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Abstract—In this paper, we propose a game theoretical model limited exploitation of users’ different conditions. Tledore,

for joint scheduling and radio resource allocation in the davnlink  harmonizing the two objectives is an important and noriativ
of a Long Term Evolution system, where Orthogonal Frequency task

Division Multiple Access is used as the multiple access sahe. In thi | the Ii f 121 13 il
The context is that of spectrum sharing with multiple users n this paper, along the lines of [2], [3], we utilize a
competing for the simultaneous access to the radio channel. modular representation of the radio resource management

We first give a layered system representation and then model procedure which is split between two functional entities,, i
it through a game theoretic formulation using Nash Bargainhg 3 credit-based scheduler and the actual resource alloFier

theory, where players cooperate to achieve a better common ; feci
payoff. A trade-off between faimess and throughput is idetified scheduler selects the candidate packets for the transmissi

and addressed. In addition, we also propose an efficient algthm ~ @Mong its internal queues. The Radio Resource Allocator
that drives the system toward abalanced Pareto efficienperating (RRA) matches the packets to the allocation units of the LTE
point represented by the Nash Bargaining Solution. Numerial ~ downlink [4]. Denote withD the number of packets proposed
results are also provided to show the validity of the propose py the scheduler, and with the number of those selected by
approach. the RRA.D is supposed to be greater than or equal t¢iere
Index Terms—Resource allocation, OFDMA, LTE downlink, the trade-off among the two entities arises: wheris high,
Nash Bargaining Solution. then the RRA is free to choose the subset of packets addressed
to the users with better channel conditions, thus maximgizin
l. INTRODUCTION the overall throughput without considering fairness. Oa th
other hand, when it is minimized then all the proposed packet
. : . Gre mandatorily allocated with no freedom of choice for the
trum usage is a key factor. Wireless technologies have beﬁl?)cator thus maximizing the fairness
experiencing an ever increasing diffusion. A careful use o We model this situation by using the cooperative game

resources _(|.e.,t|me,frequency, power, etc.) is impogetidir theory framework, in particular the Nash Bargaining theory
scarcity with respect to the demand. Orthogonal Freque ¥e two entities are the two players of the game and they

Division Multiple Access (OFDMA) is a promising muI'upIe-b rgain on the number of packets to select with the aim of

g;czzsl.ttecg}nguﬁof?; h'?hr; dritallt.rast:r tg’.m:rr:.'tss'g n,a%ue _to ' gximizing a common utility function, the Nash function.erh
pabiiity xplorting uitd versity by adafe thgory guarantees the existence and uniqueness of a maximum

rehsogrclel allocation. This means tthat p()jacket _scnedulgg a;pomt (Nash Bargaining Solution), which isRareto efficient
physicaliayer resource assignment are dynamicatly peear o o having also the merit to strike a good balance betwe

according to_ the channel conditions and Quality of Servigﬁe objectives of the two players, i.e., guaranteeing gcafit
(QoS) experienced by the users. the end of the bargaining process. We provide an efficient yet

An emerging scenario where this access scheme is emplo ﬁgctive procedure to reach that point as well. Some simple

is represented by the Long Term Evolution (LTE) of 3 : - ; g
systems [1], where OFDMA is used in the downlink. Her%g:;i?gc‘;i ee \gﬂﬁgﬂgzsmof Orjra git;CIyI;TSE system are shown to

the available bandwidth is d|V|c_ied into a certain number o The structure of the paper is the following. Section II
orthogonal bundles of subcarriers, called subchanneld, an : . .
es a review of the literature. In Section IIl our layered

) ; ; IV
E:(r:igdozlﬂr]r?g is assigned to a certain user for a SUbfralgs?‘yestem model is discussed. Section IV introduces some basic

If the resource allocation is driven only by the efficiencdeflmtlons of the Nash Bargaining theory, while in Section

: . . . Y/ the problem is formulated using these concepts and our
goal, then this may result in an unfair allocation from th P g P

point of view of the system users because those experienc nrOpOSaI is described. Supporting numeriqal resu-lts aversh
. ; "% ection VI and conclusions are drawn in Section VII.

better conditions (e.g., closer to the base station or with a

better channel quality) are given more service. On the other

hand, if the only objective were the fair allocation of resms [l. STATE OF THEART

to users, then this could lead to an inefficient result due to n the literature, many studies have been conducted to

This work was supported by the FP7 EU project SAPHYRE, grarf@Ckle the problem of resource allocation in OFDMA cellular
agreement no. 248001. networks, for both the uplink and the downlink. Most of them



assume perfect knowledge, at the base station, of instemitian of an efficient algorithm to dynamically estimate the optima
Channel State Information (CSl), so as to exploit multiusealue of an operating parameter.
diversity to increase the efficiency. Several formulatiais
the problem exist and different mathematical tools havenbee 1. SYSTEM MODEL
used, also stressing different aspects. We consider the downlink of an LTE system, that uses
A first powerful tool is constrained optimization, usingge. OFDMA multiplexing. We can adopt a two-tier view of the
weighted sum rate maximization as the objective. For anylfixgystem (along the same lines of [2], [3]). At the top level we
subchannel assignment, the optimum is reached by multileyave apacket schedulerwhich receives packet flows from
waterfilling [5] for the continuous rate relaxation, or byegdy the upper layers and selects the candidates for transmissio
and bisection allocation [6] for the discrete case. Howevetccording to an internal scheduling policy. At the bottorele
the sum rate maximization may not result in a fair allocationve have aradio resource allocator(RRA), which matches
especially for non-symmetric channels and non-uniforifiiera each packet to be transmitted with one of the available alloc
patterns [7]. Therefore, some studies tried to consideiird jotion units according to an efficiency maximization objeetiv
solution for an efficient yet fair allocation [7]-[9]. In geral, This two modules are coupled through a list of candidate
exact optimization approaches suffer from the issue that thackets for transmission; the scheduler fills it in and the-al
optimal subchannel assignment is a combinatorial problerator selects for transmission only the subset of packetsah
whose complexity increases exponentially with the numlfer destinations have a better channel quality, thus exptpitie
subcarriers. Moreover, typically the computation of arirapt  multiuser diversity.
solution is centralized and requires complete knowledge ofIn the following, we callL the number of resource units
the network. In [5], an efficient suboptimal algorithm is fml that the resource allocator is entitled to assign. This gest
considering a convex relaxation. In [10] a solution is fountb a constraint, < L., WhereL, .« is the maximum value
by using Lagrangian dual decomposition and considering therresponding to assigning all of them. The value assigoed t
the duality gap goes to zero when the number of subcarrigrds communicated to the scheduler by the resource allocator.
tends to infinity. Actually, this represents a loose form of cross-layer exton
Another way to approach the problem of resource allocati@mong the modules, maintaining the modularity and turtgbili
is through game theory. Terminals requesting access to tifethe approach.
shared resources are seen as players of a game who compédgiven L, the scheduler determines the numbeof packets
in order to maximize their own utility, e.g., their data rateto be sent to the resource allocator, with> L. The exact
In this way, the efficiency and development of the game achoice of D influences the entire allocation. B = L, the
analyzed together with schemes enforcing players to mosesource allocator has no degree of freedom as to which
towards an efficient operating point. An overview of spectru packets to allocate (it can only assign each packet to its
sharing games is given in [11] and [12]. Many alternativdsest channel to the receiver). By increasibg the resource
are described, from the simple non-cooperative approachattocator can achieve a higher throughput by selecting only
more sophisticated bargaining and auction-based gama® Fi. packets out ofD, according to a channel-aware policy,
a practical point of view, game theory is also seen asadthough at the price of a possibly decreased fairnessquser
way to derive efficient distributed algorithms for dynami@xperiencing good channel conditions are favored).
spectrum sharing with agents having only local information Through a process of abstraction, we can see the system
Such solutions are easier to implement than a centralized atheduler-RRA as a game between two players with con-
needing complete knowledge. trasting utility functions. A bargaining process is remeht
As examples closely related to the present paper, we m@very time some packets must be selected. The goal is the
tion [13], where a second-price auction mechanism is pregposachievement of a balance between the two interests, with a
to model user competition in a wireless fading channel, aisgélution that does not favor any of the players. According to
bids are posed based on the perceived channel quality. This view, we can think of modelling this situation by using
existence of a Nash equilibrium is proved, together witthe Nash Bargaining theory, whose solution representsetdar
its Pareto optimality. Nash Bargaining Solutions (NBS) anefficient fair point, where in this definitiorfair refers to an
coalitions are employed in [14] to formulate a problem of faiequal distribution of the payoffs between the schedulerthad
rate maximization and find a suboptimal distributed aldnit RRA. In the following, we show how to apply this framework
for uplink access. NBS and coalitions are also used in [15] fto our case.
the case of OFDMA-based relay networks. The authors face
both the problem of spectrum and power allocation among IV. THE NASH BARGAINING PROBLEM
relay nodes within the same coalition, and then the inter-Let N’ = {1, ...,n} denote the set of players of the game,
coalition coordination, and propose some greedy algosthrandS denote a closed and convex setRsf representing the
able to enhance the total system capacity and maintain #re uset of all feasible payoffs that the players can get if theykwo
fairness. In [3], the same system model of this work has betyether. We also assume that no agreement is reached, that
described and analysed under a non cooperative approachis, the players do not cooperate, they get a payoff collelstiv
In the present paper, we adopt a problem formulatiatenoted byd = (dy, ...,d,,) € S, which is calleddisagreement
applying Nash Bargaining theory. The goal is not only tpoint Suppose that the sdty € Sly; > d;,Vi € N} is
provide an original view of the system, but also to exploitonempty and bounded. Then, the pat d) is called ann-
the results of the game theoretic analysis for the derimatiperson bargaining problem



Within set S, we use the Pareto optimality as a selectiotihe interval[Tiin, Timax], WhereT i, is achieved forD = L
criterion for the bargaining solutions. while Ty,.x is the upper bound reached when the RRA can
Definition 1: A point p = (p1, ..., pn) IS said to bePareto transmit to thel users having the channel quality equal to the
optimal if and only if there is no other solutiah= (s1, ..., s,) mMaximum. For any value ab € {L,...,2L} (or{L,..., ML}
of the game such that > p;, Vi. in the general case), the resulting poitd§ D), T'(D)) form a
The number of Pareto optimal points might be infinitePareto boundary, and any improvement in a player’'s outcome
Among all of them, the Nash Bargaining Solution provides mecessarily results in a worsening of the other’s (note that
unique result under the following conditions, which regmés if s; and s, coincide thenF' and T are functions of only
the characteristics that a solution is supposed to satisfy dne variable,D). For all the details about the game theoretic
Nash'’s theory, and are thus considered as axioms. description of the system we refer to [3], where the complete
Definition 2: A specific solution to the bargaining problennormal-form representation is given for the non-coopeeati
(8,d), denoted asp(S,d), is called aNash Bargaining case.

Solution (NBS), if the following axioms are satisfied. Here we take a cooperative approach and describe the
1) Weak Pareto Efficiency: there is no other veggoe S  interaction between the scheduler and the RRA as a bargainin
such thatvi € NV, y; > ¢4(S,d). process. In order to fit our problem within the Nash bargajnin

2) Individual Rationality:¢(S,d) = d (> element-wise). framework, we introduce some assumptions:
3) Invariance: For any affine transformatignof S onto 1) the payoff functionsF (D) and T (D) are properly

itself, ¥ (p(S,d)) = d(¥(S), ¥ (d)). translated and rescaled in the interval [0,1]. We can do
4) Independence of Irrelevant Alternatives: For any closed that since the NBS is (by axiom) independent of affine
convex setg C S, if ¢(G,d) € g, then¢(G,d) = transformations. For ease of notation, in the following
(S, d). we still refer to the transformed functions &%D) and
5) Symmetry: If S is invariant under all exchanges of T(D).
players, thevi,j € N, ¢;(S,d) = ¢,(S,d). 2) D is treated as a continuous value.

Given the above axioms, there is only one NBS satisfying3) .7 € C!(R), i.e., (D) andT(D) and their first-order
them, as stated in the following theorem [16]. derivatives are continuous functions;

Theorem 1 Existence and Uniqueness of NBS There 4) when the players propose different valuesiof their
exists a unique solution to the bargaining problem that Payoffs vary with continuity in [0,1] forming a convex
satisfies all the axioms iDefinition 2 given by set upper bounded by the Pareto frontier of all the

N agreement points (see Fig. 1).
$(S,d) = argmax H(Si — ) ) 5) the disagreement point is setdk_): (0,0). _
S€S,8:>d; Vi According to the theory we have to find the point

Following these theoretical notions, the cooperative game (ﬁ, T) = argmax(FT) (2)
a multiplayer system can be defined as follows. Every player (FT)ES

has its own payoff function, which is upper bounded and ha%ich means_finding the valued generating the couple
nonempty, closed and convex support. The goal is to maximi 43 T) _ (F(ﬁ) T(D)); it is worth noting thatD lies on
all these functions at the same time. The problem addres 8 pareto front7ier and’ not within the convex st From

IS tp find a way t(.) choose an operating pointdnwhich is a geometric point of view, the NBS represents the unique
optlm_al and fa!r (e, r!ot. good only for some players). Thﬁoint of tangency between the feasible Setind the generic
NBS is a solution to this issue. hyperbolaF'T = k,k > 0. These hyperbolas are the contour
lines of the functiore(F,T") = F'T (see Fig. 1). An advantage

V. PROBLEM FORMULATION AND PROPOSED SOLUTION  of modeling the system as a Nash bargaining problem is that

In the system under investigation, the choicel®fdeter- the theory guarantees the existence and uniqueness of the
mines a trade-off between the possible objectives of thieugsolution, in addition to the fact that this solution repmse
put and fairness. For simplicity in the exposition, in than equity point between the players, as explained in Section
following analysis we consider a network scenario with onlif. Sometimes this is also referred to by saying that the NBS
two destination users (referring to the receivers of packedalizes themaximum utility transfermoving away from that
flows, not the two entities the resource manager is splif)intgoint, the proportional increment in the payoff of one user i
in addition to a base station. However, our results can bess then the proportional decrement sustained by the other
naturally extended to the general case with> 2 users. The user, thus the overall benefit is negative.
scheduler and the RRA can be considered as the two playerklereafter we present a possible efficient algorithm to find
of a game. Their action space is the set of value®ahey this solution. In this way we enable the dynamic estimation
can propose, i.e4d; = Ao ={L,L+1,...,.2L} (upto ML in of the optimal value o> (with respect to the NBS) based on
general). When the actions proposedands, coincide, then of the current network state, instead of using a value fixed a-
the payoffs are assigned as the fairnés$or the scheduler priori that should be re-computed every time a variatiorhia t
and the throughpdf’ for the RRA. The fairnes$’, measured scenario occurs. The algorithm is iterative. The seararat
using Jain’s index [17], is a decreasing function bf and is exponentially reduced, so the complexity is logarithmic
varies between 1 and 1/2 (dy/M for an M-user system). We select some increasing valuesiofin the initial interval,
The throughpufl” increases in the argument and varies in compute the corresponding points through the Nash bargaini
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slope of the segments connecting them. Taking into account
that the derivative of &!(R) function is positive before the Fig. 2. Faimess for different values &

point of maximum and negative after it, we can restrict the

interval of interest. For example, if the slopes of the segie The first one adopts a credit-based policy and guarantees
are all positive, therDy and D; must be lower than the point fajrness by selecting packets from the flow queues according
of maximum. Thus, the lower bound of the interest intervgh their residual credit. Flows are assumed to be always
can be set taD;. Similar considerations apply to the othepacklogged. The second module deals with resource altocati
combinations of signs, leading to the decision tree in pB)nt py ysing a greedy criterion: blocks and packets are matched
below. We iterate until the interest interval is small erb,ugin order to maximize the total throughput given the channel
below a fixed precisiort, meaning that we are sufficiently condition. This information is obtained by the base station

close to the exact value. The steps are the following: through periodic feedback sent from the users of an LTE
1) Seta=L,b=2L.CallI =b—a; network. We assume that the channel coherence time is
2) if(I < ¢) then return (int){/2 + a); greater than the feedback interval, in our case equal to one
3) chooseDy < Dy < Dy in the intervalla, b] such that subframe duration (1 ms, according to LTE standard). The
Di=a+1/4%(i+1)x1,i=0,1,2; radio propagation model takes into account the effects tf pa
4) find the pointP, = (D;,2(D;)), and determine the loss, penetration, shadowing and multipath fading (matiele
slopesA; and \, of the segment$; Py and P, P ; using Jakes’ model [19]). Each resource unit allocable &rsus
5) change the extremesandb of the interval according has a duration of one subframe and is made of 12 adjacent
to the sign of the slopes. In particular: subcarriers with 15 kHz spacing (equal to one subchannel of
e if(\1 > 0) thena = Dy; 180 kHz). We considered a total of 80 frequency subchannels,
« if(A\1 < 0) thenb = Dy; jump to 6); plus 20 subchannels for the uplink, for a total of 20 MHz
« if(A2 > 0) thena = Dy; jump to 6); bandwith according to what indicated in the standard [4F Th
o if(A2 < 0) thenb = Dy; scheduling and allocation decisions are made at the begjnni
of each subframe. The main simulation parameters are egport

6) updatel; jump to 2); in Table |
Note that the value oD is rounded down to an interger. n fable 1.

Proposition 1: The algorithm above has complexity [N Fig. 2 and Fig. 3 the two normalized payoff functions
O(logy (L)), wherel, is the initial lenght of the interval of are represented versus time for several valueS.ofhe trade-

interest. off expected from the theory is confirmed: once the value of
Proof: For any choice of the 3 point8y, D; andD,, the L is fixed, the fairness decreasesiihwhile the throughput

pairwise distance i%l. According to point 4), at each iterationincreases. From a quantitative point of view, the variation

at least one of the extremes of the interval is changed andd@Pends on several factors, e.g., the number of users irthe c
total length is halved. Therefore, aftersteps the length of the channel conditions, the transmission power, the number

the interval isT,, = Ip(3)". From the inequalityl,, < e, we available subchannels. For the sake of completeness, we ran
obtain the logarithmic complexity stated Rroposition 1 m additional simulations by changing some of these parameter

VI. NUMERICAL RESULTS Parameter value
Wi ified th bili f1h d luti t number of flows 2
e verified the ability of the proposed solution to converge Sackel size 500 byies

towards a good trade-off between the payoff functions by

{ . Y ber of subchannels for the downlifk 80
means of simulation. All the performance indices are charac number of subchannes Tof The down

terized by a 95% confidence interval with a maximum relative number of subchannels for the uplink 20
error of 5%. frame duration 10 ms

To carry out our tests we used the ns3 simulator with an subframe duration 1 ms
extension for LTE systems described in [18]. We modified the transmission power 43 dBm
MAC layer by introducing our scheduler and RRA modules. TABLE |

MAIN SYSTEM PARAMETERS



and efficient algorithm to reach this point by dynamically
setting a parameter has been introduced as well. We ran
some simulations to validate our analysis by using a réalist
LTE model built with the well known ns3 network simulator.
The results confirm the optimality of our solution and its
adaptability to changes in the scenario.

Further developments of this work include the extension
to the multicell case, where our intra-cell scheme should be
integrated with resource allocation strategies among #se b
stations. Even more interesting is the case of inter-operat
spectrum sharing, where each base station is supposed to
keep some private information, thus leading to an incomaplet
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[8]
We cannot report all the results in this paper because ofespac
constraints, but in every case the mutual relations amoag thg
curves for differentD were the same.

Both in Fig. 2 and Fig. 3 we can note that the proposqgo]
algorithm for the estimation o leads to an intermediate
value of both performance indices. The two functions cannot
be jointly maximized. Indeed, what is maximized is a commdh
utility function, represented by the product of each pl&yer
payoff. This situation is summarized in Fig. 4, where both tH12]
Pareto boundary and the NBS point are drawn. This point ”Fl%]
on the frontier, as expected from the theoretical analysis.

We think it is worth stressing again that the main point of the
proposed solution is its adaptivity. One could think of fixiP
a-priori, after a preliminary study, but the system perfante
is context dependent, thus the value should be re-compultd
every time a change occours, which is not practical.

VIlI. CONCLUSIONS [16]
[17]

In this paper we have addressed the problem of resource
allocation in the downlink of an LTE cellular network. A
possible design approach has been introduced for a modtﬁg}
and flexible system with cross-layer information. A formal
model has been proposed which makes use of the Nash
Bargaining theory, where a cooperative approach guarsintee
the existence of a fair and efficient operating point. A fekesi

information system.
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