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Abstract—Harvesting-Based Wireless Sensor Devices are in-
creasingly being deployed in today’s sensor networks, due to
their demonstrated advantages in terms of prolonged lifetime
and autonomous operation. However, irreversible degradation
mechanisms jeopardize battery lifetime, calling for intelligent
management policies, which minimize the impact of these phe-
nomena while guaranteeing a minimum Quality of Service
(QoS). This paper explores a mathematical characterization of
harvesting-based battery-powered sensor devices, focusing on
the impact of the battery discharge policy on the irreversible
degradation of the storage capacity. A general framework based
on Markov chains which captures the battery degradation process
is proposed. Based on such model, it is shown that a degradation-
aware policy significantly improves the lifetime of the sensor
compared to "greedy" operation policies, while guaranteeing the
minimum required QoS.

Index Terms—Battery management; Energy harvesting; Life-
time estimation; Markov processes; Wireless sensor networks.

I. INTRODUCTION

Recent technological advances of consumer electronics have

led to the widespread diffusion of networks of miniaturized

wireless devices with sensing and communication capabil-

ities, commonly referred to as Wireless Sensor Networks

(WSNs) [1]. Prolonged and unsupervised WSN operation over

time, especially in case of large-scale networks composed of

tens to hundreds of nodes, poses the problem of energy au-

tonomy of the sensor node. While the use of non-rechargeable

batteries is currently widespread for powering WSN nodes,

recent advances in the field of small-scale energy harvesting

will enable the sensor to absorb ambient energy from solar,

mechanical, thermal or RF sources, and locally store it on

an on-board rechargeable battery [2]. The energy harvesting

approach, combined with intelligent battery management, is

envisioned to greatly prolong the WSN operating life [3].

An energy-aware operation policy is an algorithm that

manages the energy stored in the battery, aimed at avoiding

energy overflow or battery depletion, so as to provide a

stable operation of the device over time, while guaranteeing

a satisfactory Quality of Service (QoS), e.g., throughput [4],

delay [5] or network sum rate [6]. In this context, many

works in the literature assume ideal batteries, by neglecting

any battery degradation issues related to battery usage, e.g.,

see [7], [8]. Some notable exceptions are [9]–[11], which

attempt to model different realistic battery imperfections and

non-idealities, and [12], which presents a stochastic model to

capture the recovery effect of electrochemical cells, based on

which efficient battery management policies are designed.
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Fig. 1. Block diagram of a harvesting-based sensor node

The focus of this paper is on degradation effects causing

the storage capability of the battery to diminish over time, de-

pending on the battery usage policy. In the same spirit as [12],

a Markov model which explicitly characterizes the degradation

status of the battery and is suitable for policy optimization is

proposed. Based on such model, battery operation policies are

then designed by formulating an optimization problem which

explicitly accounts for battery lifetime, while guaranteeing a

minimum QoS.

The paper is organized as follows. Section II provides a

system-level overview of a harvesting-based wireless sensor

and outlines the fundamental issues concerning battery degra-

dation. In Section III, we present the general framework and

define the optimization problem, which is further developed

in Section IV. In Section V, we provide numerical results.

II. BACKGROUND

A block diagram of a harvesting-based sensor node is

sketched in Fig. 1. The system load is the hardware that needs

to be powered, e.g., microcontroller, Rx/Tx transceiver and

sensing unit. The power processing unit manages the ambient

energy source and the on-board rechargeable battery to provide

regulated energy to the load.

The energy source often provides most of the energy within

certain periods of time, during which the on-board battery

is charged. In the remaining periods, little or no energy is

available from the source, and the on-board battery is partially

or totally discharged, depending on the load demand. The

charge/discharge process of the battery is called cycling, and

the percentage amount D of charge withdrawn from the

battery during discharge, with respect to its nominal capac-

ity, is termed Depth of Discharge (DoD). In a photovoltaic

scavenger, for instance, battery cycling is determined on a

daily basis by the availability of solar energy. Other energy

sources may present different trends. Denoting with C0 the

nominal battery capacity in milliampere-hours (mAh) and with
Q(Ncyc, D) the total charge delivered by the battery after Ncyc

cycles at DoD D, one might expect

Q(Ncyc, D) = Ncyc · C0 ·D. (1)
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Two facts, however, complicate the deceptively simple sce-

nario implied by (1). First, a rechargeable battery has a finite

cycle life, i.e., it cannot cycle indefinitely due to irreversible

degradation mechanisms, which ultimately reduce C0 to un-

recoverable levels [13]. Secondly, the degradation process is

strongly dependent on how the battery is cycled, with shallow

DoDs resulting in a slower degradation of C0 and increased

cycle life [13]. A microbattery rated with Ncyc = 100 at 100%
DoD may last up to Ncyc = 1000 at 20% DoD, with roughly

twice the energy extracted in the latter case [14]. A heuristic

model for the Ncyc vs. D dependence is

Ncyc(D) = Ncyc,0 · e
α(1−D), (2)

where Ncyc,0 represents the cycle life at 100% DoD, and α
is a characteristic constant of the battery. Exponential-based

models like (2) have been found to be a good fit for data

from a rather wide range of battery chemistries and sizes (e.g.,

see [15]), including also microbatteries.

III. SYSTEM MODEL

We consider a slotted-time system, where slot k is the time

interval [kT, kT +T ), k ∈ Z
+, and T is the slot duration. The

battery is modeled by a buffer with nominal capacity C0, and

is uniformly quantized to a number of charge levels,1 using a

quantization step (charge quantum) ∆c ≪ C0. The maximum

number of quanta that can be stored at the nominal capacity is

qmax =
⌊

C0

∆c

⌋

and the set of possible charge levels is denoted

by Q = {0, 1, . . . , qmax}.
Due to the aforementioned battery degradation mechanisms,

the nominal battery capacity qmax is not always fully usable.

Let Qmax(k) be the usable battery capacity at time k, with
Qmax(k) ≤ Qmax(k − 1) and Qmax(0) = qmax. Denote the

(quantized) charge level of the battery at time k as Qk. Letting

[x]+ = max{x, 0}, the evolution of Qk is given by

Qk+1 = min
{

[Qk −Ak]
+ +Bk, Qmax(k + 1)

}

, where:

• {Bk} is the energy harvesting process, taking values in B ,

{0, 1, . . . , B}, which models the randomness in the energy har-

vesting mechanism, e.g., due to an intermittent energy supply.

We define an underlying energy harvesting state process {Sk},
and we model it as an irreducible stationary Markov chain with

transition probabilities pS(s2|s1) , Pr(Sk+1 = s2|Sk = s1)
and steady state distribution πS(s), taking values in the finite

state space S . Given Sk ∈ S , the energy harvest Bk is drawn

from B according to the distribution pB(b|s) , Pr(Bk =
b|Sk = s). Then, we denote the average harvesting rate

as b̄ ,
∑

s∈S πS(s)
∑

b∈B bpB(b|s). We assume that a new

energy quantum harvested in slot k can only be used in a

later slot.

• {Ak} is the action process, which is governed by the Energy
Harvesting Device (EHD) controller, as detailed in Section

III-A, and takes values in A , {0} ∪ {Amin, . . . , Amax}.
Amin and Amax represent the minimum and maximum load

requirements, respectively. Action Ak = 0 accounts for the

1Note that both the harvesting and the action, or load, processes are
energy-driven rather than charge-driven. Exchanged charge and energy are
proportional only as long as the battery voltage is assumed constant throughout
the device operating life. Modeling battery voltage dynamics is out of the
scope of this paper and can be considered as a future refinement.

possibility to remain idle in a given time-slot, due to either a

controller’s decision or energy outage.

We model the battery degradation process as follows. We

define the battery health state, Hk, taking values in H ≡
{0, 1, . . . , Hmax}. Given Hk, the battery capacity at time k is

given by Qmax(k) =
⌊

Hk

Hmax

qmax

⌋

, and the set of available

charge levels is denoted by Q(Hk) = {0, 1, . . . , Qmax(k)}.
We assume that {History up to time k − 1} → (Hk, Qk) →
Hk+1 forms a Markov chain, i.e., Hk+1 is independent of

the history up to time k − 1, given (Hk, Qk). We denote the

transition probability from health state Hk = h to health state

Hk+1 = h− 1 as

pH(h; q) , Pr(Hk+1 = h− 1|Hk = h,Qk = q). (3)

Moreover, Pr(Hk+1 = h̃|Hk = h,Qk = q) = 0 if

h̃ /∈ {h− 1, h}, ∀q ∈ Q(h), so that no transition is possible

between two non-consecutive health states, or to a higher

health state. As a consequence, the probability of remaining in

health state h is 1− pH(h; q). We further make the following

assumptions on pH(h; q):

Assumption 1. a) pH(h; q) > 0, ∀h ∈ H, q ∈ Q(h),
b) pH(h; q) ≪ 1, ∀h ∈ H, q ∈ Q(h),
c) pH(h1; q1) ≥ pH(h2; q2), ∀h2 ≥ h1, q2 ≥ q1.

Ass. 1.a) implies that the battery health state will eventually

reach Hk = 0, so that the lifetime, defined in Def. 1 in

Sec. III-A, is finite; Ass. 1.b) expresses the fact that aging

processes taking place in the battery operate over time scales

which are much longer than the cycling period; Ass. 1.c)

means that the more discharged and degraded the battery, the

faster the battery degradation process [13].

At time k, Zk = (Qk, Hk, Sk−1) is the EHD state, tak-

ing values in the state space Q × H × S . In practice, Zk

should be inferred and estimated from measurements of the

battery state of charge, capacity, and input energy flows. For

simplicity, we assume that Zk is perfectly known to the EHD

controller. Note that the harvesting state Sk is unknown at

time k, as reflected by the state Zk, since Bk has not been

observed yet. On the other hand, the posterior distribution of

Sk−1 can be inferred from the observed harvesting sequence

{B0, . . . , Bk−1}. For example, for a solar harvesting source,

we may have S = {day, night}. The state Sk ∈ S may then be

accurately estimated from 1
N

∑k
i=k−N+1 Bi by appropriately

choosing a threshold and the window N .

A. Policy definition and Problem statement

Given Zk = (Qk, Hk, Sk−1), the EHD controller deter-

mines Ak ∈ A at time k according to a given policy µHk
.

Formally, µHk
is a probability measure on the action space

A, parameterized by the state (Qk, Sk−1), i.e., given that

Zk = (Qk, Hk, Sk−1), µHk
(a;Qk, Sk−1) is the probability of

requesting a charge quanta from the battery, when operating at

health state Hk.
2 Under any policy µ, the state process {Zk}

is a Markov chain, so that the whole decision problem can be

modeled as a Markov Decision Process [16].

2For the sake of maximizing a long-term average reward function of the
state and action processes, it is sufficient to consider only state-dependent
stationary policies [16].
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The instantaneous reward accrued in time-slot k, in state

Zk = (Qk, Hk, Sk−1) under action Ak, is defined as

g(Ak, Qk) =

{

0, Ak > Qk,
g∗(Ak), Ak ≤ Qk,

(4)

where g∗(Ak) is a concave increasing function of Ak with

g∗(0) = 0. When the amount of charge requested by the con-

troller exceeds that available in the battery (case Ak > Qk),

the task cannot be successfully completed, and the battery is

depleted while no reward is earned.

We define the hitting times of the health states as

Kh = min{k ≥ 0 : Hk = h}, h ∈ H. (5)

Kh is a random variable, which depends on the real-

ization of {(Bk, Ak, Hk)}. Given an initial state Z0 =
(Q0, Hmax, S−1) and a policy µ, we define the total average

reward Gtot
µ (h,Z0), the battery lifetime Tµ(h,Z0) and the

average reward per time-slot Gµ(h,Z0) of health state h as

Gtot
µ (h,Z0) = E

[Kh−1−1
∑

k=Kh

g(Ak, Qk)

∣

∣

∣

∣

Z0

]

, (6)

Tµ(h,Z0) = E [Kh−1 −Kh |Z0] , (7)

Gµ(h,Z0) =
Gtot

µ (h,Z0)

Tµ(h,Z0)
. (8)

where the expectation is taken with respect to

{(Bk, Sk, Hk, Ak)} and Ak is drawn according to µ.

Let G∗ > 0 be a minimum QoS requirement, which is met

in health state h if Gµ(h,Z0) ≥ G∗. We define the following.

Definition 1. (Battery Lifetime) If Gµ(Hmax,Z0) ≥ G∗, the

battery lifetime Tµ(G
∗,Z0) under policy µ is defined as

Tµ(G
∗,Z0) =

∑

h≥h∗

µ

Tµ(h,Z0), where (9)

h∗
µ = max {h : Gµ(h,Z0) < G∗}+ 1 (10)

is the index of the lowest health state in which the QoS is

met. Otherwise, Tµ(G
∗,Z0) = 0.

The condition Gµ(Hmax,Z0) ≥ G∗ guarantees that the

problem is feasible; otherwise, the lifetime is zero as there is

no satisfactory reward even in the healthiest state. The lifetime

is defined such that the QoS requirement G∗ is guaranteed at

each health state h ≥ h∗
µ. In particular, the QoS constraint

inherently assumes that the battery degradation processes

taking place in the battery operate over time scales which are

much longer than the communication time-slot (Ass. 1.b)),

so that the system approaches a steady state operation in

each health state. For the lower health state h∗
µ − 1, we have

Gµ(h
∗
µ − 1,Z0) < G∗, i.e., the EHD can no longer sustain

the required QoS requirement, and battery failure is declared.

Note that a QoS requirement on each health state h ≥ h∗
µ

is stricter than an average QoS requirement over the entire

lifetime, defined as
∑

h≥h∗

µ
Gtot

µ (h,Z0)/
∑

h≥h∗

µ
Tµ(h,Z0).

The latter may induce policies that exhibit wide performance

variability across the health states, as made clear in the

following example.

Example 1. Consider a system with QoS requirement G∗ =

1.5 and Hmax = 2 and a policy µ such that

Gµ(h,Z0) = h, Tµ(h,Z0) = 106, ∀h ∈ {0, 1, 2}. (11)

Then, according to Def. 1, we have Tµ(G
∗,Z0) = 106, since

the QoS G∗ can be supported only at health state 2. However,
an average QoS of

Gtot
µ (2,Z0) +Gtot

µ (1,Z0)

Tµ(2,Z0) + Tµ(1,Z0)
= 1.5 = G∗ (12)

can be supported over a time-interval of duration 2 × 106,
which is twice as long as Tµ(G

∗,Z0), despite the fact that a

poor performance is attained in health state 1.

The optimization problem at hand is to determine the

optimal µ∗ such that the battery lifetime is maximized, under

a given constraint on the minimum QoS G∗, i.e.,

µ∗ = argmax
µ

Tµ(G
∗,Z0) = argmax

µ

∑

h≥h∗

µ

Tµ(h,Z0). (13)

IV. OPTIMIZATION

We develop problem (13), showing that it can be recast as an

independent Linear Program (LP) on each health state, under

Ass. 1.b) on pH(h; q). We give the following definition.

Definition 2. (Steady State of the non-absorbed chain) As-

sume that the EHD operates indefinitely at health state h ∈
H, without being absorbed by the lower health state, i.e.,

pH(h; q) = 0, ∀q ∈ Q(h). Denote the steady state distribution

of (q, s) ∈ Q(h)× S in health state h under policy µh as3

πh
µh
(q, s) = lim

K→∞

1

K

K−1
∑

k=0

P (k)(q, s|Z0), (14)

where Z0 = (Q0, h, S−1) is the initial state and

P (k)(q, s|Z0) = Pr (Qk = q, Sk−1 = s|Z0, pH(h; ·) = 0) .

We define the following quantities.

Definition 3. (Approximate reward per stage and lifetime of

health state h)

Ĝµh
(h) =

∑

(q,s)∈Q(h)×S

πh
µh

(q, s)Eµh(·;q,s) [g(A, q)] , (15)

T̂µh
(h) =

(

∑

(q,s)∈Q(h)×S

πh
µh

(q, s)pH(h; q)

)−1

, (16)

where Eµh(·;q,s) [g(A, q)] =
∑

a∈A µh(a; q, s)g(a, q) is the

expected reward in state (q, s), induced by policy µh.

Remark: Note that πh
µh

in (14) is computed under the

assumption that the EHD operates indefinitely in health state

h, i.e., pH(h; q) = 0, ∀q, whereas the term pH(h; q) in (16) is

the actual degradation probability. Ĝµh
(h) can be interpreted

as the long-term average reward per time-slot in health state h,
whereas T̂µh

(h)−1 can be interpreted as the long-term average

probability of degradation to the lower health state h−1. Such
observations are formalized in the following lemma, whose

proof is provided in [18].

3We assume that µh induces a Markov chain with a single closed commu-
nicating class, so that πh

µh
(q, s) is independent of Z0 [17].
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Lemma 1. Let p∗H(h) = maxq pH(h; q). For p∗H(h) → 0,

Gµ(h,Z0) = Ĝµh
(h) +O(p∗H(h)), (17)

Tµ(h,Z0) = T̂µh
(h) +O(1), (18)

where f(x) = O(v(x)) for x → 0 denotes a quantity such

that lim supx→0

∣

∣

∣

f(x)
v(x)

∣

∣

∣
< +∞.

Lemma 1 states that, whenmaxq pH(h; q) ≪ 1, the duration
of health state h, Tµ(h,Z0), can be approximated by T̂µh

(h),
up to a bounded additive factor. Since Tµ(h,Z0) → +∞ for

maxq pH(h; q) → 0, (18) is a good approximation. On the

other hand, the average reward in health state h, Gµ(h,Z0),
can be approximated by Ĝµh

(h) up to an additive factor, which
decays to zero at least as quickly as maxq pH(h; q). Both

approximations are independent of the initial state Z0, and

solely depend on the steady state distribution (14) induced by

policy µh, which is approached in each health state.

Since maxq pH(h; q) ≪ 1 by Ass. 1.b), we use Lemma 1,

and substitute (18) in (9), yielding

Tµ(G
∗,Z0) ≃

∑

h≥h∗

µ

T̂µh
(h), (19)

where h∗
µ ≃ max{h : Ĝµh

(h) < G∗}+ 1 from (10) and (17).

Finally, substituting (19) in (13), we obtain the approximation

µ∗ = argmax
µ

∑

h≥h∗

µ

T̂µh
(h). (20)

Note that T̂µh
(h) and Ĝµh

(h) are independent of the policy

µh̃ for h̃ 6= h. Therefore, (20) can be solved independently

for each health state h, yielding the following algorithm.

Algorithm 1. 1) INIT: set h = Hmax, REP=true

2) WHILE REP=true AND h>0 SOLVE

µ∗
h = argmin

µh

∑

(q,s)∈Q(h)×S

πh
µh
(q, s)pH(h; q) (21)

s.t.
∑

(q,s)∈Q(h)×S

πh
µh
(q, s)

(

Eµh(·;q,s) [g(A, q)]− G∗
)

≥ 0.

If the problem is infeasible, set REP=false, h∗
µ∗ = h + 1.

If it is feasible and h = 1, set h∗
µ∗ = 1. Otherwise, update

h := h− 1. END WHILE

3) RETURN the optimal policy µ∗ = (µ∗
h)h≥h∗

µ∗
.

Remark: Step 2) is equivalent to

µ∗
h = argmax

µh

T̂µh
(h), s.t. Ĝµh

(h) ≥ G∗, (22)

and is obtained by substituting the expressions of T̂µh
(h) and

Ĝµh
(h) (see Def. 3) in (22), which can be solved numerically

with standard tools [16]. Thus, the optimal policy µ∗
h max-

imizes the lifetime (equivalently, it minimizes the long-term

probability of battery degradation to the lower health state

h−1) with a constraint on the minimum average QoS. Step

2) also determines h∗
µ∗ in (10), for the optimal policy µ∗. In

step 3) the optimal policy is found by concatenating the sub-

policies {µ∗
h}, and the corresponding lifetime (1) is computed

using (18). The main advantage of this approach over a stan-

dard approach which solves the original optimization problem

(13) jointly is that (13) is decomposed into a sequence of

independent sub-problems (21) for each health state h, thus
reducing the overall computational complexity.

V. NUMERICAL RESULTS

We consider a battery with capacity qmax = 500 charge

levels and Hmax = 50 health states. The battery degradation

probabilities pH(h; q) can be extrapolated from manufacturer-

provided data by employing the deterministic, continuous time

model (2). With this approach, described in detail in [18], we

have found that a good match is given by

pH(h; q) = γ exp

{

α

(

1−
q

qmax

)}

, (23)

where γ is a dimensionless constant. Note that γ does not

affect the solution of (21). Therefore, we choose a small value

γ = 2.5 · 10−5 so as to satisfy Lemma 1. The parameter α in

(23) is obtained by interpolating the data-sheet values in [14]

of battery type MS920SE, a Li-Ion rechargeable micro battery,

which may be envisioned for applications in WSNs. A good

fit is obtained with α ≃ 2.88.
The underlying energy harvesting process {Sk} is modeled

as a two state Markov chain with state space S = {G,B}
and transition probabilities pS(G|G) = pS(B|B) = 0.96,
where G and B denote the "good" and "bad" harvesting

states, respectively. In the "bad" state (Sk = B), no energy

is harvested, i.e., Bk = 0; in the "good" state (Sk = G), the

harvested energy is Bk = 20 deterministically. The average

harvesting rate is thus given by b̄ = 10. In this case, we

have a one-to-one mapping between Sk and Bk, so that, by

measuring Bk, the state Sk is known exactly. We employ the

reward function g∗(Ak) = log2(1 + σAk/b̄), with σ = 10,
which models the Shannon capacity of the static Gaussian

channel, where σ is an SNR scaling parameter. The action

space is A = {0, . . . , 20}. We consider the following policies:

• Lifetime Unaware Policy (LUP), which greedily maxi-

mizes the average long-term reward (15) for the actual

value of the battery capacity, without taking into account

the impact of the policy on the battery lifetime. It is found

via the policy iteration algorithm [16] as the solution of

µ∗
h = argmax

µh

Ĝµh
(h), ∀h ∈ H; (24)

• Lifetime Aware Optimal Policy (LAOP), which solves

problem (13) via Algorithm 1.

In the following plots, for a given policy and QoS G∗, the

battery lifetime is computed according to (9), using standard

results on absorbing Markov Chains, see [17]. The correspond-

ing minimum reward4 supported by policy µ over the battery

lifetime is defined as Gmin(µ,G
∗) = minh≥h∗

µ
Gµ(h,Z0),

where h∗
µ is defined in (10).

In Fig. 2, we plot the minimum reward versus the battery

lifetime normalized to the maximum lifetime, which is defined

as the lifetime when the battery is always fully charged, so

that battery degradation mechanisms are slower, according to

our extrapolated model and Ass. 1.c). We note that, for a

4The minimum reward represents the average reward (averaged over a
timescale much larger than the communication time-scale, but smaller than
the battery degradation process) that is guaranteed over the entire battery
lifetime.
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Fig. 2. Minimum reward over the battery lifetime versus normalized lifetime.
The dashed lines represent the minimum and maximum lifetime and the

maximum reward maxµHmax
ĜµHmax

(Hmax).

given minimum guaranteed QoS, LAOP achieves a significant

gain in terms of battery lifetime with respect to the "greedy"

policy LUP, which neglects battery degradation mechanisms.

In particular, the lifetime is increased by a factor ∼ 2.5. For
all policies, the longer the lifetime, the smaller the minimum

reward attained. This is due to the inherent trade-off between

lifetime and reward. Namely, the battery lifetime is maximized

by performing shallow charge/discharge cycles, which in turn

considerably limits the usable charge levels, thus impairing

the ability of the battery to filter out the fluctuations in

the intermittent energy harvesting process, and to provide a

satisfactory QoS over time. Conversely, the QoS is maximized

by performing deep battery discharges, e.g., during energy

shortage, which inevitably shortens the battery lifetime.

Finally, in Fig. 3, we plot the cumulative steady state

distribution of the charge levels, for the maximum health

state Hmax. We note that the steady state distributions of

LUP, which does not take into account the ongoing battery

degradation mechanisms, are spread over all the battery charge

levels. In particular, this policy operates for a significant

amount of time at low charge levels, thus inducing a fast

battery degradation. Conversely, LAOP spreads the steady

state distribution over the upper charge levels only, and never

discharges below a QoS-dependent charge level.

VI. CONCLUSIONS

We have analyzed the impact of battery management poli-

cies on the irreversible degradation of the storage capac-

ity of realistic batteries, affecting the lifetime of harvesting

based Wireless Sensor Networks. We have proposed a general

framework, based on Markov chains and suitable for policy

optimization, which captures the degradation status of the

battery. Based on the proposed model, we have formulated

the policy optimization problem as the maximization of the

battery lifetime, subject to a minimum guaranteed QoS in each

battery degradation status, which can be solved efficiently by

a sequential linear programming optimization algorithm over

the degradation states of the battery. The numerical evaluation

gives evidence of the fact that a lifetime-aware management

policy has the potential to significantly improve the lifetime

of the sensor node with respect to a "greedy" operation policy,

while guaranteeing the minimum required QoS.
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