extremely useful in both analytical investigations and
simulation studies aimed at assessing the performance of IR-
HARQ schemes.

The rest of this paper is organized as follows. In Section II
we describe the IR-HARQ mechanism assumed in the analysis
and we introduce some notation and terminology. Section III
formalizes the proposed CM quantization model. Section IV
focuses on the two-transmission case, deriving analytical
results which allow for a compact characterization of the
quantization thresholds and developing the FSMC to evaluate
the HARQ performance. In Section V we present numerical
evaluations which assess the superior match with the exact
distribution of our channel representation with respect to uni-
form quantization, an interesting term of comparison since it
is commonly used to obtain a discrete channel representation.
Finally, we draw the conclusions in Section VI.

II. SYSTEM MODEL

This section outlines the assumptions used in the following
to derive the analysis. It is subdivided into three parts, de-
scribing the generalities about IR-HARQ systems, the channel
model, and the code description through the reliable region
model.

A. IR-HARQ Mechanism

An IR-HARQ system is characterized by the sequential
transmission of information frames, each one of which is
in turn associated with multiple HARQ packets. In practical
cases, this is achieved by coding the information frame into
a single long codeword, subdivided into multiple fragments,
which are transmitted one at a time in a single HARQ packet.
For this reason, in the following we will utilize the terms frame
and codeword interchangeably, and analogously for packet and
fragment. In order to keep the analysis simple, we postulate
that all fragments are of the same size. This assumption can
be removed with additional complications in the formulae,
however the approach to follow is entirely similar. Also,
we assume that even a single correctly received fragment
is sufficient to decode the entire codeword. Sometimes, this
situation is referred to as Type III ARQ [2].

When a packet arrives at the receiver’s side, a feedback
packet is sent back to the transmitter, indicating either positive
(ACK) or negative acknowledgement (NACK). This feedback
response refers to the whole information frame, since the
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receiver can try to decode the codeword combining symbols
contained in different fragments. Thus, an ACK means that the
receiver was able to decode the frame based on all received
HARQ packets associated with this frame (we will speak in
this case of frame resolution), whereas a NACK means that the
frame could not be decoded since the channel impairments ex-
ceeded the correction capability of the code formed by the set
of currently received fragments. The key aspect of IR-HARQ
is that a NACK does trigger a retransmission, but, unlike in
other retransmission-based techniques, a physically different
packet (though still associated with the same information
frame) is transmitted. When this happens, we adopt a slight
abuse of terminology by speaking of frame retransmission.

In this paper we focus on Stop-and-Wait (SW) HARQ,
i.e., packets associated with the same information frame are
sequentially transmitted, one at a time, after a feedback packet
is received back at the transmitter. Extensions to other ARQ
schemes, such as Go-Back-N and Selective Repeat, can be
investigated within a conceptually similar framework. In SW
ARQ, the transmission of packets associated with the same
information frame goes on until either of these two conditions
is met: (i) the set of received packets is sufficient to decode
the frame; (ii) a maximum number F of transmitted packets
is reached without the receiver being able to decode the
information frame, which is then discarded (F may correspond
to the total number of fragments generated for each codeword).
In both cases, the transmission is then moved to another
information frame. Thus, we will use the following notation.
The number of transmissions experienced by a given frame
will be noted with τT , which can be between 1 and F . For any
k ∈ {1, 2, . . . , τT }, we will refer to the codeword fragment
received at the kth transmission as wk. For completeness, we
will use also w0 to denote the codeword fragment (related to
the previous frame) which has been transmitted previous to
the first one of the current frame. Note that the case τT = F
actually describes two different conditions, namely, the case
where the frame is resolved exactly at the last available
attempt, i.e., at the F th transmission, or the case where the
frame is discarded. Even though the delay induced by the
HARQ scheme on the transmission queue is the same, i.e.,
F transmissions, the outcome is very different, since in the
former case the frame is eventually resolved, in the latter it is
not. To further distinguish between these two cases, we define
another quantity called resolution instant, and denoted as τR,
as follows. If the frame is resolved at the kth transmission, the
resolution instant is set to k. If the frame is discarded, τR is
equal to F+1. Note that with this notation, τT = min(τR, F ).
In other words, τT and τR have the same value if the frame
is resolved. Otherwise, if the frame is discarded, τT describes
the delay experienced by the information stream, which is still
equal to F transmissions, whereas τR is conventionally set to
F+1 to mark the difference with the case of a frame resolution
at the last transmission attempt.

In the case F = 1, i.e., when a single transmission is
allowed (a pure FEC situation), the analysis is straightforward.
The outcome of the only packet transmission is either ACK or
NACK according to the channel conditions and the correction
capability of the code, which exhibits a binary (i.e., threshold-
wise) behavior. If F is increased to large values, an exact

description of this process becomes cumbersome since it
possibly includes the evaluation of F -dimensional thresholds.

B. Channel Model

One important application of HARQ is to obtain reliable
data transmission over a wireless fading channel. In the
following we refer primarily to this scenario, where the
transmission outcome depends on the Signal-to-Noise Ratio
(SNR) at the receiver, even though the same rationale is
directly applicable to other kinds of noisy channels. The
channel model assumed in the rest of the paper is as follows.
We assume a block flat fading channel, that is, each fragment
experiences a single SNR coefficient, denoted with sk ∈ R+

for the kth fragment, k = 0, 1, . . . , τT . This is similar to
the block fading channel investigated for coded modulation
in [32]; however, here the block length is a single frame, as in
[33]. This representation can describe also HARQ applied to
frequency-division schemes, for example transmission systems
with frequency hopping or Orthogonal Frequency Division
Multiplexing (OFDM) [22], [34].

We take a general description of the channel statistics, by
considering the cumulative distribution function (cdf) and the
probability density function (pdf) of the SNR values, which
are denoted with FΓ and fΓ, respectively. That is, if Γ is the
random variable describing the channel SNR,

FΓ(s) = Prob{Γ ≤ s}, fΓ(s) =
dFΓ(s)

ds
. (1)

Without loss of generality, we can assume that fΓ is strictly
positive and therefore FΓ is increasing and invertible. If FΓ

happens not to be invertible somewhere, i.e., there is an entire
interval where it has the same value x, we can take any of
these points as F−1

Γ (x).
However, differently from [32], our channel model is also

able to account for correlated fading effects. To this end, we
assume that the statistics of the SNR has the Markov property,
which is a commonly adopted model to capture a correlated
evolution of SNR values in consecutive frames [29], [31], [35].
Thus, we write fΓ(sk|sk−1) to denote the conditional pdf of
sk given that the SNR was equal to sk−1 during the previous
transmission. Under the assumption that the evolution of the
SNR has the Markov property, the knowledge of sk−1 allows
to neglect any other condition on previous SNR values. In this
way, our analysis also takes channel correlation into account.
Clearly, if fΓ(sk|sk−1) = fΓ(sk) the channel model falls back
to the case where the channel state is selected independently
and at random from block to block, according to a known
prior distribution, exactly as in [33].

C. Code Description Through the Reliable Region

The reliable region model has been discussed in many
papers appeared recently [10]–[17], [23]. In the following, we
outline how this model is used in the present paper.

After k transmissions of the same frame, the receiver bases
the decoding of the codeword on all fragments received from
w1 up to wk, whose SNR coefficients are s1, s2, . . . , sk. At
the kth transmission, the reliable channel region, denoted with
R(k), is a subset of Rk

+ which contains the k-tuples of SNR
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Fig. 1. A sample reliable region R(2) in R2, sample thresholds αj

and resulting interval and hyper-boxes on the left-hand side, and their
corresponding images in the probability-domain, on the right-hand side.

coefficients where the failure probability becomes negligible
if the packets sent are sufficiently large. Thus, the receiver is
able to decode a codeword after the reception of its fragments
w1, w2, . . . , wk if (s1, s2, . . . , sk) ∈ R(k). A sample plot of
the reliable region for F = 2, as well as other notations which
can be useful for the reader to follow the discussions of the
next sections, are reported in Fig. 1.

The exact specification of R(k) is determined by the
code used, the decoding algorithm and the codeword frag-
ments construction [7]. In any case, it is always verified
that (s1, . . . , sk−1, sk) ∈ R(k) and s′k > sk imply that
(s1, . . . , sk−1, s

′
k) ∈ R(k). This fact immediately follows

from the observation that if sk is a SNR value which is
sufficient to decode the codeword at the kth transmission,
given that the previous fragments have been received with
SNR coefficients equal to s1, . . . , sk−1, any SNR value greater
than sk also enables frame resolution at the kth transmission,
regardless of the particular shape of the reliable region.

Thanks to this property, we can use a representation of R(k)
through a threshold function ϑk : Rk−1

+ → R+, defined as:

ϑk(s(k−1)) = inf{sk : (s1, . . . , sk−1, sk) ∈ R(k)}, (2)

where s(k−1) = (s1, s2, . . . , sk−1). In other words, the edge
of R(k) is the curve identified by ϑk(s(k−1)) in Rk

+. Note that,
when one transmission is considered, this curve degenerates
to a single point ϑ1 ∈ R+, which is the value of s1 associated
with the (constant) SNR threshold to obtain correct decoding
with a single fragment, and the reliable channel region R(1)
corresponds to the interval [ϑ1,+∞[.

Additionally, observe that (s1, . . . , sk) ∈ R(k) also implies
that (s1, . . . , sk, sk+1) ∈ R(k + 1) for all sk+1 ∈ R+,
since the fragments w1, w2, . . . , wk were already sufficient
to decode the codeword. This fact is referred to in the
following as success confirmation property, and it describes
that the transmission of a codeword can be dismissed after a
success. Therefore, in the system under investigation, after the
reception of a fragment wk the receiver is able to decode the
packet if sk is above the threshold ϑk(s(k−1)). In this case,
no further fragment transmission is required (for this reason,
the case where s(k) ∈ R(k) and s(k+1) ∈ R(k + 1) never
occurs in practice, but is considered here for completeness).
Otherwise, another fragment wk+1 is requested, which will be
compared with threshold ϑk+1(s(k)), and so on.

We denote with ψτR,S|S0(j, s|s0) the joint pdf of the resolu-
tion instant τR and SNR S being equal to j and s respectively,
when a frame is either resolved or discarded, conditioned on
the SNR of the last transmission of the previous frame S0

being equal to s0. Similarly, we denote with ψS(s) the pdf
of the SNR S being equal to s in the global case of frame
resolution or discarding. If X ⊆ Rk

+, we define 1(s(k),X ) as
equal to 1 if s(k)∈X , and 0 otherwise. We have:

ψτR,S|S0(j, s|s0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fΓ(s|s0) 1
(
(s),R(1)

)
if j = 1∫

R
j−1
+ \R(j−1)

fΓ(s|sj−1) 1
(
(s(j−1), s),R(j)

)
j−1∏
�=1

fΓ(s�|s�−1) ds� if 2≤j≤F

∫
RF−1
+ \R(F−1)

fΓ(s|sF−1) 1
(
(s(F−1), s),RF

+ \ R(F )
)

F−1∏
�=1

fΓ(s�|s�−1) ds� if j=F+1

⇒ ψS(s) =
∫ +∞

0

ψS(s0)
F+1∑
j=1

ψJ,S|S0(j, s|s0) ds0 . (3)

Taking β(s, s0) =
F+1∑
j=1

ψJ,S|S0(j, s|s0), we can write (3) as

ψS(s) =
∫ +∞

0

ψS(s0)β(s, s0)ds0 , (4)

from which it is clear that ψS(s) is an eigenfunction of the
transform operation, which maps a generic function ζ : R → R

into its transform ζ̂, given by

ζ̂(s) =
∫ +∞

0

ζ(s0)β(s, s0)ds0 . (5)

This enables a recursive strategy to determine ψS(s) as the
limit of a sequence

{
ζn(s)

}
n∈N

of functions where ζ0(s) =
fΓ(s) and ζ�+1(s) = ζ̂�(s), as per (5).

In this manner, the probability that a k-tuple of SNR values
associated with the same frame belong to a given region X ⊆
Rk

+ is determined as:∫
R+

ψS(s0)
∫
X
fΓ(s1|s0)fΓ(s2|s1) . . .

fΓ(sk|sk−1) dsk . . . ds2 ds1 ds0 . (6)

III. CODE-MATCHED CHANNEL QUANTIZATION AND

CONSTRUCTION OF THE MARKOV CHAIN

To exactly evaluate the process described above, a very
large amount of information is required at each step. In fact,
to determine whether the frame could be acknowledged after
the transmission of fragment wk+1, the k–dimensional vector
s(k) must be traced. However, high complexity and memory
requirements are implied to accurately track the evolution of
a vector of continuous variables. Henceforth, it is meaningful
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to consider a quantization of the SNR to enable a finite-state
channel representation, where each state represents an interval
of SNR values, and which can be used in an FSMC context.

Thus, we partition R+ into N + 1 non overlapping adja-
cent intervals I0, I1,..., IN . These intervals are identified by
choosing N proper threshold values α1, α2, . . . , αN , so that
αj < αj+1 and Ij = [αj , αj+1[. For consistency, we take
α0 = 0, αN+1 = +∞. The purpose of this partition is to
represent the SNR with a finite number of states, in order to
use a discrete description of the channel. We will talk in the
following of a quantized channel, where we no longer know
the exact SNR values, but only which region the SNR falls
within. In fact, according to this representation, any sequence
of SNR values s(k) is described with a sequence of discrete
values in Zk

N+1, where ZN+1 = {0, 1, . . . , N}. Let d(·) be
the corresponding function mapping R+ to ZN+1 such that
d(sk) = argj(sk ∈ Ij). With a slight abuse of notation, we
write d(k) = d(s(k)) = (d(s1), d(s2), . . . , d(sk)). Thus, the
k-tuple d(k) indicates that for the jth received SNR, sj ∈ Idj ,
for all j = 1, 2, . . . , k. Moreover, we define the hyper-box
I(d(k)) = Id(s1) × Id(s2) × · · · × Id(sk) ⊆ Rk

+.
The channel quantization can be used to determine an

FSMC describing the channel as follows. The state space is
ZN+1, and each state i can be shown [30] to have a steady-
state probability πi equal to

πi =
∫ αi+1

αi

fΓ(s)ds . (7)

In a similar manner, the transition probability from state i to
state j, denoted with pij , can be obtained as

pij =

∫ αi+1

αi
fΓ(s)

∫ αj+1

αj
fΓ(t|s) dt ds∫ αi+1

αi
fΓ(s)ds

. (8)

The finite-state model outlined above can be used to eval-
uate the performance of HARQ. For graphical aid, refer to
Fig. 1. If it is known that a sequence of k HARQ packets
has been experienced SNR conditions which, according to
the discrete representation of the channel, are represented
by vector d(k), it follows that the overall SNR vector s(k)

falls within the hyper-box I(d(k)). By comparing the relative
placement of I(d(k)) and the reliable region R(k), it is
possible to infer the outcome of the reception of the fragments
w1, w2, . . . , wk, i.e., whether the frame is acknowledged or
not. If I(d(k)) is entirely within or outside R(k), the frame is
correspondingly acknowledged or not, respectively. However,
when I(d(k)) only partially overlaps with R(k), the hyper-
box will be assumed to correspond to frame resolution or not
according to a ML criterion. This means to check whether∫

R+

ψS(s0)
∫
I(d(k))∩R(k)

fΓ(s1|s0)fΓ(s2|s1) . . .

. . . fΓ(sk|sk−1) dsk . . . ds2 ds1 ds0 . (9)

is larger than∫
R+

ψS(s0)
∫
I(d(k))\R(k)

fΓ(s1|s0)fΓ(s2|s1) . . .

. . . fΓ(sk|sk−1) dsk . . . ds2 ds1 ds0 . (10)

If this is true, we say that I(d(k)) is a resolved hyper-
box, otherwise, we call it an unresolved hyper-box. The
reliable region is therefore approximated, in the quantized
representation, by the union set J (k) of the resolved hyper-
boxes, i.e.,

J (k) =
⋃

resolved
I(d(k))

I(d(k)). (11)

Thus, we have an overall approximate description of the whole
HARQ process where the frame is either acknowledged or
not, after k of its packets have been received, according to
I(d(k)) being resolved or not. This representation introduces
an approximation every time both (9) and (10) are non-
zero. However, observe that the hyper-boxes maintain certain
properties of the reliable region. For example, due to the
monotonicity of fΓ and ϑk the success confirmation property
holds also for J (k), i.e., if I(d(k−1)) is resolved, I(d(k))
is resolved as well. Our objective is to reduce the decision
errors introduced by this representation, e.g., that an SNR k-
tuple s(k) would imply retransmission, but it corresponds to a
resolved hyper-box I(d(k)), or conversely that the parameters
s(k) would allow for frame resolution but the ML criterion for
I(d(k)) gives retransmission.

Any given choice of the set of thresholds α =
(α1, α2, . . . , αN ) implies quantization errors in the description
of the SW HARQ process using the quantized channel. For
example, the resolution instant of a given frame can be
erroneously identified as k, whereas the frame may be, in
fact, resolved at a previous transmission, at a later one, or
even discarded (i.e., the resolution instant is τR = F + 1).

In general, we are interested in avoiding these errors. A
code-matched (CM) quantization is a choice of the thresholds
which is made with this purpose in mind. Actually, there are
several possibilities to define a CM quantization. None of them
is, strictly speaking, optimal in an absolute sense; their opti-
mality depends on which definition of the quantization error is
chosen. In the following, we will give two possible definitions
(i.e., two different error terms) and we will elaborate a CM
quantization which tries to address both of them. However,
we remark that some variations in this sense are possible,
leading to minor differences. The important concept is that
the choice of the threshold must be made with the aim of
achieving an efficient channel description where quantization
errors are small.

First, we define the quantization error probability on the
resolution instant, denoted with QR, as the probability that
the resolution instant of a frame differs in the true and the
quantized channel. This is a quantity that one may want to
minimize, as it describes the occurrence of a wrong evaluation
in the frame outcome. If a given frame is transmitted for the
kth time, and in all the k − 1 previous transmissions both
the true and the quantized channels have identified all the
sets s(j) = (s1, s2, . . . , sj), with j ≤ k − 1, as implying
retransmission, we denote with Ak the probability that both
the true and the quantized channels identify now the frame
as resolved, and with Bk the probability that both of them
identify it as implying another retransmission. To formalize
this, define Q(k) = Rk

+ \ (R(k) ∪ J (k)), i.e., Q(k) is the
intersection of the complementary sets of the reliable region
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R(k) and the estimated reliable region J (k). Note that, due
to the success confirmation property, Q(k) can be shown to
be a subset of Q(k − 1) × R+. Thus,

Ak =
∫
R+

ψS(s0)
∫(

R(k)∩J (k)
)
∩
(
Q(k−1)×R+

) fΓ(s1|s0)

fΓ(s2|s1) . . . fΓ(sk|sk−1) dsk . . . ds2 ds1 ds0

Bk =
∫
R+

ψS(s0)
∫
Q(k)∩

(
Q(k−1)×R+

) fΓ(s1|s0)

fΓ(s2|s1) . . . fΓ(sk|sk−1) dsk . . . ds2 ds1 ds0

=
∫
R+

ψS(s0)
∫
Q(k)

fΓ(s1|s0)fΓ(s2|s1) . . .

. . . fΓ(sk|sk−1) dsk . . . ds2 ds1 ds0 . (12)

Therefore, we have

QR =
F∑

k=1

(1 −Ak −Bk)
k−1∏
j=1

Bj . (13)

This equation evaluates QR by summing all cases where the
true and the quantized channel agree for k− 1 transmissions,
and disagree on the kth, where k is summed from 1 to F . Note
that both channels agree that transmission k takes place only
with probability B1B2 . . . Bk−1, which is why we multiply
by the last product term. In other words, provided that both
representations agree up to k−1 transmissions, we have three
possibilities for the kth transmission: (i) they both agree that
the frame is resolved, which occurs with probability Ak; (ii)
they disagree, which happens with probability (1−Ak −Bk);
(iii) they agree that the frame requires another transmission,
which occurs with probability Bk. In the first two cases, the
agreement, for case (i) or the disagreement, for case (ii), is
reflected on the final outcome. In the last case, the fact that the
true and the quantized channel agree on the kth transmission
does not imply that they agree also on the final outcome of
the frame, unless k = F (in which case they agree the frame
is discarded). If k < F we need another transmission to see
whether the two representations agree, which can be seen by
increasing k by 1 and iterating the reasoning above.

Note that in evaluating QR, both false positive and false
negative (the true channel is in error but the quantized channel
calls the frame as correct or vice versa) are accounted for with
the same weight. However, it is straightforward to modify (13)
to consider different weights.

Similarly to QR we can define another error term, namely
the quantization error probability on the number of transmis-
sions, denoted with QT , as the probability that the number of
transmissions experienced by a frame, τT , differs in the true
and the quantized channel. To evaluate QT , we modify (13)
by taking the upper limit of the summation as F − 1, i.e.,

QT =
F−1∑
k=1

(1 −Ak −Bk)
k−1∏
j=1

Bj . (14)

Recalling the definitions of τR and τT , we see that QR

(resp., QT ) counts the probability that the evaluation of τR

(resp., τT ) made through the quantized channel is erroneous.
In other words, QR indicates whether the outcome of the
frame is correctly evaluated or not, whereas QT denotes
whether the delay evaluation is right. In the latter case,
quantization errors on the last transmission are neglected as
they do not change the delay experienced by the frame (though
they change its outcome). In fact, a discarded frame or a
frame which is resolved at the last possible transmission both
experience a delay equal to F . Thus, the minimization of QT

is appropriate to assess the delay performance of the HARQ
process. To evaluate the throughput, instead, one should seek
to minimize QR. Also, intermediate choices (e.g., minimizing
a combination of QT and QR) are possible as well. In this
sense, we tried many possibilities, and the ones described next
seems to be a reasonable choice for the cases under exam in
this paper. Actually, due to the similarity of the definitions
of these metrics, other approaches are possible with almost
negligible differences.

In the following, we will adopt a hybrid criterion. We define
a CM quantization adopting this rule: minimize QT first, by
using some of the thresholds, and then minimize QR by using
the remaining thresholds. This is motivated by the practical
cases considered in the following sections, where we consider
systems which can have QT = 0 if some of the thresholds
(actually, one) are properly chosen. Thus, the CM condition
translates into minimizing QR given that QT = 0.

Finally, note that another option, which is still compatible
with our framework, is to weigh more the errors when the
difference between the resolution instant and its estimate is
higher. However, since in most of the present paper we focus
on the case F = 2, using different weights would only slightly
affect what is discussed in the following. Anyway, it is another
point to account for, especially if the correct evaluation of the
delay is the most important aspect of the HARQ analysis.

IV. APPLICATION TO F = 2, I.I.D. CHANNEL

As a practical case for the evaluation of our proposed
CM quantization technique, we consider a simple SW HARQ
system in which F = 2 and different channel realizations
are characterized by i.i.d. SNR processes. This means that
fΓ(sk|sk−1) = fΓ(sk) for all k.

We assume that the reliable region R(2) is convex and
symmetric with respect to permutations of the coordinates,
i.e., (s1, s2) ∈ R(2) implies that (s2, s1) ∈ R(2) as well.
Also, we assume that ϑ2, describing the edge of R(2), is a
strictly decreasing function. These hypotheses are well verified
for the specific choices used later in the results’ section,
which represent realistic scenarios, and are reasonable for most
practical cases [7], [23], [36].

A. Preliminary Remarks

For any j in ZN+1, consider the (N + 2)-tuple of labels
(equal to either “resolved” or “unresolved”) obtained by taking
the outcomes of the ML criterion reported in (9) and (10),
applied to the following hyper-boxes (and, correspondingly,
to their associated probability-boxes): Ij alone, compared to
the reliable region R(1), as the first label; Ij × I0, Ij × I1,
. . . , Ij × IN , compared to R(2) as the other N + 1 labels.
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In the following, we will refer to this set of labels as the
character of the jth state of the quantized channel. Note that
in the definition the products can be reverted, thus going row-
by-row instead of column-by-column. Finally, we say that two
states are adjacent if their indices differ by 1.

Because of the success confirmation property, if the char-
acter of state j contains a “resolved” for Ij alone, the same
is true for all other labels. Instead, if Ij alone is unresolved,
we have that, since the curve ϑ2 is decreasing, there exists a
value χ(j) ∈ ZN+1 such that all Ij × Ik are resolved (resp.
unresolved) if k ≥ χ(j) (resp. k < χ(j)). In the following,
χ(j) will be called the height of the jth state. Evidently, the
height χ(j) is a non-increasing (integer) function of j. Since
we assume that the reliable region is symmetric with respect
to permutations of the coordinates, it holds that the height of
the χ(j)th state is j.

To find a suitable quantization, we observe that partitioning
region R(1) with a single threshold point at ϑ1 is a choice that
makes the quantized model coincide with the true channel.
For the two transmission case, an exact representation of
R(1) implies that QT = 0. Thus, the code match criterion
discussed in the previous section, i.e., to impose QT = 0
and then minimize QR, can be achieved if we choose one
threshold as ϑ1 and then we use the other N − 1 thresholds
to further minimize QR. If we apply (13) to derive the
CM condition, this corresponds to choosing the thresholds
so as to minimize A2 + B2, as defined by (12). That is, if
V = (R(2) \ J (2)) ∪ (J (2) \ R(2)),

min
∫
V
fΓ(s1)fΓ(s2) ds2 ds1 . (15)

At this point, to simplify the notation, it is useful to employ
function FΓ(s) = Prob{γ < s}, mapping R+ into [0, 1],
for a change of variables x1 = FΓ(s1), x2 = FΓ(s2).
This operation is depicted in Fig. 1. The reliable region
R(2) can be described by its image U = Φ(R(2)), where
Φ(s1, s2) = (FΓ(s1), FΓ(s2)). The region U can in turn be
represented through a function Θ : [0, 1] → [0, 1], so that

x2 = Θ(x1) = FΓ

(
ϑ2

(
F−1

Γ (x1)
))

. For the sake of analytical
tractability, in the following we assume that Θ is convex and
symmetric, as ϑ2 was. 1

Condition (15) can then be re-arranged into

min
∫
W

dFΓ(s2) dFΓ(s1) = min
∫
W

dx2 dx1 , (16)

where W = Φ(V). We refer to W as the error region, since
it describes the probability of those cases contributing to QR.
Now, we simply need to minimize the area of the error region
W , which depends on the shape of function Θ and on the
placement of the thresholds.

Similarly to the mapping of the reliable region, in the
following we will consider, instead of the SNR thresholds αk,
their outputs through FΓ, i.e., σk = FΓ(αk). The values of

1It may happen that region U is no longer convex if the channel conditions
are bad (low average SNR) and correlation is very strong. However, this is
just a border effect (the region U “bends” only around 1) and does not affect
the following analysis apart from introducing more cumbersome equations.
Moreover, we observe that for most cases of interest, e.g., for Rayleigh fading
with a sufficiently high average SNR (0 dB is sufficient), the curve Θ is indeed
convex.

σk ∈ [0, 1] will be referred to as probability thresholds of the
quantization. Due to the monotonicity of FΓ, the probability
thresholds σk and the SNR thresholds αk give an equivalent
description of the quantization process.

We denote with Yj the image through FΓ of the jth
interval Ij , so that the probability thresholds partition [0, 1]
into Y0, Y1, . . . , YN . For j, � ∈ ZN+1, the hyper-box Ij × I�
of the two-dimensional space of SNRs is similarly mapped
by Φ into a probability-box Yj ×Y� in [0, 1]2. The assignment
of labels such as “resolved” or “unresolved” for a hyper-box
Ij ×I� identically holds for the corresponding probability-box
Yj ×Y�, and so do the definitions of “character” and “height.”

B. Derivation of the CM Quantization

Interestingly, for the case under study, the optimal thresh-
olds obey a general closed-form expression. In this subsection,
we demonstrate some useful preliminary result and finally we
prove this statement.

Lemma 1: Given N thresholds, it is always possible to keep
them fixed and add another threshold to obtain a quantization
with N + 1 thresholds where QR is strictly smaller.
The intuition of the proof is quite straightforward. A formal
proof is reported in Appendix I.

Lemma 2: If QR is minimized, all the states must have a
different character.

Proof: Due to the decreasing behavior of the curve Θ and
the success confirmation property, if two non-adjacent states
have the same character, all the intermediate states have the
same character as well. Thus, it is sufficient to prove that no
adjacent states can have the same character. This is intuitively
immediate, as if we assume to have two “redundant” adjacent
states j and j + 1 with the same character, we can merge
them so as to obtain an N − 1 threshold placement where the
quantization error probability is kept unchanged. Then, we
exploit Lemma 1 to obtain a quantization with N thresholds
and strictly smaller quantization error probability. Thus, the
initial threshold choice could not be minimal in QR.
As a corollary to Lemma 2, at most one threshold may fall
in [ϑ1,+∞[, and at most one state can be characterized
by success after the first transmission. Thus, if one of the
thresholds equals ϑ1 it must be the largest threshold αN .
Moreover, observe that Lemma 2 holds true only in the
i.i.d. case, whereas in the correlated case using “redundant”
states, i.e., with the same character, may be desirable, since
the channel quantization represents not only the outcome of
the HARQ process, but also the channel transitions, which
are possibly influenced by the underlying correlation. In this
case, two states may have the same outcomes, though having
different transition probabilities to the next state.

Theorem 3: Take two adjacent states in the quantization
minimizing QR. Either they have a different character for the
first transmission, or their heights differ exactly by 1.

Proof: If two adjacent states, say j and j + 1, differ in
the labels of Ij and Ij+1, there is nothing to prove. Otherwise,
due to Lemma 2, they both identify the first transmission as
unresolved, and χ(j + 1) must be strictly lower than χ(j).
Now, we proceed by contradiction. Were χ(j)−χ(j+1) ≥ 2,
states χ(j+1) and χ(j) would not be adjacent, so there would



8 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 7, JULY 2009

σ4

σ3

σ2

σ1

σ4σ3σ2σ1

x1

x2

Fig. 2. Visual comparison of i-approach (reliable region is the white area)
and x-approach (reliable region is the union of white and light grey areas).

be an intermediate state �, with χ(j + 1) < � < χ(j); e.g.,
take � = χ(j+1)+1. As χ(χ(j)) = j, the height χ(�) would
be an integer strictly smaller than j+1, but also strictly larger
than j, which is a contradiction.

Another consequence of Theorem 3 is that only two strate-
gies are possible to determine the characters of the states. In
the first one, which in the following will be referred to as
internal approach, or i-approach for short, the height of the
jth column is χ(j) = N − j. In the second one, referred to as
external approach, or x-approach, the height of the jth column
is χ(j) = N− j−1. In Fig. 2 we plot a graphical comparison
of these two approaches, to show their difference. The i-
approach corresponds to approximating the region U with the
white area only, whereas the x-approach considers both white
and grey boxes as part of the reliable region. As a side remark,
observe that the x-approach does not violate Lemma 2, since
the states N −1 and N have a different label (unresolved and
resolved, respectively) for the first transmission.

We now derive the thresholds which locally minimize QR

(i.e., the area of the error region W) for both approaches.
Further, we show that the global minimum is achieved by the
i-approach.

Theorem 4: For the i-approach, QR is minimized if

Θ(σi) =
σN−i + σN−i+1

2
, for i = 1, . . . , N − 1 . (17)

The proof is reported in Appendix II.
Theorem 5: For the x-approach, QR is minimized if

Θ(σi) =
σN−i−1 + σN−i

2
, for i = 1, . . . , N − 1 . (18)

We do not explicitly demonstrate this statement, since it can
be proven similarly to Theorem 4. Not only can the proof of
Theorem 5 be obtained along the lines of Appendix II, but also
the next Theorem justifies that a detailed proof is irrelevant,
as the x-approach is sub-optimal.

Theorem 6: The quantization error probability on the reso-
lution instant resulting from choosing the optimal thresholds of
the i-approach is lower than the value achieved by the optimal
thresholds of the x-approach.
The proof is reported in Appendix III.

Due to Theorem 6, it is necessary to consider (17) only.
Using this expression, it is easy to find the optimal SNR
thresholds α1, α2, . . . , αN via simple numerical methods.
Moreover, (17) can be seen as a system of N − 1 equations
with N−1 unknowns, i.e., σ1, σ2, . . . , σN−1, as σN is already
chosen as FΓ(ϑ1), and due to the monotonicity property of Θ
and FΓ the uniqueness of the solution is guaranteed. Thanks
to this theoretical finding, it is possible to identify an efficient
partitioning method of the SNR values which is matched to
the characteristics of the code and is therefore more suitable
to describe the HARQ process through a Markov model.

C. Resulting SW HARQ Scheme

If F = 2 the resolution instant of a new SW HARQ frame
can equal 1, 2, or 3, meaning that the frame is resolved after
the first transmission, resolved after the second transmission,
or discarded, respectively. Formally, the resolution instant τR
equals j ∈ {1, 2, 3} with probability η(j), equal to

η(1) = Prob{s ≥ ϑ1} = 1 − FΓ(ϑ1)

η(2) = Prob{s1 < ϑ1, s2 ≥ ϑ2(s1)}
=

∫ ϑ1

0

(
1 − FΓ

(
ϑ2(s1)

))
fΓ(s1)ds1 =

∫
U ′

dx1dx2

where U ′ = U ∩([0, σN ]× [0, 1]), and η(3) = 1−η(1)−η(2).
An approximated evaluation of these quantities can be

achieved by using a quantized channel instead of the true
channel. Note that we previously defined a channel chain, i.e.,
an FSMC describing the evolution of the quantized channel.
This chain infers a different FSMC, called the HARQ chain,
representing the HARQ process. In particular, if the quantized
channel is obtained with N thresholds, i.e., the channel chain
has N + 1 states, we can derive a HARQ chain with N + 2
states. In the HARQ chain, there are N states 0, 1, 2, . . . , N−
1 ∈ ZN to track the channel condition after a retransmission,
plus two additional states, named ω and δ, corresponding to
frame resolution or discard, respectively. Observe that there is
no state N in the HARQ Markov chain, since if the channel
chain is in state N , the frame is necessarily resolved so the
HARQ Markov chain is in state ω.

States ω and δ correspond to the first transmission of a
frame. Since the channel is i.i.d., and both resolution and
discarding enable the transmission of a new frame, the exits
from these states are identical. In particular, if the channel is
in state N , the new frame is immediately resolved, thus we
enter state ω. Otherwise, we enter a state in ZN , according
to the channel state. The states in ZN describe the SNR
of an erroneous first transmission, after which the frame is
necessarily resolved or discarded, so that states ω or δ are
entered, correspondingly. This representation gives an exact
evaluation of η(1), whereas η(2) is estimated only through the
chain state, which is a discrete value, whereas a continuous
value, i.e., the SNR s1 of the first packet transmitted, would
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Fig. 3. Quantization error probability on the resolution instant, QR, of
the CM and UP quantization methods versus the number of channel states,
R = 2.6 bps/Hz, γ0 = 6 dB, two transmissions.

be required. On the other hand, using a discrete value allows
to considerably save memory to track the process. To sum up,
we define a transition matrix H taking indices in ZN ∪{ω, δ},
defined as follows:

hij = 0 , hiδ =
χ(i)−1∑

k=0

πk , hiω =
N∑

k=χ(i)

πk ,

hδj = πj , hδδ = 0 , hδω = πN ,

hωj = πj , hωδ = 0 , hωω = πN ,

where i and j are generic elements of ZN and πj is the
probability that the channel is in state j, as per (7).

We can find the estimated distribution of τR, called η̃(τR),
as follows. Given that the HARQ chain visits the set of states
{ω, δ}, which happens each time a new packet is transmitted,
η̃(1) is the probability of being in state ω coming from ω or
δ; η̃(2) is the probability of being in ω coming from a state
in ZN ; finally, η̃(3) is the probability of being in δ.

To quantify the goodness in the approximation of this
last value, we take the Kullback Leibler divergence [37, p.
18], a well-known measure of the inefficiency in distribution
estimations. For the case under study, it quantifies the differ-
ence between the true outcome of any HARQ frame and its
estimation obtained with the quantized channel. The Kullback
Leibler divergence D(η(τR) ‖ η̃(τR)) arises as an expected
logarithm of the likelihood ratio of the two distributions. As
τR can equal 1, 2, or 3, it holds

D(η(τR) ‖ η̃(τR)) =
3∑

τR=1

η(τR) log2

η(τR)
η̃(τR)

. (19)

As in [37], in (19) we conventionally assume 0 log(0/x) = 0
and x log(x/0) = +∞. This allows to deal with degenerate
cases, e.g., where the estimate always considers the frame to
be acknowledged.

V. NUMERICAL EVALUATION

We use the SNR thresholds derived in [7], [36] for good
binary LDPC and Turbo codes ensembles, transmitted over
parallel channels with random assignments. We refer the
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Fig. 4. Kullback Leibler divergence of the distribution of τR for the CM
and UP quantization methods versus the number of channel states, R = 2.6
bps/Hz, γ0 = 6 dB, two transmissions.

interested reader to these papers for details on the threshold
derivation and assumptions. For the analytical framework
reported above, the reliable channel region is described by
means of

ϑ1 = log
(

ρ

e−c0 − 1 + ρ

)

ϑ2(s1) = log
(

ρ

e−c0 − 1 + 2ρ− ρe−s1

)
where γ0 is the average SNR, ρ is the symbol assignment
probability and c0 is the code ensemble noise threshold, that
depends on the code ensemble and the code rate.

In the following we compare two different approaches: a
uniform probability (UP) SNR quantization method [29], and
our proposed CM technique. In particular, for this latter model
we utilize the system of equations resulting from (17), solved
through standard numerical tools to determine the thresholds
α1, α2, . . . , αN . For the former, we use a partitioning rule
given by the equiprobability of the states. Also, similarly to
the CM approach, we choose the approximation of the reliable
region according to a ML criterion. Both approaches are tested
for LDPC codes with code rate 1/5 (labeled in the figures as
“LDPC 1/5”) and Turbo Codes with code rate 1/3 (“Turbo
1/3”). Similar results can be obtained for other code ensembles
and/or code rates with different threshold functions.

In Fig. 3 we report the value of the quantization error
probability on the transmission instant QR obtained by both
CM and UP approaches, as a function of the number of states
N + 1, where N is the number of threshold points, with
γ0 = 6 dB. Compared to the UP approach that does not
involve any optimization of QR, the CM quantization achieves
a significant advantage and requires much fewer states. For
example, for the LDPC code a very good approximation (less
than 0.5% of false positives and false negatives) is achieved
with N = 2 only, i.e., 3 states in the channel model, where UP
requires 10 states to have the same degree of approximation.
A similar comparison also holds for the Turbo code: the CM
approach obtains with 5 states the same performance as the
UP quantization with 18 states. Note also that oscillations
are present in the UP curve, which can be explained as due
to the lack of code-awareness when choosing the thresholds:
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Fig. 5. Quantization error probability on the resolution instant, QR, of the
CM and UP quantization methods versus the average SNR, R = 1 bps/Hz,
two transmissions, 8 channel states.

whereas in the CM approach the addition of a threshold is
always beneficial, as per Lemma 1, in the UP case this is
not necessarily true, since a finer partition (i.e., increasing the
number of thresholds) does not always correspond to a closer
fit of the region.

In Fig. 4 we consider the relative entropy between the true
distribution of τR, η(τR), and the estimated distribution η̃(τR)
obtained in the quantized channel. Differently from QR itself,
which is simply an indicator of an incorrect approximation,
this metric is more closely related to the performance of
HARQ. The figure shows that the CM approach is better able
to represent HARQ processes from the viewpoint of higher
layers (i.e., frame outcome) than UP, and the performance gap
is even more relevant than for the simpler quantization error.
Especially, observe that, already for a small number of states,
the CM approach pushes down the Kullback Leibler diver-
gence to very small values, whereas the UP approach goes to
infinity. When the number of states is increased, an oscillatory
behavior is still present for the UP quantization, which has
the same interpretation as previously discussed. Conversely,
the CM approach steadily improves the approximation.

Figs. 5–6 report the same metrics as in Figs. 3–4 varying
the average SNR γ0 (in dB), for the case N = 7 (i.e., 8
channel states). For both figures, note that not only does the
UP strategy perform worse than CM in terms of area error
and relative entropy, but also it keeps oscillating. Thus, the
UP approach does not guarantee an improvement if the SNR
is increased, and the error may be significant even for high
γ0. On the other hand, we notice not only a general better
adherence to reality (which enables an improved performance
evaluation) obtained by means of our proposed model, but also
a steeper descent of the metrics when the channel quality is
improved.

To sum up, the code matched quantization technique is
shown to offer a channel representation better adhering to
HARQ performance, from both viewpoints of low layers
(minimum area error) and high layers (significantly better
description of metrics related to HARQ frames). For these
reasons, our proposed technique can be an extremely useful
tool to assess HARQ performance.
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Fig. 6. Kullback Leibler divergence of the distribution of τR for the CM
and UP quantization methods versus the average SNR, R = 1 bps/Hz, two
transmissions, 8 channel states.

VI. CONCLUSIONS

In this paper, we introduced a novel channel quantization
method suited for the study of Incremental Redundancy Hy-
brid ARQ. Our proposal is motivated by the strong research
interest around retransmission-based error control schemes
and the renewed attention gained by practical coding tech-
niques, such as LDPC and Turbo codes, that show a threshold
behavior, i.e., they have error probability asymptotically going
to zero if the channel parameters fall within the so-called
reliable region.

We used a quantized channel representation to develop a
finite-state channel model and to assess the performance of
a Stop-and-Wait IR-HARQ scheme. We presented numerical
evaluations showing the superior performance in terms of
channel representation accuracy, as well as higher layer HARQ
metrics, of the proposed quantization with respect to another
alternative technique widely used in the literature, i.e., the
quantization with uniform probability. Hence, we believe
that our proposed methodology can be extremely useful to
achieve a compact and accurate channel representation for
both analytical and simulation evaluations of HARQ systems.

APPENDIX I
PROOF OF LEMMA 1

Proof: For graphical aid in this proof, refer to Fig. 7.
We need to prove that the approximation of U obtained
with N thresholds can always be improved by inserting a
proper additional threshold. Determine the point x∗ such
that x∗ = Θ(x∗). If x∗ does not coincide with any of the
thresholds σ0, σ1, . . . , σN , the proof is promptly obtained. In
fact, for symmetry reasons, x∗ must belong to a probability-
box with the same indices, say j, for column and row, i.e.,
x∗ ∈ Yj × Yj . Recall that Yj = [σj , σj+1]. Thus, by choosing
x∗ as the additional threshold, Yj is further partitioned into
Y ′ = [σj , x

∗] and Y ′′ = [x∗, σj+1], and correspondingly
Yj×Yj is divided into four parts. The ML criterion determines
that Y ′ × Y ′ is unresolved and Y ′′ × Y ′′ is resolved, so the
approximation of U in any case is improved. On the other
hand, assume x∗ is already a threshold, say σj∗ , with j∗ > 0,
and consider Yj∗×Yj∗−1. If this probability-box is resolved, it
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σj

x*

σj+1

σj x* σj+1

x2

x1

Fig. 7. Reference figure for the proof of Lemma 1.

is easy to see that there exists a positive δ, small enough such
that adding σj∗ +δ as a threshold, and calling, according to the
ML criterion, [σj∗ , σj∗ +δ]×Yj∗−1 as unresolved improves the
approximation of U . Analogously, if Yj∗×Yj∗−1 is unresolved,
one can make a similar reasoning on σj∗ − δ, where again δ
is a sufficiently small positive value.

APPENDIX II
PROOF OF THEOREM 4

Proof: For graphical aid in the proof, refer to Fig. 8
where an application of the i-approach for the case N = 4 is
plotted. The shaded portion is the error region W . In particular,
σN = FΓ(ϑ1), and the other probability thresholds subdivide
W into N parts, called error subregions, denoted with Fk, k =
0, 1, . . . , N−1 and formally defined as Fk = W∩(Yk×[0, 1]).
They are plotted in Fig. 8 with different shades of grey. Let
ϕk be the area of the kth error subregion Fk.

The error subregions are disjoint so we can evaluate the
area of W as the sum of ϕk. Notice also that all the points
of the first error subregion, F0, have a value of x2 which is
between Θ(x1) and σN . For k > 0, Fk comprises two parts,
one above and one below the Θ(x1) curve.

Formally, we can write:

ϕk =
∫ σk+1

σk

|Θ(x1) − σN+1−k| dx1

=
∫ Θ(σN+1−k)

σk

(Θ(x1) − σN+1−k) dx1

+
∫ σk+1

Θ(σN+1−k)

(σN+1−k − Θ(x1)) dx1

The symmetry of the curve Θ implies that Θ(Θ(x)) = x. By
exploiting this property in the relationship QR =

∑N
k=0 ϕk

one can take the first order derivative with respect to σk,
obtaining:

dQR/dσk = 2σN+1−k − 4Θ(σk) + 2σN+2−k ,

σ4

σ3

σ2

σ1

σ4σ3σ2σ1 x1

x2
F0

F1

F2

F3

Fig. 8. Thresholds and area error regions of the i-approach for N = 4.

where all the resulting terms Θ(Θ(σk)) − σk are equal to 0.
By imposing all derivatives to be equal to 0, (17) is obtained.
This is also shown to correspond to a minimum as the second
order derivative is d2QR/dσ2

k = −4(dΘ/dσk) > 0.

APPENDIX III
PROOF OF THEOREM 6

Proof: The case N = 1 is not meaningful, as the only
SNR threshold is placed in ϑ1. Thus, we need to consider
N > 1. For the sake of simplicity, we give the proof only for
N = 2, where σ2 = FΓ(ϑ1) and a single threshold is added
between 0 and σ2. This situation is depicted in Figs. 9 and
10 for the i-approach and the x-approach, respectively. The
extension to N > 2 is straightforward.

For the sake of exposition, we denote the value of σ1

differently for the i-approach and the x-approach. Let us
call σI and σX the optimal thresholds in the i-approach
and in the x-approach, respectively. Analogously, the minimal
quantization error probability QR obtained in the i-approach
and the x-approach is denoted with QI and QX , respectively.
As a consequence of (17) and (18), Θ(σI) = 1

2 (σI + σ2) and
Θ(σX) = σX/2. It is also possible to prove that σX > σI >
σX/2. As a result, points (σX , σX) and (σI , σI) are always
above and below the curve Θ(x1), respectively, as shown in
Figs. 9 and 10.

From Fig. 9, observe that the area marked with a darker
shade minus the areas marked with a lighter shade equals∫ σ2

0 Θ(x1)dx1 + σ2
I − 2σIσ2. Therefore,

QI =
∫ σ2

0

Θ(x1)dx1 + σ2
I + 2σIσ2 − 4

∫ σI

0

Θ(x1)dx1.

Since because of the symmetry of the curve (see Fig. 9)∫ σI

0

Θ(x1)dx1 = σI(σI + σ2)/2 +
∫ σ2

σI+σ2
2

Θ(x1)dx1
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σΙ

σX

(σΙ+σ2)/2

σ2

σΙ σX         (σΙ+σ2)/2 σ2 x1

x2

Fig. 9. Single-threshold case of the i-approach and resulting area errors.

we have

QI =
∫ σ2

0

Θ(x1)dx1 − σ2
I − 4

∫ σ2

σI+σ2
2

Θ(x1)dx1 . (20)

Instead, the quantization error probability of the x-approach
can be written as

QX = 2
∫ σ2

σX

Θ(x1)dx1 +
σ2

X

2
−

∫ σX

σX/2

Θ(x1)dx1,

where the first and the remaining terms comprise the regions
with light grey and dark grey shade, respectively, in Fig. 10.

We can re-arrange this expression by observing that:∫ σX/2

0

Θ(x1)dx1 =
∫ σ2

σX

Θ(x1)dx1 + σX
σX

2
,

and therefore

QX =
∫ σ2

0

Θ(x1)dx1 − 2
∫ σX

σX/2

Θ(x1)dx1 . (21)

To prove that QI ≤ QX , we compare (20) and (21). We
need to show that

σ2
I + 4

∫ σ2

(σI+σ2)/2

Θ(x1)dx1 ≥ 2
∫ σX

σX/2

Θ(x1)dx1. (22)

Because of concavity, Θ′(σI+σ2
2 ) ≥ −1, so that∫ σ2

(σI+σ2)/2

Θ(x1)dx1 ≥ σ2
I/2.

The concavity of the curve also implies that the region
below Θ between σX/2 and σX is all contained within the
trapezoid with vertices (σX/2, 0), (σX , 0), (σX , σX/2), and
(σX/2, σX), whose area is 3

8σ
2
X . Therefore, (22) is proved

since its left-hand member is not less than 3σ2
I ≥ 3

4σ
2
X which

is in turn not less than the right-hand member.

σΙ

σX/2

σX

σ2

σΙ   σX/2 σX σ2 x1

x2

Fig. 10. Single-threshold case of the x-approach and resulting area errors.
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