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Abstract—We analyze the capacity of wireless networks in the
presence of cooperative relaying by using game theory instru-
ments. Cooperation is approached as a cross-layer interaction
between routing and medium access control; the latter is assumed
to be based on memoryless time-division multiplexing, where
the users have fixed probabilities to access the channel. We
investigate the proper cooperation mechanism to be adopted
by the users so that a gain is obtained by both those who
have their transmission relayed to the final destination and also
those who act as relays. Especially, we show how this gain can
be directly related to a throughput improvement if the users
follow specific access procedures. This incentive to cooperation
works not only in an abstract information theoretic context,
but also for a more direct personal advantage of the users.
Numerical results are shown to confirm the validity of the
proposed approach. The adopted methodology is useful both for
modeling and performance analysis of communication links in
relay networks, and for designing viable protocols which the
users have incentives to follow.

I. INTRODUCTION

R
ELAY networks have been widely studied in information

theory [1]. In particular, the relay channel represents one

of the most common scenarios studied. Several theoretical

results about the capacity of this basic network have been

available in the literature since long [2], and others keep being

proposed even very recently [3], [4].

At the same time, game theory [5] is being employed more

and more every day by wireless telecommunication engineer.

From a game theoretic perspective, the relay channel is a nat-

ural scenario to evaluate cooperation [6], which may improve

the communication for users experiencing bad quality on their

direct link to the destination. The concept of cooperation has a

precise meaning in game theory mostly through the application

of coalitional games, which we will exploit in this paper.

Yet, we do not apply these game theoretic concept to a pure

information theory scenario. Instead, we focus on a precise

application of the relay channel, with a real network proto-

col involving packet exchanges and retransmission, through

cooperative Automatic Repeat reQuest (ARQ). Our proposal

involves a cross-layer solution spanning on the data link (and

more specifically, both channel access protocol design and

ARQ) and network layers.

The contribution in this sense is two-fold. First, we give

an analytical characterization of the performance of the relay

channel from a game theoretic perspective. Second, we are also
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able to define a cooperative protocol where the overall network

throughput is improved. However, differently from classic

results of information theory where the capacity enhancement

simply stems from spontaneous cooperation, i.e., the nodes

collaborate out of goodwill, we precisely model also the node

behavior so that their cooperation is not taken for granted, but

rather promoted through a careful design of incentives to all

the involved nodes (both those exploiting cooperative relays,

and those who aid others, e.g., by forwarding their packets).

In this sense, this throughput enhancement is achievable in

practical cases, and is truly beneficial for those nodes who

have poor channel conditions, e.g., those at the cell edge, not

only because somebody improves their throughput, but also

since other nodes are actually willing to cooperate with them,

since they see a concrete benefit in it.

The rest of this paper is organized as follows. In Section II

we give some notions of coalitional game theory. In Section III

we formulate our game-theoretic resource allocation strategy

for a relay channel based on coalitional games and involving

Medium Access Control (MAC), routing, and throughput

subdivision. We present some numerical results in Section IV,

then we sketch possible extensions in Section V and finally

we conclude in Section VI.

II. COALITIONAL GAME TERMINOLOGY AND NOTATION

Cooperative game theory [6] is a branch of game theory

that provides analytical tools to study the behavior of rational

players when they cooperate.

The main area of cooperative games is represented by

coalitional games [7], defined as a pair (N , v), where N =
{1, ..., N} is a discrete set of players and v is a function that

quantifies the value of a coalition in a game. Each coalition

S ⊆ N behaves as a single player, competing against other

coalitions in order to obtain a higher value of v. A coalitional

game may have the following properties:

Property 1. (Characteristic form) The value of a coalition

S depends only on who are the members of that coalition,

regardless of other coalitions

Property 2. (Transferable utility) The value of a coalition

is a real number, representing the total utility achieved by the

coalition, and it can be arbitrarily divided among its members

For coalitional games satisfying properties 1 and 2, the value

v : 2N → R is a function that assigns to each coalition S the



total utility achieved by it. The utility value can be arbitrarily

divided among the coalition members and the amount of utility

that a player i ∈ S receives, xi, is the player’s payoff. A payoff

allocation is a vector x ∈ R|S| (where |S| is the cardinality of

the set S) whose elements are the payoffs of players belonging

to the coalition; in other words, it represents a redistribution

of the total utility.

Another interesting property that a coalitional game may

have is super-additivity, that for a game with properties 1 and

2 assumes the following form:

Property 3. (Super-additivity)

v(S1 ∪ S2) ≥ v(S1) + v(S2) ∀S1, S2 ⊂ N s.t. S1 ∩ S2 = ∅

The super-additivity property expresses in mathematical

terms that formation of a larger coalition is always benefi-

cial. Hence, for those games where it holds, the players are

encouraged to stick together, forming the grand coalition N .

For a game having all properties listed before, the main

aspects to analyze are:

• finding a redistribution of the total utility v(N ) such that

the grand coalition is stable, i.e., no group of players has

an incentive to leave the grand coalition

• finding fairness criteria for the redistribution of the total

utility

• quantifying the gain that the grand coalition can obtain

with respect to non cooperative behaviors

A payoff allocation is group rational if
∑N

i=1
xi = v(N )

and it is individually rational if xi ≥ v({i}) ∀i, i.e., if every

player does not obtain a lower utility by cooperating than by

acting alone. A payoff allocation having both properties is said

to be an imputation.

The concept of core is also very important. It is defined as

the set of imputations that guarantee that the grand coalition

is stable, i.e., all payoff allocations where no group of players

S ⊂ N have an incentive to refuse the proposed payoff

allocation, leaving the grand coalition and forming coalition

S instead. Mathematically speaking,

C=

{

x s.t.

N
∑

i=1

xi = v(N ) ,
∑

i∈S

xi ≥ v(S) ∀S ⊂ N

}

(1)

Indeed, the core may be empty, in which case the grand

coalition is not stable. The existence of the core ought to be

checked case by case, possibly exploiting some categories of

games where the existence is guaranteed [5, Ch. 13].

III. PROBLEM STATEMENT

We consider the scenario of two nodes, A and B, which

want to communicate with an Access Point, Z, as represented

in Fig. 1. γA, γB , γAB and γBA are the signal to noise ratios

(SNRs) between A and Z, B and Z, A and B and B and A

respectively. We suppose that:

• γA, γB , γAB and γBA are constant over time, i.e., time

invariant channels and fixed transmission powers of A

and B. Actually, also slow time-varying channels can

be included in this analysis. Moreover, without losing

generality, we suppose γB > γA
• node A and B always have packets to transmit to Z

γ

γ

γ

A
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B
B

A
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Fig. 1. The reference scenario.
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Fig. 2. Non-cooperative transmission process of a packet of user A

• time division multiple access (TDMA) is adopted, assum-

ing that the access point Z manages it in a centralized

manner. The process that assigns a slot to a new packet

is independent identically distributed (i.i.d.) with PA and

PB = 1− PA the probabilities to assign the slot to node

A or node B respectively

• we consider an ARQ retransmission scheme with at most

1 retransmission (maximum total number of transmission

F = 2). In subsection III-C we will see how the analysis

can be generalized for multiple retransmissions

• we focus on the uplink connection from the users to the

access point, therefore we neglect the traffic from Z to

nodes A and B

Once a new packet for node A is scheduled, the non coop-

erative transmission process of this packet can be represented

by the Markov Chain in Fig. 2. Absorbing states RA and

NA represent the events that the packet is received or not

received by Z. Other states represent the actual number of

packet transmissions performed by user A, so the initial state

is state 1A. We define q(γ) as the probability that a packet is

correctly received when the SNR is γ. This function depends

on the modulation scheme used and on the packet length. We

define PNC
RA

as the probability to be absorbed in state RA in

the non cooperative case.

PNC
RA

= q(γA) + (1− q(γA))q(γA) (2)

We define NNC
A as the average number of transmissions of

the packet in the non cooperative case.

NNC
A = q(γA) + 2(1− q(γA)) = 2− q(γA) (3)

The transmission of a packet in the non cooperative case,

from the choice of the user to packet reception (or to the

maximum number of transmissions), is represented in Fig. 3.

Initial state I represents the selection of the user that can trans-

mit the packet. Users A and B are selected with probabilities

PA and PB , respectively. Once either user is selected, the
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Fig. 3. Non-cooperative transmission process of a packet in the network

transmission process evolves analogously to the Markov Chain

shown in Fig. 2. When the packet is correctly received by Z

or the maximum number of transmissions is reached (i.e., an

absorbing state is entered), another new packet is considered,

again starting from state I: a new user is selected, a new packet

is transmitted, and so on. Renewal theory [8] allows to study

this kind of situations. The beginning of each renewal cycle

constitutes a regenerative epoch of the Markov process. The

asymptotic metrics of the network can be obtained by studying

the average behavior of the Markov process. The asymptotic

bit rate of each user is calculated by considering the average

number of transmitted bits and dividing it by the average time

to absorption:

BRNC
A =

PAP
NC
RA

NNC

Nbit

Tpkt

(4)

where NNC = PAN
NC
A +PNNNC

B is the average number of

transmissions for packet, Nbit is the number of bits in a packet

and Tpkt is the time needed for a single packet transmission.

Finally, the asymptotic bit rate of the network for the non

cooperative scenario is given by:

BRNC = BRNC
A +BRNC

B (5)

A. Cooperative ARQ

Now the performance of the network is evaluated for the

case where cooperation is active, by means of the coalitional

game framework. Nodes can cooperate, helping other nodes to

retransmit a packet not correctly received by the access point.

We assume that the game satisfies properties 1 and 2. Note

that in the two-user case, the former property is automatically

satisfied. However, the property still holds true even if the

analysis is extended to a network with more than two users,

since the TDMA approach guarantees that different coalitions

do not interact: each coalition tries to obtain the maximum

throughput by using the slots assigned exclusively to it. For

what concerns property 2, the problem of the throughput

redistribution is addressed in subsection III-B.
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Fig. 4. Cooperative transmission process of a packet of user A

The value v(·) of the coalitional game is the throughput

obtained by each coalition. In a two-user case, three coalitions

are possible: the two coalitions formed by the single users, A

and B, and the coalition formed by both users, i.e., the grand

coalition N = {A,B}. The value of each coalition is:

v({A}) = BRNC
A v({B}) = BRNC

B

v(N ) = BRC = BRC
A +BRC

B (6)

where BRC
A and BRC

B are the respective asymptotic bit rates

for user A and B in the cooperative scenario.

During a cooperative transmission, the packet transmitted

by a node is heard by Z and the other user who actively

cooperates. In our formulation, cooperation implies that, if a

packet is not correctly received by Z, its retransmission is

carried out by the user who has the better signal to noise

ratio, provided that it received the packet correctly. Thus,

the transmission process for user A can be represented by

the Markov Chain in Fig. 4. State 2B (2A) represents the

second transmission in the case that user B has (not) correctly

received the packet during the first transmission; remember

that we assume γB > γA. We obtain:

PC
RA

= q(γA) + (1−q(γA))((1−q(γAB))q(γA)

+ q(γAB)q(γB))

NC
A = q(γA) + 2(1− q(γA)) = 2− q(γA) (7)

Note that PC
RA

> PNC
RA

thanks to the cooperation of B,

while NC
A = NNC

A because we are considering at most 2

transmissions. If more transmissions are considered, we obtain

also NC
A < NNC

A . Note that PC
RB

= PNC
RB

because B is not

helped by anybody.

Along the same lines of (4), the asymptotic bit rate of user

A in the cooperative scenario is given by:

BRC
A =

PAP
C
RA

NC

Nbit

Tpkt

> BRNC
A (8)

Finally:

v(N ) = BRC = BRC
A +BRC

B > BRNC
A +BRNC

B (9)

Therefore the game satisfies also property 3.



B. Throughput subdivision

Now we want to find a payoff allocation that belongs to

the core and is fair under certain parameters. Note that, for

a super-additive two player game, the core is not empty and

coincides with the set of imputations.

In the considered game, the set of imputations is given by:

xA =BRNC
A + (1− w)(BRC

A −BRNC
A )

xB =BRNC
B + w(BRC

A −BRNC
A ) (10)

Here a cooperation weight denoted as w is introduced to

determine the throughput share that each user gets. Note that

w is introduced to give a proper incentive to both users to

cooperate. In fact, only user A, whose channel quality to Z

is worse, can directly benefit from being helped by user B’s

cooperative relaying. However, user B can get an incentive to

cooperate if this results in a larger throughput share.

By varying the value of the cooperation weight w in the

interval [0, 1], we can obtain all the imputations. It is imme-

diate to see that xA + xB = v(N ) ∀w. Moreover, for w = 0
we obtain xB = BRNC

B = v({B}) and increasing w we have

xB > v({B}). For w = 1 we obtain xA = BRNC
A = v({A})

and decreasing w we have xA > v({A}). On the other hand,

if w < 0 then xB < v({B}) and if w > 1 then xA < v({A}).
Thus, by setting the value of w we decide the right level

of fairness of the subdivision. This takes into account that,

in order to cooperate with A, user B has to consume more

power, retransmitting packets instead of A, that can in turn

save power. We can assign a cost to the power, depending

on the application/scenario we are considering. If the cost of

the power increases, we have to increase also the value of the

cooperation weight w (i.e., to further increase the payoff of

cooperative users) in order to keep the same level of fairness.

So far we have supposed that the total throughput can be

divided by users rather arbitrarily. From a practical point of

view, the only thing that can be controlled is the allocation

policy, PA and PB . We suppose therefore that the allocation

policy is changed from PA and PB to PC
A and PC

B in order to

satisfy the subdivision proposed. Is the new allocation policy

feasible? That is, is PC
A + PC

B ≤ 1? It is easy to show

that the new allocation policy is feasible. In fact, we have to

increase the allocation probability of the cooperating user B

and decreasing the allocation probability of A, while keeping

constant the total bit rate v(N ). Since B has a better SNR, it

results that the increase PC
B −PB is greater that the decrease

PA−PC
A in order to keep the total bit rate constant. Therefore:

PC
B − PB < PA − PC

A ⇒ PC
B + PC

A < PA + PB = 1 (11)

This means that the allocation is feasible and that there is

a positive probability that some slots are not assigned to

anybody, which would not be meaningful. Therefore, the

quantity P ′ = 1 − PC
A − PC

B can be divided between users,

increasing for example both PC
A and PC

B by the same amount,

or increasing them by a weighted amount of P ′, where we can

use again the cooperation weight w. Finally, this means that

both users have a further benefit in obtaining an even higher

bit rate compared to the subdivision proposed.

C. Multiple retransmission generalization

Previously, we have found the mathematical expressions for

the asymptotic bit rates in the non-cooperative and cooperative

cases for F = 2. This can be generalized to F > 2 as follows.

For the non-cooperative case we obtain:

PNC
RA

=q(γA) +

F
∑

i=2

q(γA)(1 − q(γA))
i−1

NNC
A =q(γA) +

F−1
∑

i=2

iq(γA)(1 − q(γA))
i−1+

+F (1− q(γA))
F−1 (12)

For the cooperative case, let TA,Z and TA,B be the times

required by Z and B, respectively, to correctly receive the

packet from A. Then, we have

PC
RA

= q(γA) +

F
∑

i=2

P (TA,Z = i)

= q(γA) +

F
∑

i=2

[ i−1
∑

k=1

P (TA,B=k)P (TA,Z=i|TA,B=k)

+ P (TA,B > i− 1)P (TA,Z = i|TA,B > i− 1)

]

= q(γA) +

F
∑

i=2

[ i−1
∑

k=1

q(γAB)(1 − q(γAB))
k−1q(γB)

· (1− q(γA))
k(1− q(γB))

i−k−1

+ (1− q(γAB))
i−1q(γA)(1− q(γA))

i−1

]

(13)

NC
A = q(γA) +

F−1
∑

i=2

iP (TA,Z = i) + FP (TA,Z > F − 1)

= q(γA) +

F−1
∑

i=2

i

[ i−1
∑

k=1

P (TA,B = k)

· P (TA,Z = i|TA,B = k) + P (TA,B > i− 1)

· P (TA,Z = i|TA,B > i− 1)

]

+ F

[ F−2
∑

k=1

P (TA,B = k)

· P (TA,Z > F − 1|TA,B = k) + P (TA,B > F − 2)

· P (TA,Z > F − 1|TA,B > F − 2)

]

= q(γA) +

F−1
∑

i=2

i

[ i−1
∑

k=1

q(γAB)(1 − q(γAB))
k−1q(γB)

· (1− q(γA))
k(1− q(γB))

i−k−1 + (1− q(γAB))
i−1

· q(γA)(1 − q(γA))
i−1

]

+ F

[ F−2
∑

k=1

q(γAB)

· (1− q(γAB))
k−1(1− q(γA))

k(1− q(γB))
F−k−1

+ (1− q(γAB))
F−2(1 − q(γA))

F−1

]

(14)

It is easy to see that PC
RA

> PNC
RA

and NC
A ≤ NNC

A ,

therefore BRC
A > BRNC

A . Thus, the reasonings done in

subsection III-B are still valid even for F > 2.
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Fig. 5. Throughput for the time invariant channel case

IV. RESULTS

The throughput of the proposed scenario with a time invari-

ant channel has been evaluated through a Matlab simulator. An
example of results is shown in Fig. 5, where the throughput

for both nodes in the cooperative and non-cooperative scenario

is plotted. We consider a 16−QAM modulation with packet
length of 12000 bits. PA and PB are equal to 0.5, γAB and

γBA are both set to 110. The SNR of B, γB , is constant

and equal to 70, while γA varies from 0 to 2γB = 140.
For very low values of γA, in the non-cooperative case, the

capacity of node A is close to 0, while that of B is around

2700 bits/s. In this case, most of the slots assigned to A are
wasted to retransmit the same packet. When B cooperates, it

allows to save most of this wasted slots without decreasing

the throughput of A. This saved slots are then assigned to
B which doubles its throughput with respect to the non-

cooperative case. Increasing γA reflects in an enhanced non-

cooperative throughput of A. Cooperation from B allows to
save fewer slots than the previous case, but it is still beneficial

and B experiences a higher throughput compared to the non-
cooperative case. The closer γA to γB , the lower the gain of

B. When the SNRs of both nodes are equal, cooperation is

useless and the nodes have the same throughput. From this
point on the situation is reversed: when γA > γB , A helps

B and the cooperative throughput of node A is higher than

its non-cooperative throughput. The larger γA, the higher the
(absolute) throughput gain.

It is worth noting that, while not rewarding cooperation, i.e.,

w = 0, determines low throughput for the node with worse

channel quality, cooperating with weight equal to 1 does not
represent an improvement for this user either. In such a case,

the whole throughput gain harvested from the cooperation is

assigned to the better user to encourage its cooperation. Thus,
the case where w = 0.5 represents an interesting trade-off,

where both users get a cooperation gain, and have the proper
incentives to cooperate from a game theoretic standpoint.

V. DISCUSSION AND POSSIBLE EXTENSIONS

The numerical results show an actual gain for both nodes
when they decide to cooperate. Many related papers which

discuss cooperation in wireless networks often fail to deter-

mine the actual benefit for the nodes in cooperating; therefore,
they often resort to some form of side payment. However,

the viability of such solutions, in both economic and legal

terms, is arguable at best. Instead, our proposed approach

simply addresses the benefit of cooperation as a throughput
enhancement for both kinds of users, i.e., those relaying

packets and those exploiting a relay. Also, focusing on a

time-division multiplexing channel access is not restrictive;
this assumption may easily be translated to other forms, e.g.,

random-based, medium access control.
Possible extensions of the present work, which are currently

ongoing, involve the introduction of hybrid ARQ [9], as

opposed to plain ARQ as employed here, and the addition

of time-varying channels in the analysis. This latter point may
require to extend the problem so as to include dynamic games

and further negotiation among the cooperating users. In a time

invariant channel, cooperation is always triggered in the same
manner, i.e., the user with better channel relays the packets

for the other; conversely, the main challenge of time varying

gains would be that the users can sometimes have reversed
cooperation roles. This complicates the set of strategies that

can be played by each player; especially, the access point

needs to give proper cooperation incentives so as to avoid
the “ungrateful” situation (a user that most of the time enjoys

cooperation by a relay does not reciprocate when it is its turn
to relay a packet). Nevertheless, our preliminary evaluations

hinted that a cooperation gain still holds also in this scenario.
Finally, given the promising results found for a simple two-

node network, it is surely worth investigating an extension to
larger networks, possibly with multi-hop relaying. This devel-

opment, currently under evaluation, implies both an evaluation
on a larger scale and also the definition of a proper negotiation

protocol to establish the cooperation roles [10].

VI. CONCLUSIONS

We presented an analysis of a relay network by coalitional

game theory, where a MAC/network protocol is designed by

giving to all the users benefits when they collaborate with each
other. This is concretely realized by proving the theoretical

condition for a stable core and properly designing a suitable

throughput subdivision among the users. The resulting solution
properly accounts for modeling aspects such as users’ selfish-

ness and thus the need for proper incentives to cooperation.
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