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Abstract—Nowadays, many devices in wireless sensor networks
are provided with energy harvesting capability to allow for their
continuous operation over long periods of time. In principle, the
energy level within each sensor should be managed optimally
to ensure the best performance. Network engineers, however,
often consider optimality under the idealized assumption of
perfect knowledge about the State-of-Charge (SOC) of the device.
This information is not always realistic or accurate. In our
previous work [1], we showed that optimal policies for sensing,
transmission, and battery usage should rather consider uncer-
tainty on the SOC of the device. In this paper, we extend that
investigation, therein performed in the idealized scenario of i.i.d.
energy arrivals, by considering a correlated energy generation
process. We show that the knowledge of the SOC and that of the
energy generation process are useful in a complementary manner,
that is they can be traded for each other. Moreover, the knowledge
on the state of the energy generation process can obviate the need
for acquiring accurate SOC information. This investigation paves
the road for a new line of research in wireless sensor networks,
allowing a tighter interaction between the designers of energy
harvesting and battery storage mechanisms on the one hand,
and the engineers of network operation and control policies on
the other.

I. INTRODUCTION

Energy Harvesting Devices (EHDs) collect energy from the

surrounding environment thanks to a number of harvesting

techniques, including solar, motion, heat, aeolian [2], [3], and

can thus be used in Wireless Sensor Networks (WSNs) to

achieve autonomous network operation for long periods of

time [4], [5]. However, a proper management of both tasks

of continuous operation and prompt sensing is required [6]–

[10].

From the modeling standpoint, EHDs can be thought of as

energy buffers, where energy, generated according to a given

statistical process, is stored and from where it is drawn by

a controller to feed sensor microprocessors and transceiver

equipment, whenever needed. Hence, an energy management

algorithm decides on the most suitable device operation ac-

cording to the energy level of the battery, commonly referred

to as State-of-Charge (SOC) [7], [8]. In practice, EHDs

store energy in electrochemical rechargeable batteries and/or

super-capacitors. Thus, it may be questionable to assume

that the SOC of these devices can be characterized with

infinite precision and immediate availability at any time. For

example, [3] states that a super-capacitor capacitance can

fluctuate by approximately 30% with respect to the data sheet

value. Moreover, it is possible to estimate the SOC online,

but this comes at the price of an additional energy loss.

Other algorithms [11] have been proposed to estimate the

open circuit voltage, which is closely related to the SOC,

but have non-negligible complexity, whose impact should

be carefully evaluated, especially for resource-limited small

devices. In general, we can conclude that the SOC estimation

for electrochemical batteries is a non-trivial task and a precise

knowledge of the SOC may be difficult.

For this reason, we claim that an energy management policy

should better focus on scenarios where SOC knowledge is, if

not totally unavailable, at least imperfect. In our previous work

[1], the imperfect SOC knowledge is modeled by quantizing

the SOC to a finite number of regions. Therein, optimal energy

management policies are investigated, under the simplifying

assumption that the energy arrival process is independent and

identically distributed (i.i.d.) over time. In this paper, we aim

at extending this evaluation by introducing correlation in the

energy harvesting mechanism, modeling the energy arrival

process as a hidden Markov chain. Especially, we envision

that gaining knowledge on the statistics of the energy gener-

ation process and its correlation structure may be extremely

beneficial for finding an efficient energy management policy.

In other words, estimating that the EHD is undergoing a

phase of correlated energy generation, which can be easily

performed by tracking the history of the energy generation

process via some supervised training [6], [9], can obviate the

need for acquiring accurate SOC information. In this regard,

we show that the knowledge of the SOC and that of the energy

generation process are useful in a complementary manner,

that is they can be traded for each other. In particular, the

effect of having no information about the current SOC level

but knowing the energy generation state is almost exactly

equivalent to knowing the SOC perfectly, but neglecting the

state of the energy harvesting mechanism.

The rest of this paper is organized as follows. In Section

II, we describe the system model. In Section III, we present

the optimization framework for the evaluation of the optimal

resource management policy, which depends on the available

information on the SOC and on the energy generation process.

In Section IV, we present some numerical results. Finally, in

Section V, we conclude the paper by highlighting possible

further developments.



II. SYSTEM MODEL

We consider an Energy Harvesting Device (EHD), which

scavenges energy from the environment (e.g., solar, kinetic,

wind, RF). We assume a slotted-time system, where time-slot

k ≥ 0 corresponds to the time interval [kDts, (k+1)Dts), and
Dts is the time-slot duration. The harvested energy is stored in

an energy buffer, in the form of energy quanta, whose capacity

is denoted by emax (quanta). The energy available in the buffer

at time kDts, i.e., the State-of-Charge (SOC), is denoted by

Ek ∈ E , taking values in the set E ≡ {0, . . . , emax}. At the
beginning of the kth time-slot, the EHD controller requests a

number of energy quanta Qk ∈ Q to be drawn from the buffer

to perform a certain task, chosen from the action space Q =
{0, . . . , qmax}, where 0 < qmax ≤ emax. During the time-

slot duration, the EHD harvests Bk ∈ B energy quanta from

the environment, which are stored in the buffer, where B =
{0, 1, . . . , bmax} is the set of energy arrival values. Starting

from the initial SOC level E0 ∈ E available at time 0, the
temporal evolution of the SOC Ek is governed by

Ek+1 = min
{

[Ek −Qk]
+ +Bk, emax

}

, k ≥ 0, (1)

where [·]+ , max{·, 0}.
The energy harvesting/consumption mechanism described

by (1) entails two important phenomena. The first, referred

to as energy outage, corresponds to the EHD running out of

energy before the completion of the requested task, which

happens when Qk > Ek. In this case, the task cannot be

completed, and the battery is depleted. If perfect knowledge

of Ek is available at the EHD controller, then outage can

always be avoided by choosing Qk ≤ Ek. However, herein

we assume that the EHD controller is provided with imperfect

knowledge of Ek, hence energy outage is possible, since the

controller may attempt to draw more energy than what is

actually available in the buffer. Alternatively, energy overflow

may occur if Bk > emax− [Ek −Qk]
+, i.e., the energy buffer

is unable to store all of the harvested energy Bk, due to the

limited battery capacity. In this case, some of the energy is

lost, hence, it cannot be used in the future for reward accrual.

We model the energy arrival process {Bk} as a stationary

hidden Markov process, taking values in the set B. We define

Sk as the (hidden) state of the energy arrival process at

time-slot k. The process of the energy arrival states, {Sk},
is modeled as a stationary irreducible Markov chain tak-

ing values in the finite set S , with transition probabilities

pS(sk+1|sk) , Pr(Sk+1 = sk+1|Sk = sk), sk, sk+1 ∈ S .
Given the energy arrival state Sk = s, the energy harvest Bk

is drawn with probability mass function pB(b|s) , Pr(Bk =
b|Sk = s), b ∈ B, s ∈ S . We define πS(s), s ∈ S , as the

steady state distribution of the energy arrival states. We refer

to b̄ = E[Bk] =
∑

s∈S πS(s)
∑

b∈B bpB(b|s) as the average

harvesting rate.

We assume that, at the beginning of the kth time-slot, i.e.,

at time kDts, the EHD controller knows the energy arrival

state Sk−1. Notice that Sk−1 can be estimated by measuring

the past energy arrivals {Bj , j ≤ k − 1} available up to time

kDts. In fact, the posterior distribution of state Sk−1 can be

inferred recursively as

Pr(Sk−1 = s|B0, . . . , Bk−1) = (2)

pB(Bk−1|s)
∑

σ∈S

pS(s|σ)Pr(Sk−2 = σ|B0, . . . , Bk−2)

∑

s̃∈S

pB(Bk−1|s̃)
∑

σ∈S

pS(s̃|σ)Pr(Sk−2 = σ|B0, . . . , Bk−2)
,

where Pr(Sk−2 = σ|B0, . . . , Bk−2) is the posterior distribu-

tion inferred in the previous time-slot. Then, the current state

Sk can be estimated by using, e.g., Maximum A Posteriori

(MAP) [12], given by Ŝk−1 = argmaxs∈S Pr(Sk−1 =
s|B0, . . . , Bk−1). For simplicity, we assume that Sk−1 is

estimated without error, i.e., Ŝk−1 = Sk−1, hence perfect

knowledge of Sk−1 is available at the EHD controller at time

kDts. The validity of such choice will be further discussed

in the numerical results, Section IV. Conversely, we assume

that Sk is unknown at time kDts, since the energy arrival Bk,

which provides information about Sk through its distribution

pB(Bk|Sk), is unknown at time kDts.

We assume that only partial knowledge of the SOC Ek

is available, e.g., due to uncertainty in its estimation. As in

[1], we model the uncertainty on the SOC Ek by defining a

partition of the SOC space, {I(n), n = 0, . . . , ñ− 1}, where
I(n) = {ẽn, . . . , ẽn+1 − 1} is the nth SOC interval, n ∈
{0, . . . , ñ − 1}, and 0 = ẽ0 < ẽ1 < · · · < ẽñ = emax + 1
define the interval boundaries. Suppose that, at time-slot k,
Ek ∈ I(Nk), for some Nk ∈ {0, . . . , ñ− 1}. We assume that

the EHD controller knows only the interval index Nk, i.e., it

knows that Ek ∈ I(Nk), rather than the exact SOC Ek. We

define the interval index process {Nk, k ≥ 0}, taking values in

{0, . . . , ñ−1}. The special case with perfect SOC knowledge

is obtained by letting ñ = emax + 1, hence Ek = Nk.

Note that keeping track of the energy arrivals {Bj , j =
0, . . . , k − 1} can, to some extent, provide knowledge of the

SOC Ek. However, as the SOC is quantized, and since the bat-

tery is subject to non-idealities, the SOC measurement cannot

be indefinitely precise; yet, keeping track of the energy arrivals

can serve to identify whether the SOC state is generally HIGH

or LOW. Instead, the current energy arrival state is much easier

to acquire.

A. Policy definition and problem statement

At time kDts, the EHD controller knows the interval

index Nk of the SOC Ek, the energy arrival state of the

previous time-slot Sk−1 (we recall that Sk is assumed

to be unknown at time kDts) and the history Hk =
{(N0, S−1, Q0), . . . , (Nk−1, Sk−2, Qk−1), past outage events}.
Then, given (Nk, Sk−1,Hk), a control policy µ decides on

the amount of energy Qk to be requested from the buffer. In

particular, µ(q; (Nk, Sk−1,Hk)) is the probability that action

Qk = q ∈ Q is chosen in time-slot k.
We define the reward function g : Q × E 7→ R

+, where

g(Qk, Ek) is the reward accrued in time-slot k, when the SOC

level is Ek ∈ E and action Qk is chosen, as

g(Qk, Ek) =

{

0 Qk > Ek

g̃(Qk) Qk ≤ Ek,
(3)



where g̃ : Q 7→ R
+ is a concave increasing function of Qk,

with g̃(0) = 0. Notice that, if Qk > Ek, then g(Qk, Ek) = 0,
which models an energy outage event.

We define the long-term average reward per time-slot under

policy µ, starting from the initial state E0=e0, S−1=s−1, as

G(µ; e0, s−1) , lim
K→∞

inf
1

K
E

[

K−1
∑

k=0

g(Qk, Ek)

∣

∣

∣

∣

∣

E0 = e0,
S−1 = s−1

]

,

(4)

where the expectation is computed with respect to the random

variables {Bk, Sk, Qk, k = 0, . . . ,K − 1}.

In this paper, we consider the following optimization prob-

lem, subject to imperfect knowledge of the SOC and, possibly,

of the state of the energy generation process:

µ∗ = argmax
µ

G(µ; e0, s−1). (5)

Its numerical optimization is carried out in the next Section.

III. OPTIMIZATION

Due to the partial knowledge of the SOC, (5) can be

recast under the framework of the Partially Observable Markov

Decision Processes (POMDPs) [13], and can be solved by

using numerical optimization tools available in the literature

[14]. However, due to the limited processing capability that

typically characterizes practical EHDs, in this paper we focus

on suboptimal policies, which neglect the history Hk available

at time-slot k. Therefore, µ(q;Nk, Sk−1) is the probability

that the EHD controller decides on action q, given that

Ek ∈ I(Nk) and the state of the energy arrival process was

Sk−1 in the previous time-slot.

In the following subsections, we distinguish between the

cases with perfect (i.e., ñ = emax + 1) and imperfect SOC

knowledge. Moreover, we refer to the case where perfect

knowledge of the energy generation process is available at

the EHD controller (i.e., knowledge of the energy harvesting

state Sk−1). The case where the Markov structure of the

energy arrivals is neglected, hence the energy arrivals are

treated as i.i.d., is obtained in the following optimization

by replacing the state space of the energy arrival process

S with S̃ = {1}, its transition matrix PS with P̃S = 1,
and the energy arrival distribution pB(b|s) with the marginal

p̃B(b|s) = pB(b) =
∑

s∈S pB(b|s)πS(s).

A. Optimization with perfect SOC knowledge

When perfect SOC knowledge is available at the EHD con-

troller, the policy µ maps the state of the system (Ek, Sk−1)
to the probability of drawing q energy quanta from the buffer.

The sequence {(Ek, Sk−1, Qk), k ≥ 0} constitutes a Markov

Decision Process (MDP), and the long term reward is maxi-

mized by a stationary, deterministic policy [15]. In this case,

the optimal policy is found by using standard tools, such as

policy iteration. Note that the long-term reward under perfect

SOC knowledge represents an upper bound to the performance

of any policy under SOC uncertainty.

B. Optimization with SOC uncertainty

Under SOC uncertainty, the sequence

{(Nk, Sk−1, Qk), k ≥ 0} does not constitute an MDP,

hence the optimal policy µ∗ cannot be found via the policy

iteration algorithm. In order to reduce the complexity, we

consider only the set of deterministic policies. To this end, we

define the function ρ : {0, . . . , ñ− 1} × S 7→ Q, which maps

the state pair (Nk, Sk−1) to the action Qk = ρ(Nk, Sk−1).
Then, letting µρ be the deterministic policy associated with

the action mapping ρ, defined as µρ(ρ(n, s);n, s) = 1,
µρ(q;n, s) = 0 ∀ q 6= ρ(n, s), (5) reduces to

ρ∗ = argmax
ρ

G(µρ; e0, s−1). (6)

where, from (4),

G(µρ; e0, s−1) =

ñ−1
∑

n=0

∑

e∈I(n)

∑

s∈S

πρ(e, s; e0, s−1)g(ρ(n, s), e).

The term πρ(e, s; e0, s−1) is the asymptotic distribution of the

state pair (Ek, Sk−1) = (e, s) ∈ E × S , given that the initial

state is (E0, S−1) = (e0, s−1), and is defined as

πρ(e, s; e0, s−1) = (7)

lim
K→+∞

1

K

K−1
∑

k=0

Prρ (Ek = e, Sk−1 = s|E0 = e0, S−1 = s−1) ,

where Prρ (Ek = e, Sk−1 = s|E0 = e0, S−1 = s−1) is the k-
step transition probability of the chain under the action map-

ping ρ. In most practical cases of interest, as well as in the

cases we consider in this paper, πρ(e, s; e0, s−1) is unique

[16] and is independent of the initial condition (E0, S−1) =
(e0, s−1). It follows that the long term reward G(µρ; e0, s−1)
is independent of (e0, s−1). In the following treatment, for

notational convenience, we thus neglect the dependence of

G(µρ; e0, s−1) on (e0, s−1).
Unlike [1], where an exhaustive search is used to solve

(6), herein we resort to local search methods. In fact,

the additional energy arrival state Sk ∈ S yields an ex-

ponential increase in the cardinality of the set of action

mappings over which the reward is optimized, given by

|{ρ : {0, . . . , ñ− 1} × S 7→ Q}| = |Q|ñ|S|, rendering an ex-

haustive search method impractical.

The proposed local search algorithm is defined as follows:

A.1 (Local Search Algorithm)

1) Let ρ(0) : {0, . . . , ñ−1}×S 7→ Q be an initial mapping,

and set the counter i = 0.
2) In stage i:

• Set ρ(i+1) = ρ(i).
• Update the mapping ρ(i+1) sequentially, for n =

0, . . . , ñ− 1 and s ∈ S , as

ρ(i+1)(n, s) := argmax
ρ(i+1)(n,s)∈Q

G
(

µρ(i+1)

)

. (8)



• If G
(

µρ(i+1)

)

= G
(

µρ(i)

)

, return the policy ρ(i+1).

Else, update the counter as i := i + 1 and repeat

from 2).

This algorithm determines a local optimum of (6) by sequen-

tially optimizing the action performed on each pair (n, s), until
convergence to a local maximum.1 If G

(

µρ(i+1)

)

= G
(

µρ(i)

)

for some i ≥ 0, then a local maximum of the reward is found,

since any unilateral change in the policy ρ(i) does not lead

to an improved reward. The algorithm is thus terminated. The

convergence of the algorithm is thus guaranteed within finite

time, since the set of deterministic policies is finite, hence the

local optimum is obtained within at most |Q|ñ|S| evaluations

of the reward G(µρ; e0, s−1). However, convergence to the

global optimum is not guaranteed, unless the reward function

G(µρ) is convex in ρ. A deeper discussion of this point is out

of the scope of this paper and is left for future investigation.

IV. NUMERICAL RESULTS

In this section, we present numerical results for the optimal

policy. We consider an energy arrival process {Bk} with

average harvesting rate b̄ = 10, with 3 hidden states (state

space S ≡ {1, 2, 3}), which are defined as follows.

• In state 1, the arrival process follows a geometric distri-

bution pB(b|1) = κ(γ)e−γb, truncated at bmax = 4b̄,
with mean E[Bk|Sk = 1] =

∑bmax

b=0 bpB(b|1) = b̄,

where γ is the decay rate and κ(γ) =
(

∑bmax

b=0 e−γb
)−1

is the normalization factor. By imposing the constraint

E[Bk|Sk = 1] = b̄, γ is the unique solution of
∑bmax

b=0 (b− b̄)e−γb = 0.
• In state 2, Bk is deterministically equal to 0, i.e.,

pB(0|2) = 1, pB(b|2) = 0, ∀ b > 0.
• Finally, in state 3, Bk is deterministically equal to 2b̄,

i.e., pB(2b̄|3) = 1, pB(b|3) = 0, ∀ b 6= 2b̄.

The transition probabilities between the energy arrival states

are defined via the |S|×|S| transition matrix PS , with entries

[PS ]s0,s1 = Pr(Sk = s1|Sk−1 = s0) , pS(s1|s0) given by

PS =





x 1−x
2

1−x
2

1− y y 0
1− y 0 y



 , (9)

where x , pS(1|1), y , pS(2|2) = pS(3|3). For example, in

the case of solar energy harvesting, this choice of the energy

generation process can be interpreted as follows. Under direct

sunlight, the arrival process can be approximated as being

deterministic (state s = 3). Conversely, in the dark, no energy

is harvested, hence the arrival process is deterministic with

value 0 (state s = 2). State s = 1 models a transient situation

between the two states of direct light (3) and dark (2), where
the arrival process exhibits a random behavior. We refer to

[17] for a deeper discussion on energy generation models for

solar and piezoelectric sources, based on empirical analysis.

1However, notice that the concept of local maximum is not well defined for
a function with discrete inputs, and is used only as an approximation here. In
fact, the reward function (4) maps discrete policies, hence it is not continuous

The steady state distribution of the energy arrival states is

then given by

πS(1) =
1− y

2− y − x
, (10)

πS(2) =
1

2

1− x

2− y − x
, (11)

πS(3) =
1

2

1− x

2− y − x
. (12)

It is worth noting that the i.i.d. energy arrival scenario con-

sidered in [1] is obtained, ∀ y ∈ (0, 1), by letting x → 1. In
this case, state 1 absorbs the Markov chain {Sk}, hence the

energy arrival process {Bk} exhibits an i.i.d. behavior with

probability mass function pB(b|1), b ∈ B.
Note that, with this choice of the energy generation process,

the state Sk−1 can be estimated, based on Bk−1 only, as

follows:

• If Bk−1 = 0, then Ŝk−1 = 2,
• If Bk−1 = 2b̄, then Ŝk−1 = 3,
• Otherwise (Bk−1 6= 0 and Bk−1 6= 2b̄), Ŝk−1 = 1.

Then, since in states Sk−1 = 2 and Sk−1 = 3 the arrival

Bk−1 is deterministic, a mis-detection error occurs if and only

if Sk−1 = 1 and Bk−1 ∈ {0, 2b̄}, in which case the state is

mis-detected as Ŝk−1 = 2 and Ŝk−1 = 3 for Bk−1 = 0
and Bk−1 = 2b̄, respectively. The probability of mis-detection

error is then given by

Pr
(

Ŝk−1 6= Sk−1

)

= Pr
(

Sk−1 = 1, Bk−1 ∈ {0, 2b̄}
)

= πS(1)κ(γ)
[

1 + e−2γb̄
]

. (13)

As an example, if x = y = 0.95, we obtain

Pr
(

Ŝk−1 6= Sk−1

)

≃ 0.05, so that the assumption of perfect

knowledge of Sk−1 is plausible.

We consider the reward function

g̃(q) =
ln(1 + αq)

ln(1 + αb̄)
, (14)

which represents a normalized throughput, where the param-

eter α is an SNR scaling factor.

We define the balanced policy as the policy which, in every

time-slot, attempts to draw q = b̄ energy quanta from the

buffer. Notice that this policy does not require knowledge of

the SOC Ek nor of the energy arrival state Sk−1. Hence,

we expect that any optimized policy with SOC uncertainty

or which neglects the Markov structure of the energy arrival

process outperforms the balanced policy, for any finite value

of the battery capacity emax.

Similarly to [1], it can be shown that the long-term reward

G(µ) is upper bounded by

G(µ) ≤ g̃(b̄) = 1. (15)

This upper bound is asymptotically achievable for emax →
+∞ by the balanced policy. Then, any policy considered in

this paper, which outperforms the balanced policy, is expected

to approach asymptotically the upper bound g̃(b̄).
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Figure 1. Throughput as a function of the battery capacity over harvesting
rate ratio, emax/b̄. (α = 1, b̄ = 10, x = y = 0.95)

In the simulations, we compare two classes of policies,

assuming a different amount of information about the energy

generation process:

1) policies with perfect knowledge of the energy arrival

state, in particular: policy with perfect SOC knowledge

(PP), policy with no SOC knowledge (P1, i.e., one-

interval uncertainty I(0) = E), and policy with two

intervals uncertainty of equal size (P2, i.e., I(0) =
{0, . . . , ẽ1 − 1} and I(1) = {ẽ1, . . . , emax} with ẽ1 =
⌈ emax

2 ⌉).
2) policies which neglect the Markov structure of the energy

arrivals, and treat them as i.i.d. with marginal distribution

pB(b) =
∑

s∈S πS(s)pB(b|s). In particular, we consider:

balanced policy (BP), policy with perfect SOC knowl-

edge (PPiid), policy with no SOC knowledge (P1iid,

i.e., one-interval uncertainty I(0) = E), and policy

with two intervals uncertainty of equal size (P2iid, i.e.,

I(0) = {0, . . . , ẽ1 − 1} and I(1) = {ẽ1, . . . , emax} with

ẽ1 = ⌈ emax

2 ⌉).

Policies PP and PPiid are obtained via policy iteration as

discussed in Section III-A. Policies P1, P2, P1iid and P2iid, on

the other hand, are obtained using the local search algorithm

A.1, defined in Section III-B.

In Fig. 1, we plot G(µ) as a function of the ratio emax/b̄ for
x = y = 0.95 and α = 1. The best performance is achieved

by PP, followed by P2, PPiid and P1. To better emphasize the

performance degradation due to limited information about the

current SOC and the Markov structure of the energy arrival

process, the percentage loss incurred by the different policies

with respect to the optimal policy PP is plotted in Fig. 2.

As a general conclusion, we observe that the performance

in the case of incomplete information is affected only by a

limited loss. Especially, using only 2 quantization partitioning

of the SOC but having perfect knowledge of the current

energy arrival state (policy P2) incurs a small degradation in

performance. In particular, with battery capacity emax ≈ b̄, the
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Figure 2. Percentage loss with respect to PP as a function of emax/b̄.
(α = 1, b̄ = 10, x = y = 0.95)

performance degradation of P2 with respect to PP is about 5%,

and becomes smaller as emax increases (around 2%), since

the impact of outage and overflow, which occur when the

SOC approaches 0 and emax, respectively, becomes smaller.

Moreover, the effect of not knowing at all the current SOC

level but being accurate in the energy arrival state (policy P1)

is almost exactly equivalent to knowing the SOC perfectly,

but neglecting the state of the energy harvesting mechanism

(policy PPiid). Clearly, when accurate knowledge of neither

SOC nor energy arrival process is available, the performance

degrades substantially (policies P1iid and BP). Yet, if the

battery capacity emax is large enough, the performance degra-

dation with respect to the optimum is below 15%.

Finally, in order to highlight the impact of the energy

generation process on the system performance, in Figs. 3

and 4 we plot the throughput and the percentage loss with

respect to PP, respectively, as a function of the transition

probability pS(1|1), where y = pS(2|2) = pS(3|3) = 0.95. As
discussed above, when pS(1|1) → 1, the energy arrival process
becomes i.i.d., and therefore the policies P1iid and P2iid,

which neglect the Markov structure of the process, become

optimal as pS(1|1) → 1. However, these policies suffer

for pS(1|1) < 0.8, where the energy harvesting mechanism

exhibits high correlation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated how to properly model EHDs

and their optimal battery usage policies, depending on the

information available about the SOC and the energy generation

process. While it turned out that both these factors are key in

identifying the correct energy management, neither of them is

so critical that it must be known with full precision. Moreover,

they complement each other, so that even a partial knowledge

on the battery status (i.e., which partitioning level the actual

SOC value belongs to) can induce an energy management pol-

icy which is improved by the presence of accurate knowledge

on the energy generation process, and vice versa.
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Figure 3. Throughput as a function of the transition probability pS(1|1).
(α = 1, b̄ = 10, emax = 10b̄)

However, in spite of having extended the arrival process to

more realistic scenarios with respect to the i.i.d. case, plenty

of extensions are still possible to improve and generalize

the analysis of the present paper. To start with, for real

batteries, the SOC value is not only difficult to estimate with

high accuracy, but also heavily influenced by the charge and

discharge cycles. Moreover, the reward function of our analysis

should be better matched to the evaluation of the long-term

battery lifetime, instead of just assuming unlimited charge and

discharge cycles. This would enable a better battery control

in the long run [18], [19]. Moreover, the control policy was

designed by neglecting the history of the energy harvesting

process. Indeed, a better control can be designed both with a

proper solution of the POMDP, and also by taking into account

memory effects both in the energy arrival process and in the

data traffic that the sensor must send out.

We believe that there are several challenges that can be faced

in the future, by further developing the contributions made in

the present paper. These investigations can be further framed in

an interdisciplinary context, and have important consequences

on the joint design of batteries, network elements, and control

and actuation policies.
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