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Abstract—As Energy Harvesting Devices (EHD) become more
widely deployed in sensor network platforms, the need arises
for “smart” operation policies which can ensure long-term,
autonomous and reliable operation. Existing research has relied
on the implicit assumption of perfect knowledge of the energy
available in the EHD. However, estimating the energy level of
the batteries or super-capacitors employed in real-world EHDs,
commonly known as State-Of-Charge (SOC), is a non-trivial task.
In this paper, we design operation policies that maximize the long-
term reward under imperfect knowledge of the SOC. Through
an array of simulation results, we quantify the performance
degradation due to imperfect SOC knowledge, and show that
it increases with decreasing storage capacity and increasing
variance in the energy arrival process. In the particular case
of a two-state controller, i.e., a controller which knows only if
the SOC is HIGH or LOW, we prove that, for a linear reward
function, there is no performance loss, while, for a logarithmic
reward function, simulations show that the loss is typically less
than 5%.

I. INTRODUCTION

Due to their ability to operate autonomously for long

periods of time by collecting, or “harvesting”, energy from

the environment, Energy Harvesting Devices (EHD) have been

steadily gaining popularity in Wireless Sensor Network (WSN)

deployments, and have been the topic of intense investigation

in diverse research communities in the last few years [1], [2].

In particular, a significant body of research has focused on

how to best manage the available energy of the EHD, with

the general objective of optimizing the long-term performance

in regard to sensing and data-communication tasks [3]–[8].

Setting aside the particular details of the energy harvesting

mechanism (e.g., solar, motion, heat, aeolian), an EHD is

typically modeled as consisting of an energy buffer which

is supplied from an energy arrival process. At each time, a

controller decides how much energy should be drawn from

the energy buffer, according to the desired operation policy.

This paper tackles an issue which, to the best of our

knowledge, has not been addressed in existing work, namely,

the design of EHD operation policies when the controller

has only imperfect knowledge of the available amount of

energy. In practical EHDs, energy is stored in electrochemical

batteries and/or super-capacitors, whose energy level at any

given time, commonly referred to as State-Of-Charge (SOC),

needs to be estimated. In [2], it is stated that variations in the

super-capacitor capacitance relative to the data-sheet value,

due to age or temperature fluctuations, may be of the order of

30%. An online SOC estimation algorithm based on controlled

discharge is thus proposed and shown to perform well, albeit

at a small energy loss. In [9], [10], different algorithms are

designed for the estimation of the open circuit voltage of an

electrochemical battery, which is linearly related to the SOC.

The complexity of the algorithms signifies that SOC estimation

for electrochemical batteries is not a trivial task, hence precise

knowledge of the SOC may be unreliable or too expensive.

Motivated by the aforementioned real-world concerns, we

consider an EHD where the controller knows the SOC only to

within a certain degree of precision. The problem formulated

in Section III is that of determining the optimal amount of en-

ergy to be drawn from the energy buffer, given the knowledge

of the SOC interval, with the objective of maximizing a long-

term expected reward of the consumed energy. In the particular

case of a linear reward function and two intervals, i.e., LOW

and HIGH, it is shown under loose assumptions that there is no

performance loss with respect to a policy that possesses perfect

SOC knowledge. The intuition behind this result is that, due

to the linearity of the reward function, a policy which avoids

energy outage by staying idle when the SOC is LOW, and

energy overflow by being aggressive when the SOC is HIGH,

achieves optimal performance. In Section IV, we consider the

case of a logarithmic reward function, and demonstrate with

an array of simulation results that the performance penalty

due to imperfect SOC knowledge increases with decreasing

energy storage capacity and increasing second order moment

of the energy arrival process. Conversely, when the energy

storage capacity goes to infinity, a balanced policy, which does

not require SOC knowledge, is optimal. Overall, for typical

parameter values, we find that the performance penalty due to

imperfect SOC knowledge is at most 5%. This points to the

conclusion that avoiding situations of energy outage/overflow

provides the bulk of the performance gain in EHDs with finite

energy storage capacity, and precise knowledge of the SOC

yields only a marginal additional benefit.

II. SYSTEM MODEL

We consider a slotted-time system, where slot k is the

time interval [k, k + 1), k ∈ N0, and N0 denotes the set

of non-negative integers. Energy is stored in the EHD in an

energy buffer, in the form of energy quanta, whose absolute



value depends on the application-specific scenario, and is

not considered herein (this model has been widely employed

in existing work, e.g., see [5], [8]). The energy level, i.e.,

the SOC, at time k is denoted by Ek and takes values in

the discrete set E = {0, 1, . . . , emax}, where emax ≥ 1 is

the buffer capacity. Starting from the initial condition E0,

the evolution of the random variable Ek is governed by the

following equation

Ek+1 = min
{

[Ek − Qk]+ + Bk, emax

}

, k ≥ 0, (1)

where [·]+ , max{·, 0} and:

• {Bk} is the energy arrival process, which models the

randomness in the energy harvesting mechanism, e.g.,

due to an erratic energy supply. We model {Bk} as

i.i.d. stationary, taking values in B = {0, 1, . . . , bmax}
with probability mass function pB(b), b ∈ B, and mean

b̄ = E[Bk]. We refer to b̄ as the average harvesting rate.

• Qk is the number of energy quanta requested by the

controller of the EHD in slot k to perform a certain

task. We define the action space of the controller as

Q = {0, . . . , qmax}, for some 0 < qmax ≤ emax, so

that Qk ∈ Q,∀k. The parameter qmax reflects a physical

constraint on the maximum amount of energy that can be

drawn from the buffer at any given time.

We assume that only partial knowledge of Ek is available

at the controller, e.g., due to uncertainty in its estimation. Let

{I(n), n = 0, . . . , ñ − 1} be a partition of the state space E
defined as I(n) = {ẽn, . . . , ẽn+1 − 1}, n ∈ {0, . . . , ñ − 1},
where 0 = ẽ0 < ẽ1 < · · · < ẽñ = emax + 1 define the interval

boundaries. Suppose that, at time k, Ek ∈ I(Nk), for some

Nk ∈ {0, . . . , ñ − 1}. We assume that the controller knows

only the interval index Nk, i.e., it knows that Ek ∈ I(Nk),
rather than the exact SOC Ek. To this end, we define the inter-

val index process {Nk, k ≥ 0}, taking values in {0, . . . , ñ−1}.
Note that, if ñ = emax+1, we obtain the special case of perfect
knowledge, i.e., Ek = Nk.

Given the SOC Ek and the decision Qk, the following

phenomena may occur due to (1):

1) Energy outage: if Qk > Ek, an energy outage occurs,

since the node runs out of energy before the completion

of the executed task. An energy outage is a consequence

of the imperfect knowledge of Ek, due to which the

controller may attempt to draw more energy than what

is available.

2) Energy overflow: If Bk > emax− [Ek −Qk]+, the energy
buffer is unable to store all of the harvested energy Bk.

This is a consequence of the limited capacity of the

energy buffer.

III. OPTIMIZATION

A. Policy definition and optimization problem

In general, given the interval index Nk and the history

Hk = {N0, . . . , Nk−1, Q0, . . . , Qk−1, past outage events} at

time k, a controller policy µ decides on the amount of energy

Qk to be drawn from the energy buffer. Formally, µ is a

probability measure on the action space Q, parameterized by

the state (Nk,Hk), i.e., given (Nk,Hk), µ(q; (Nk,Hk)) is the
probability of choosing action Qk = q ∈ Q in slot k.

We define the reward function g : Q× E 7→ R
+ as

g(Qk, Ek) =

{

0 Qk > Ek

g̃(Qk) Qk ≤ Ek,
(2)

where g̃ : Q 7→ R
+ is a concave increasing function of Qk,

with g̃(0) = 0. If Qk > Ek the reward is 0, which models

the inability of the sensor node to complete the requested

task, when there is energy outage. As an example, if the

reward function is the transmission rate, then, according to

the Shannon formula, g̃(Qk) ∝ ln (1 + αQk), where α > 0 is

an SNR scaling factor. The controller spreads the energy Qk

over the entire codeword. If Qk > Ek, the EHD runs out of

energy when only a fraction Ek/Qk of the codeword has been

transmitted, hence the codeword is discarded.

Given E0 = e0, the long-term average reward per time-slot

under policy µ is defined as

G(µ, e0) = lim
K→∞

inf
1

K
E

[

K−1
∑

k=0

g(Qk, Ek)

∣

∣

∣

∣

∣

E0 = e0

]

, (3)

where the expectation is over {Bk, Qk, k = 0, . . . ,K−1}. The
general problem is to obtain a policy µ∗ (possibly dependent

on the initial state e0) such that

µ∗ = arg max
µ

G(µ, e0). (4)

We denote the respective optimal reward as G(µ∗, e0) =
G∗(e0). Due to partial knowledge of the SOC, the above

problem can only be solved approximately, using numerical

optimization tools for Partially Observable Markov Decision

Process (POMDP) [11]. Given the limited computational

capabilities of EHDs, in this paper we focus on suboptimal

policies, i.e., policies that do not take into account the history

Hk, and depend solely on the current interval index Nk. In

this light, we define µ(q;Nk) as the probability that the sensor

node decides on action Qk = q, given that Ek ∈ I(Nk). We

now discuss the solution of (4), considering separately the

cases of perfect/imperfect SOC knowledge.

B. Optimization with perfect SOC knowledge

Under perfect SOC knowledge, the controller selects action

Qk = q when the SOC is Ek with probability µ(q;Ek). The
sequence {(Ek, Qk), k ≥ 0} constitutes a Markov Decision

Process [12], so (4) is maximized by a stationary, state-

dependent policy obtained by solving a linear program [13].

Note that the long-term reward under perfect SOC knowledge

represents an upper bound to the performance of any policy

under SOC uncertainty.

C. Optimization with SOC uncertainty

Under SOC uncertainty, by definition of the policy µ, Qk is

the same for all Ek ∈ I(Nk). This constraint is not linear with
respect to the joint steady-state distribution of the SOC/action

pair, (e, q). Hence, unlike in the scenario with perfect SOC



knowledge, (4) cannot be solved via a linear program [13],

and we opt to find the optimal policy via an exhaustive search.

Furthermore, in order to reduce the complexity, we consider

only deterministic policies, i.e.,

{

µρ(q;n) = 1, q = ρ(n),
µρ(q;n) = 0, q ∈ Q \ {ρ(n)},

(5)

where ρ : {0, . . . , ñ − 1} 7→ Q is a function which maps the

interval index n ∈ {0, . . . , ñ − 1} to the action q ∈ Q. As a

result, (4) can equivalently be written as

ρ∗ = arg max
ρ

G(µρ, e0), (6)

where, from (3),

G(µρ, e0) =

ñ−1
∑

n=0

∑

e∈I(n)

πρ(e; e0)g(ρ(n), e) (7)

and πρ(e; e0) is the asymptotic distribution of the SOC e ∈ E ,
given that the initial state is E0 = e0, i.e.,

πρ(e; e0) = lim
N→+∞

1

N

N−1
∑

n=0

Prρ (En = e|E0 = e0) , (8)

where Prρ (En = e|E0 = e0) is the n-step transition probabil-

ity of the chain under the policy ρ. In most practical cases, the

asymptotic distribution can be evaluated as the unique solution

of the system of steady-state equations [14]



































∑N−1
n=0

∑

e∈I(n) πρ(e) = 1, (normalization),

πρ(e) ≥ 0, ∀e ∈ E , (non-negativity),

∑N−1
n=0

∑

s∈I(n) πρ(s)Prρ (E1 = e|E0 = s) = πρ(e),

∀e ∈ E , (steady-state equations)

(9)

(Note that in this case, πρ is independent of the initial state

E0 = e0).

D. Special Cases

We now determine the optimal mapping ρ∗ for some special

scenarios. Our results are stated in Propositions 1, 2 and 3.

For simplicity, we assume that qmax = emax, i.e., the EHD

controller can draw all the available energy in the buffer,

and bmax ≤ emax, i.e., the range of values of the energy

arrivals cannot exceed the buffer capacity. Similar results can

be derived for general qmax and bmax.

Proposition 1 (Deterministic Arrival Process) If the energy

arrival process is deterministic, i.e., Bk = bmax ∀k, then, for
a general reward function, one optimal mapping ρ∗ is

ρ∗(n) = bmax, ∀n ∈ {0, . . . , ñ − 1}, (10)

and the optimal reward is G∗(e0) = g̃(bmax).

Proof: The energy harvesting mechanism (1) induces the

long-term energy per time-slot constraint

lim
K→+∞

sup
1

K
E

[

K−1
∑

k=0

Qk

]

≤ b̄ = bmax. (11)

Since g̃(q) is concave and non-decreasing in q, we have that

G(µ, e0) ≤ g̃(b̄) = g̃(bmax), for all policies µ.
We now prove that this upper bound is achievable. Starting

from the SOC E0 < bmax and applying policy (10) to (1), we

obtain the sequence

k = 0 : E0 < Q0 → g(Q0, E0) = 0 (outage)

k = 1 : E1 = bmax = Q1 → g(Q1, E1) = g̃(bmax)
...

k > 1 : Ek = bmax = Qk → g(Qk, Ek) = g̃(bmax).

Except for the first time-slot, in which outage occurs, in all

other time-slots the reward g̃(bmax) is accrued, so that, in the

long-term, the upper bound is attained.

Similarly, starting from E0 ≥ bmax results in Qk = bmax,

Ek = E0 ≥ Qk, hence g(Qk, Ek) = g̃(bmax), ∀k ≥ 0.
Therefore, independently of the initial SOC E0, in the long-

term we have G(µρ∗ , E0) = G∗(E0) = g̃(bmax).
Note that a deterministic arrival process models approxi-

mately an energy source which exhibits slow fluctuations in

time and predictable behavior, e.g., solar energy in sunny days.

Proposition 2 (Linear Reward) Under a reward g̃(q) = q, a
general energy arrival process, and the following assumptions:

(a) Two-interval SOC uncertainty, i.e., ñ = 2,
I(0) = {0, . . . , ẽ1 − 1} and I(1) = {ẽ1, . . . , emax},

(b) bmax ≤ min {ẽ1, emax + 1 − ẽ1},

one optimal mapping ρ∗ is
{

ρ∗(0) = 0
ρ∗(1) = ρ1,

(12)

where ρ1 is any value in the set {bmax, . . . , ẽ1}, and the

optimal reward is G∗(e0) = b̄. Moreover, this mapping is also

optimal under perfect SOC knowledge.

Proof: For any policy µ, following the same steps as in

the proof of Proposition 1, it can be shown that G(µ, e0) ≤
g̃(b̄) = b̄. We now prove that policy (12) achieves this upper

bound. Since the bound holds for any policy µ, (12) is also

optimal under perfect SOC knowledge.

If Ek ∈ I(0), then the action Qk = ρ∗(0) = 0 is chosen.

From (1), we have Ek+1 = min{Ek +Bk, emax}. Since Bk ≤
bmax and Ek ≤ ẽ1 − 1 (from Ek ∈ I(0)), from (b) we have

that Ek + Bk ≤ ẽ1 − 1 + bmax ≤ emax. This implies that

neither overflow nor outage occurs when Ek ∈ I(0).
If Ek ∈ I(1), then the action Qk = ρ1 ∈ {bmax, . . . , ẽ1} is

chosen. Since Ek ≥ ẽ1 ≥ Qk, outage does not occur, hence

g(Qk, Ek) = g̃(Qk) = Qk. Moreover, since Bk ≤ bmax ≤
Qk, at any time-slot enough energy quanta are drawn from

the buffer to make room for the new arrivals, hence overflow

does not occur.



Since neither overflow nor outage occurs at any time, we

have Ek+1 = Ek − Qk + Bk and g(Qk, Ek) = g̃(Qk) = Qk.

All harvested energy contributes to reward accrual, hence

G(µρ∗ , e0) = lim
K→∞

inf
1

K
E

[

K−1
∑

k=0

Qk

∣

∣

∣

∣

∣

E0 = e0

]

= b̄, (13)

which proves the achievability of the upper bound.

Note that, if the length of the intervals I(0), I(1) differ

by at most one unit, i.e., ẽ1 = ⌈emax/2⌉, then assumption

(b) simplifies to bmax ≤ ⌈emax/2⌉, i.e., the buffer capacity

is at least twice the maximum amount of energy that can be

harvested in a time-slot.

It is worth noting that any policy avoiding energy outages

and overflows is optimal in the linear reward case, so that, in

general, (12) may not be unique to attain optimal performance.

For example, in the deterministic case, one optimal mapping is

ρ∗(0) = ρ∗(1) = bmax (Proposition 1), which clearly violates

(12) since ρ∗(0) > 0. In the following proposition, we state

without proof a condition under which (12) is necessary for

optimality.

Proposition 3 (Necessity of (12)) If, in addition to the as-

sumptions of Proposition 2, pB(b) > 0,∀b ∈ {0, 1, bmax},
then (12) is necessary, i.e., any policy violating it is strictly

suboptimal.

E. Discussion

Harvested energy is lost, thus incurring a performance

degradation, when there is energy outage due to uncertain SOC

knowledge, or energy overflow due to limited energy buffer

capacity. When the energy arrival process is deterministic, the

controller can forecast the future energy arrivals, and can avoid

both outage and overflow, thus achieving optimal performance

without knowledge of the SOC (Proposition 1). We thus

expect that the performance degradation due to imperfect SOC

knowledge is related to the randomness of the energy arrival

process, which is verified by simulation in Section IV.

When the energy arrival process is random, the controller

has limited knowledge about the future energy arrivals. In this

case, overflow can be avoided by an aggressive policy, which

draws qmax = bmax energy quanta when the battery SOC

approaches its capacity. This choice guarantees that enough

energy quanta are drawn from the buffer, thus making room

for the new energy arrival. Moreover, outage can be avoided

by a conservative policy, which stays idle when the battery

SOC approaches depletion.

If the reward function is linear and the assumptions of

Proposition 2 hold, this policy is optimal, since no energy

is lost, and all energy quanta contribute to the reward ac-

crual. However, when the reward function is concave, a too

aggressive or too conservative behavior is penalized, hence

the optimal policy strives to be less conservative (aggressive)

for LOW (HIGH) energy availability, thus inevitably incurring

outage and overflow.

In the next section, we depart from the particular cases

considered in this section, and determine numerically the

optimal policy and respective long-term reward for a more

general scenario.

IV. NUMERICAL RESULTS

In this section, we consider the maximization of (4) for b̄ =
20,1 and (unless otherwise stated) a geometric energy arrival

distribution truncated at bmax = 4b̄. The reward function is

the normalized throughput

g̃(q) =
ln(1 + αq)

ln(1 + αb̄)
, (14)

where α is an SNR scaling factor. Note that, in the limit α →
0+, we obtain the linear reward scenario g̃(q) = q/b̄.
Since (1) imposes the constraint

lim
K→+∞

sup
1

K
E

[

K−1
∑

k=0

Qk

]

≤ b̄,

from the concavity of g̃(q) we have

G(µ, e0) ≤ g̃(b̄) = 1. (15)

This upper bound is asymptotically achievable for emax →
+∞ by the balanced policy, defined as the policy which,

in every time slot, attempts to draw q = b̄ energy quanta

from the buffer. Hence, as emax increases (while all other

parameters are kept constant), G(µ, e0) is expected to converge
to 1, independently of α and of the energy arrival distribution.

Therefore, the choice of (14) as the reward function makes

the performance comparison possible for different concavity

levels, energy arrival distributions and buffer capacity values

emax.

We consider the following policies: balanced policy (BP),

policy with perfect SOC knowledge (PP), policy with no SOC

knowledge (P1, i.e., one-interval uncertainty I(0) = E), and
policy with two-equal-interval uncertainty (P2, i.e., I(0) =
{0, . . . , ẽ1−1} and I(1) = {ẽ1, . . . , emax} with ẽ1 = ⌈ emax

2 ⌉).
PP is obtained by solving (4) as a linear program, while P1

and P2 by solving (6) via exhaustive search. Note that, by

definition, BP belongs to the class of policies with no SOC

knowledge.

In Fig. 1, we plot G(µ) vs. the ratio of the buffer capacity

over the average harvesting rate emax/b̄. As expected, the best
performance is achieved by PP, followed by P2, P1 and BP.

At a buffer capacity emax ≈ 2b̄, the performance degradation

of P2 with respect to PP is about 5%. As emax increases, the

degradation becomes smaller, since the impact of outage and

overflow, which occur when the SOC approaches 0 and emax,

respectively, becomes smaller. Also note that P1 performs

better than BP, since it is the optimal policy with no SOC

knowledge. We have verified that P1 is more conservative than

BP for small emax values. In the limit of large emax, P1 draws

1This value is large enough to allow for a sufficiently fine-grained quanti-

zation of the physical quantities of interest and, at the same time, it is small

enough to guarantee a manageable computation time.



0 10 20 30 40 50 60

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

[Battery capacity emax]/[Average harvesting rate b̄]

T
h
ro

u
g
h
p
u
t,

G
(µ

)

 

 

BP

PP

P1

P2

Figure 1. Throughput as a function of emax/b̄, for different policies. (α = 1,
b̄ = 20)

energy with rate b̄ and the performance of the two policies

becomes identical.

In Fig. 2, we plot G(µ) vs. emax/b̄ for PP and P2 and

different values of the concavity level α. It is seen that, as

emax increases, the performance degradation due to imperfect

SOC knowledge decreases and the throughput performance of

PP and P2 approaches unity. The amounts of energy drawn by

P2 in the LOW and HIGH SOC regimes for each α are plotted

in Fig. 3. Note that, when α = 0 (linear reward function), for

emax/b̄ ≥ 8, ρ(0) = 0 and ρ(1) = 80. A quick calculation

setting ẽ1 = emax/2 (which is the optimal threshold in this

case) and bmax = 4b̄ = 80 shows that this observation is

coherent with Proposition 2. Moreover, the optimal policy

for increasing α is less conservative (aggressive) in the LOW

(HIGH) regimes compared to the case of a linear reward, as

discussed in Section III-E.

Fig. 4 examines the dependence of G(µ) on the energy

arrival statistics. It is seen that, the larger the second order

moment (equivalently, the variance, since the mean b̄ is fixed),

the larger the performance degradation, under both perfect and

imperfect SOC knowledge. Interestingly, the geometric and

Bernoulli energy arrival distributions, with the same mean

b̄ = 20 and second-order moment E[B2
k] = 722, yield

approximately the same performance. This suggests that the

performance may be mainly affected by the second order

statistics of the arrival process. As the capacity increases,

the impact of an erratic energy source, in terms of outage

and overflow, becomes smaller. Thus, the performance is

determined by the average harvesting rate b̄, and the curves

approach the same value G(µ) = 1 asymptotically.

Finally, Fig. 5 examines the dependence of G(µ) on the

value of the threshold ẽ1 when P2 is employed, for different

values of emax. It is seen that the best performance is achieved

when ẽ1/emax ≈ 0.5. For smaller (larger) thresholds, there is
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Figure 2. Throughput as a function of emax/b̄, for different values of α.
The reward function g̃(q) is more concave for increasing values of α, and
linear for α = 0. (b̄ = 20)
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Figure 3. Actions ρ(0) (LOW) and ρ(1) (HIGH) of P2 corresponding to

Fig. 2. (b̄ = 20)

less uncertainty in the LOW (HIGH) energy levels. However,

the higher uncertainty in the HIGH (LOW) energy levels ac-

counts for a performance degradation with respect to the case

ẽ1/emax ≈ 0.5. It is also observed that, when ẽ1/emax → 0,
the performance of P2 approaches that of P1. In contrast, when

ẽ1/emax = 1, the knowledge of whether the buffer is full or

not affords an advantage to P2 compared to P1, which becomes

more substantial for decreasing emax.

V. CONCLUSIONS

Motivated by real-world EHD implementations, we have

investigated the performance of different transmission policies

for an EHD which operates under imperfect SOC knowledge.
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Figure 4. Throughput as a function of emax/b̄, for different energy arrival

statistics. (α = 1, b̄ = 20)

The SOC uncertainty incurs a performance loss which in-

creases with decreasing buffer capacity, increasing variance

of the energy arrival process and increasing concavity of the

reward function. Our simulation results for a logarithmic re-

ward function and a simple two-state controller, which knows

only if the SOC is HIGH or LOW, indicate that the loss is less

than 5% for typical parameter values. The design implication

is that close-to-optimal performance may be achieved, as long

as the EHD controller avoids energy outages and overflows.

Future work will further investigate the interplay between the

energy buffer capacity, the energy arrival distribution and the

reward function, as regards the performance of EHD operation

policies with imperfect SOC knowledge.
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