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Abstract—In this paper, we propose a game theoretical model
for joint scheduling and radio resource allocation in the downlink
of a Long Term Evolution system, where Orthogonal Frequency
Division Multiple Access is used as the multiple access scheme.
The context is that of spectrum sharing, with multiple users
competing for the simultaneous access to the radio channel.
We first give a layered system representation and then model
it through a game theoretic formulation using Nash Bargaining
theory, where players cooperate to achieve a better common
payoff. A trade-off between fairness and throughput is identified
and addressed. In addition, we also propose an efficient algorithm
that drives the system toward abalanced Pareto efficientoperating
point represented by the Nash Bargaining Solution. Numerical
results are also provided to show the validity of the proposed
approach.

Index Terms—Resource allocation, OFDMA, LTE downlink,
Nash Bargaining Solution.

I. I NTRODUCTION

I N MODERN telecommunication systems, efficient spec-
trum usage is a key factor. Wireless technologies have been

experiencing an ever increasing diffusion. A careful use of
resources (i.e., time, frequency, power, etc.) is imposed by their
scarcity with respect to the demand. Orthogonal Frequency
Division Multiple Access (OFDMA) is a promising multiple-
access technique for high data rate transmission, due to its
capability of exploiting the multiuser diversity by adaptive
resource allocation. This means that packet scheduling and
physical layer resource assignment are dynamically performed
according to the channel conditions and Quality of Service
(QoS) experienced by the users.

An emerging scenario where this access scheme is employed
is represented by the Long Term Evolution (LTE) of 3G
systems [1], where OFDMA is used in the downlink. Here
the available bandwidth is divided into a certain number of
orthogonal bundles of subcarriers, called subchannels, and
each of them is assigned to a certain user for a subframe
period (1 ms).

If the resource allocation is driven only by the efficiency
goal, then this may result in an unfair allocation from the
point of view of the system users because those experiencing
better conditions (e.g., closer to the base station or with a
better channel quality) are given more service. On the other
hand, if the only objective were the fair allocation of resources
to users, then this could lead to an inefficient result due to a
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limited exploitation of users’ different conditions. Therefore,
harmonizing the two objectives is an important and non-trivial
task.

In this paper, along the lines of [2], [3], we utilize a
modular representation of the radio resource management
procedure which is split between two functional entities, i.e.,
a credit-based scheduler and the actual resource allocator. The
scheduler selects the candidate packets for the transmission
among its internal queues. The Radio Resource Allocator
(RRA) matches the packets to the allocation units of the LTE
downlink [4]. Denote withD the number of packets proposed
by the scheduler, and withL the number of those selected by
the RRA.D is supposed to be greater than or equal toL. Here
the trade-off among the two entities arises: whenD is high,
then the RRA is free to choose the subset of packets addressed
to the users with better channel conditions, thus maximizing
the overall throughput without considering fairness. On the
other hand, when it is minimized then all the proposed packets
are mandatorily allocated with no freedom of choice for the
allocator, thus maximizing the fairness.

We model this situation by using the cooperative game
theory framework, in particular the Nash Bargaining theory.
The two entities are the two players of the game and they
bargain on the number of packets to select with the aim of
maximizing a common utility function, the Nash function. The
theory guarantees the existence and uniqueness of a maximum
point (Nash Bargaining Solution), which is aPareto efficient
solution having also the merit to strike a good balance between
the objectives of the two players, i.e., guaranteeing equity at
the end of the bargaining process. We provide an efficient yet
effective procedure to reach that point as well. Some simple
numerical evaluations in a realistic LTE system are shown to
confirm the soundness of our analysis.

The structure of the paper is the following. Section II
gives a review of the literature. In Section III our layered
system model is discussed. Section IV introduces some basic
definitions of the Nash Bargaining theory, while in Section
V the problem is formulated using these concepts and our
proposal is described. Supporting numerical results are shown
in Section VI and conclusions are drawn in Section VII.

II. STATE OF THE ART

In the literature, many studies have been conducted to
tackle the problem of resource allocation in OFDMA cellular
networks, for both the uplink and the downlink. Most of them



assume perfect knowledge, at the base station, of instantaneous
Channel State Information (CSI), so as to exploit multiuser
diversity to increase the efficiency. Several formulationsof
the problem exist and different mathematical tools have been
used, also stressing different aspects.

A first powerful tool is constrained optimization, using, e.g.,
weighted sum rate maximization as the objective. For any fixed
subchannel assignment, the optimum is reached by multilevel
waterfilling [5] for the continuous rate relaxation, or by greedy
and bisection allocation [6] for the discrete case. However,
the sum rate maximization may not result in a fair allocation,
especially for non-symmetric channels and non-uniform traffic
patterns [7]. Therefore, some studies tried to consider a joint
solution for an efficient yet fair allocation [7]–[9]. In general,
exact optimization approaches suffer from the issue that the
optimal subchannel assignment is a combinatorial problem
whose complexity increases exponentially with the number of
subcarriers. Moreover, typically the computation of an optimal
solution is centralized and requires complete knowledge of
the network. In [5], an efficient suboptimal algorithm is found
considering a convex relaxation. In [10] a solution is found
by using Lagrangian dual decomposition and considering that
the duality gap goes to zero when the number of subcarriers
tends to infinity.

Another way to approach the problem of resource allocation
is through game theory. Terminals requesting access to the
shared resources are seen as players of a game who compete
in order to maximize their own utility, e.g., their data rate.
In this way, the efficiency and development of the game are
analyzed together with schemes enforcing players to move
towards an efficient operating point. An overview of spectrum
sharing games is given in [11] and [12]. Many alternatives
are described, from the simple non-cooperative approach to
more sophisticated bargaining and auction-based games. From
a practical point of view, game theory is also seen as a
way to derive efficient distributed algorithms for dynamic
spectrum sharing with agents having only local information.
Such solutions are easier to implement than a centralized one
needing complete knowledge.

As examples closely related to the present paper, we men-
tion [13], where a second-price auction mechanism is proposed
to model user competition in a wireless fading channel, and
bids are posed based on the perceived channel quality. The
existence of a Nash equilibrium is proved, together with
its Pareto optimality. Nash Bargaining Solutions (NBS) and
coalitions are employed in [14] to formulate a problem of fair
rate maximization and find a suboptimal distributed algorithm
for uplink access. NBS and coalitions are also used in [15] for
the case of OFDMA-based relay networks. The authors face
both the problem of spectrum and power allocation among
relay nodes within the same coalition, and then the inter-
coalition coordination, and propose some greedy algorithms
able to enhance the total system capacity and maintain the user
fairness. In [3], the same system model of this work has been
described and analysed under a non cooperative approach.

In the present paper, we adopt a problem formulation
applying Nash Bargaining theory. The goal is not only to
provide an original view of the system, but also to exploit
the results of the game theoretic analysis for the derivation

of an efficient algorithm to dynamically estimate the optimal
value of an operating parameter.

III. SYSTEM MODEL

We consider the downlink of an LTE system, that uses
OFDMA multiplexing. We can adopt a two-tier view of the
system (along the same lines of [2], [3]). At the top level we
have apacket scheduler, which receives packet flows from
the upper layers and selects the candidates for transmission
according to an internal scheduling policy. At the bottom level
we have aradio resource allocator(RRA), which matches
each packet to be transmitted with one of the available alloca-
tion units according to an efficiency maximization objective.
This two modules are coupled through a list of candidate
packets for transmission; the scheduler fills it in and the allo-
cator selects for transmission only the subset of packets whose
destinations have a better channel quality, thus exploiting the
multiuser diversity.

In the following, we callL the number of resource units
that the resource allocator is entitled to assign. This is subject
to a constraintL ≤ Lmax, whereLmax is the maximum value
corresponding to assigning all of them. The value assigned to
L is communicated to the scheduler by the resource allocator.
Actually, this represents a loose form of cross-layer interaction
among the modules, maintaining the modularity and tunability
of the approach.

GivenL, the scheduler determines the numberD of packets
to be sent to the resource allocator, withD ≥ L. The exact
choice ofD influences the entire allocation. IfD = L, the
resource allocator has no degree of freedom as to which
packets to allocate (it can only assign each packet to its
best channel to the receiver). By increasingD, the resource
allocator can achieve a higher throughput by selecting only
L packets out ofD, according to a channel-aware policy,
although at the price of a possibly decreased fairness (users
experiencing good channel conditions are favored).

Through a process of abstraction, we can see the system
scheduler-RRA as a game between two players with con-
trasting utility functions. A bargaining process is repeated
every time some packets must be selected. The goal is the
achievement of a balance between the two interests, with a
solution that does not favor any of the players. According to
this view, we can think of modelling this situation by using
the Nash Bargaining theory, whose solution represents a Pareto
efficient fair point, where in this definitionfair refers to an
equal distribution of the payoffs between the scheduler andthe
RRA. In the following, we show how to apply this framework
to our case.

IV. T HE NASH BARGAINING PROBLEM

Let N = {1, ..., n} denote the set of players of the game,
andS denote a closed and convex set ofR

n representing the
set of all feasible payoffs that the players can get if they work
together. We also assume that no agreement is reached, that
is, the players do not cooperate, they get a payoff collectively
denoted byd = (d1, ..., dn) ∈ S, which is calleddisagreement
point. Suppose that the set{y ∈ S|yi ≥ di, ∀i ∈ N} is
nonempty and bounded. Then, the pair(S,d) is called ann-
person bargaining problem.



Within set S, we use the Pareto optimality as a selection
criterion for the bargaining solutions.

Definition 1: A point p = (p1, ..., pn) is said to bePareto
optimal if and only if there is no other solutions = (s1, ..., sn)
of the game such thatsi ≥ pi, ∀i.

The number of Pareto optimal points might be infinite.
Among all of them, the Nash Bargaining Solution provides a
unique result under the following conditions, which represent
the characteristics that a solution is supposed to satisfy in
Nash’s theory, and are thus considered as axioms.

Definition 2: A specific solution to the bargaining problem
(S,d), denoted asφ(S,d), is called a Nash Bargaining
Solution (NBS), if the following axioms are satisfied.

1) Weak Pareto Efficiency: there is no other vectory ∈ S
such that∀i ∈ N , yi > φi(S,d).

2) Individual Rationality:φ(S,d) � d (≥ element-wise).
3) Invariance: For any affine transformationψ of S onto

itself, ψ(φ(S,d)) = φ(ψ(S), ψ(d)).
4) Independence of Irrelevant Alternatives: For any closed

convex setG ⊆ S, if φ(G,d) ∈ G, then φ(G,d) =
φ(S,d).

5) Symmetry: If S is invariant under all exchanges of
players, then∀i, j ∈ N , φi(S,d) = φj(S,d).

Given the above axioms, there is only one NBS satisfying
them, as stated in the following theorem [16].

Theorem 1 (Existence and Uniqueness of NBS): There
exists a unique solution to the bargaining problem that
satisfies all the axioms inDefinition 2, given by

φ(S,d) = argmax
s∈S,si≥di∀i

n∏

i=1

(si − di) (1)

Following these theoretical notions, the cooperative gamein
a multiplayer system can be defined as follows. Every player
has its own payoff function, which is upper bounded and has a
nonempty, closed and convex support. The goal is to maximize
all these functions at the same time. The problem addressed
is to find a way to choose an operating point inS which is
optimal and fair (i.e., not good only for some players). The
NBS is a solution to this issue.

V. PROBLEM FORMULATION AND PROPOSED SOLUTION

In the system under investigation, the choice ofD deter-
mines a trade-off between the possible objectives of through-
put and fairness. For simplicity in the exposition, in the
following analysis we consider a network scenario with only
two destination users (referring to the receivers of packet
flows, not the two entities the resource manager is split into),
in addition to a base station. However, our results can be
naturally extended to the general case withM > 2 users. The
scheduler and the RRA can be considered as the two players
of a game. Their action space is the set of values ofD they
can propose, i.e.,A1 = A2 = {L,L+1, ..., 2L} (up toML in
general). When the actions proposed,s1 ands2 coincide, then
the payoffs are assigned as the fairnessF for the scheduler
and the throughputT for the RRA. The fairnessF , measured
using Jain’s index [17], is a decreasing function ofD and
varies between 1 and 1/2 (or1/M for an M -user system).
The throughputT increases in the argumentD and varies in

the interval[Tmin, Tmax], whereTmin is achieved forD = L
while Tmax is the upper bound reached when the RRA can
transmit to theL users having the channel quality equal to the
maximum. For any value ofD ∈ {L, ..., 2L} (or {L, ...,ML}
in the general case), the resulting points(F (D), T (D)) form a
Pareto boundary, and any improvement in a player’s outcome
necessarily results in a worsening of the other’s (note that
if s1 and s2 coincide thenF and T are functions of only
one variable,D). For all the details about the game theoretic
description of the system we refer to [3], where the complete
normal-form representation is given for the non-cooperative
case.

Here we take a cooperative approach and describe the
interaction between the scheduler and the RRA as a bargaining
process. In order to fit our problem within the Nash bargaining
framework, we introduce some assumptions:

1) the payoff functionsF (D) and T (D) are properly
translated and rescaled in the interval [0,1]. We can do
that since the NBS is (by axiom) independent of affine
transformations. For ease of notation, in the following
we still refer to the transformed functions asF (D) and
T (D).

2) D is treated as a continuous value.
3) F, T ∈ C1(R), i.e.,F (D) andT (D) and their first-order

derivatives are continuous functions;
4) when the players propose different values ofD, their

payoffs vary with continuity in [0,1] forming a convex
set upper bounded by the Pareto frontier of all the
agreement points (see Fig. 1).

5) the disagreement point is set tod = (0, 0).
According to the theory we have to find the point

(F̃ , T̃ ) = argmax
(F,T )∈S

(FT ) (2)

which means finding the valuẽD generating the couple
(F̃ , T̃ ) = (F (D̃), T (D̃)); it is worth noting thatD̃ lies on
the Pareto frontier and not within the convex setS. From
a geometric point of view, the NBS represents the unique
point of tangency between the feasible setS and the generic
hyperbolaFT = k, k > 0. These hyperbolas are the contour
lines of the functionz(F, T ) = FT (see Fig. 1). An advantage
of modeling the system as a Nash bargaining problem is that
the theory guarantees the existence and uniqueness of the
solution, in addition to the fact that this solution represents
an equity point between the players, as explained in Section
II. Sometimes this is also referred to by saying that the NBS
realizes themaximum utility transfer: moving away from that
point, the proportional increment in the payoff of one user is
less then the proportional decrement sustained by the other
user, thus the overall benefit is negative.

Hereafter we present a possible efficient algorithm to find
this solution. In this way we enable the dynamic estimation
of the optimal value ofD (with respect to the NBS) based on
of the current network state, instead of using a value fixed a-
priori that should be re-computed every time a variation in the
scenario occurs. The algorithm is iterative. The search interval
is exponentially reduced, so the complexity is logarithmic.
We select some increasing values ofD in the initial interval,
compute the corresponding points through the Nash bargaining



Fig. 1. Pareto boundary and NB solution

function z(F (D), T (D)) = F (D)T (D) and measure the
slope of the segments connecting them. Taking into account
that the derivative of aC1(R) function is positive before the
point of maximum and negative after it, we can restrict the
interval of interest. For example, if the slopes of the segments
are all positive, thenD0 andD1 must be lower than the point
of maximum. Thus, the lower bound of the interest interval
can be set toD1. Similar considerations apply to the other
combinations of signs, leading to the decision tree in point5)
below. We iterate until the interest interval is small enough,
below a fixed precisionǫ, meaning that we are sufficiently
close to the exact value. The steps are the following:

1) Seta = L, b = 2L. Call I = b− a;
2) if(I ≤ ǫ) then return (int)(I/2 + a);
3) chooseD0 < D1 < D2 in the interval[a, b] such that

Di = a+ 1/4 ∗ (i + 1) ∗ I, i = 0, 1, 2;
4) find the pointPi = (Di, z(Di)), and determine the

slopesλ1 andλ2 of the segmentsP1P0 andP2P1;
5) change the extremesa and b of the interval according

to the sign of the slopes. In particular:

• if(λ1 > 0) thena = D0;
• if(λ1 ≤ 0) thenb = D1; jump to 6);
• if(λ2 > 0) thena = D1; jump to 6);
• if(λ2 ≤ 0) thenb = D2;

6) updateI; jump to 2);

Note that the value ofD is rounded down to an interger.
Proposition 1: The algorithm above has complexity

Θ(log2(
I0
ǫ
)), whereI0 is the initial lenght of the interval of

interest.
Proof: For any choice of the 3 pointsD0, D1 andD2, the

pairwise distance is14I. According to point 4), at each iteration
at least one of the extremes of the interval is changed and its
total length is halved. Therefore, aftern steps the length of
the interval isIn = I0(

1
2 )

n. From the inequalityIn ≤ ǫ, we
obtain the logarithmic complexity stated inProposition 1.

VI. N UMERICAL RESULTS

We verified the ability of the proposed solution to converge
towards a good trade-off between the payoff functions by
means of simulation. All the performance indices are charac-
terized by a 95% confidence interval with a maximum relative
error of 5%.

To carry out our tests we used the ns3 simulator with an
extension for LTE systems described in [18]. We modified the
MAC layer by introducing our scheduler and RRA modules.
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Fig. 2. Fairness for different values ofD

The first one adopts a credit-based policy and guarantees
fairness by selecting packets from the flow queues according
to their residual credit. Flows are assumed to be always
backlogged. The second module deals with resource allocation
by using a greedy criterion: blocks and packets are matched
in order to maximize the total throughput given the channel
condition. This information is obtained by the base station
through periodic feedback sent from the users of an LTE
network. We assume that the channel coherence time is
greater than the feedback interval, in our case equal to one
subframe duration (1 ms, according to LTE standard). The
radio propagation model takes into account the effects of path
loss, penetration, shadowing and multipath fading (modeled
using Jakes’ model [19]). Each resource unit allocable to users
has a duration of one subframe and is made of 12 adjacent
subcarriers with 15 kHz spacing (equal to one subchannel of
180 kHz). We considered a total of 80 frequency subchannels,
plus 20 subchannels for the uplink, for a total of 20 MHz
bandwith according to what indicated in the standard [4]. The
scheduling and allocation decisions are made at the beginning
of each subframe. The main simulation parameters are reported
in Table I.

In Fig. 2 and Fig. 3 the two normalized payoff functions
are represented versus time for several values ofD. The trade-
off expected from the theory is confirmed: once the value of
L is fixed, the fairness decreases inD while the throughput
increases. From a quantitative point of view, the variation
depends on several factors, e.g., the number of users in the cell,
the channel conditions, the transmission power, the numberof
available subchannels. For the sake of completeness, we ran
additional simulations by changing some of these parameters.

Parameter value

number of flows 2

packet size 500 bytes

number of subchannels for the downlink 80

number of subchannels for the uplink 20

frame duration 10 ms

subframe duration 1 ms

transmission power 43 dBm

TABLE I
MAIN SYSTEM PARAMETERS
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Fig. 4. Pareto boundary of the game and operating point of thealgorithm

We cannot report all the results in this paper because of space
constraints, but in every case the mutual relations among the
curves for differentD were the same.

Both in Fig. 2 and Fig. 3 we can note that the proposed
algorithm for the estimation ofD leads to an intermediate
value of both performance indices. The two functions cannot
be jointly maximized. Indeed, what is maximized is a common
utility function, represented by the product of each player’s
payoff. This situation is summarized in Fig. 4, where both the
Pareto boundary and the NBS point are drawn. This point lies
on the frontier, as expected from the theoretical analysis.

We think it is worth stressing again that the main point of the
proposed solution is its adaptivity. One could think of fixingD
a-priori, after a preliminary study, but the system performance
is context dependent, thus the value should be re-computed
every time a change occours, which is not practical.

VII. C ONCLUSIONS

In this paper we have addressed the problem of resource
allocation in the downlink of an LTE cellular network. A
possible design approach has been introduced for a modular
and flexible system with cross-layer information. A formal
model has been proposed which makes use of the Nash
Bargaining theory, where a cooperative approach guarantees
the existence of a fair and efficient operating point. A feasible

and efficient algorithm to reach this point by dynamically
setting a parameter has been introduced as well. We ran
some simulations to validate our analysis by using a realistic
LTE model built with the well known ns3 network simulator.
The results confirm the optimality of our solution and its
adaptability to changes in the scenario.

Further developments of this work include the extension
to the multicell case, where our intra-cell scheme should be
integrated with resource allocation strategies among the base
stations. Even more interesting is the case of inter-operator
spectrum sharing, where each base station is supposed to
keep some private information, thus leading to an incomplete
information system.

REFERENCES

[1] R. Kwan, C. Leung, and J. Zhang, “Resource Allocation in an LTE
Cellular Communication System,” inProc. IEEE ICC, Dresden, Jun.
2009.

[2] L. Badia, A. Baiocchi, A. Todini, S. Merlin, S. Pupolin, A. Zanella, and
M. Zorzi, “On the impact of physical layer awareness on scheduling
and resource allocation in broadband multicellular IEEE 802.16 systems
Communication System,”IEEE Wireless Commun. Mag., vol. 14, no. 1,
pp. 36–43, Feb. 2007.

[3] L. Anchora, L. Canzian, L. Badia, and M. Zorzi, “A Characterization
of Resource Allocation in LTE Systems Aimed at Game Theoretical
Approaches,” in IEEE CAMAD, Dec. 2010.

[4] LTE physical layer - general description, TS 36.201 (V9.1.0) ed., 3GPP,
March 2010.

[5] L. Hoo, B. Halder, J. Tellado, and J. Cioffi, “Multiuser transmit optimiza-
tion for multicarrier broadcast channels: asymptotic FDMAcapacity
region and algorithms,”IEEE Trans. Commun., vol. 52, no. 6, pp. 922–
930, Jun. 2004.

[6] B. Krongold, K. Ramchandran, and D. Jones, “Computationally efficient
optimal power allocation algorithms for multicarrier communication
systems,”IEEE Trans. Commun., vol. 48, no. 1, pp. 23–27, Jan. 2000.

[7] G. Song, Y. Li, and L. J. Cimini, “Joint channel- and queue-aware
scheduling for multiuser diversity in wireless OFDMA networks,” IEEE
Trans. Commun., vol. 57, no. 7, pp. 2109–2121, Jul. 2009.

[8] S. Jeong, D. Jeong, and W. Jeon, “Cross-layer Design of Packet
Scheduling and Resource Allocation in OFDMA Wireless Multimedia
Networks,” in IEEE VTC Spring, 2006.

[9] T. Ali-Yahiya, A. Beylot, and G. Pujolle, “Channel AwareScheduling for
multiple Service Flows in OFDMA Based Mobile WiMAX Systems,”
in IEEE VTC Fall, 2008.

[10] K. Seong, M. Mohseni, and J. Cioffi, “Optimal Resource Allocation
for OFDMA Downlink Systems,” inIEEE International Symposium on
Information Theory, Seattle, WA, Jul. 2006.

[11] R. Etkin, A. Parekh, and D. Tse, “Spectrum Sharing for Unlicensed
Bands,” IEEE Journal on Selected Areas in Communications, vol. 25,
no. 3, Apr. 2007.

[12] Z. Ji and K. Liu, “Dynamic Spectrum Sharing: A Game theoretical
Overview,” IEEE Communications Magazine, May 2007.

[13] J. Sun, E. Modiano, and L. Zheng, “Wireless Channel Allocation
Using an Auction Algorithm,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 5, May 2006.

[14] Z. Han, Z. Ji, and K. Liu, “Fair Multiuser Channel Allocation for
OFDMA Networks Using Nash Bargaining Solutions and Coalitions,”
IEEE Transactions on Communications, vol. 53, no. 8, Aug. 2005.

[15] Y. Pan, A. Nix, and M. Beach, “A Game Theoretic Approach to Dis-
tributed Resource Allocation for OFDMA-Based Relaying Networks,”
in IEEE 19th International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC), 2008.

[16] G. Owen,Game Theory, 3rd ed. New York: Academic, 2001.
[17] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure offairness

and discrimination for resource allocation in shared computer systems,”
DEC Research Report TR-301, 1984.

[18] ns3-lte. [Online]. Available: http://code.nsnam.org/giuseppepiro/ns-3-lte/
[19] W. C. Jakes,Microwave Mobile Communications. New York: John

Wiley & Sons Inc., Feb. 1975.


