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Abstract—Relay sharing has been recently investigated to
increase the performance of coexisting wireless multi–hop net-
works. In this paper, we analyze a scenario where two wireless ad
hoc networks are willing to share some of their nodes, acting as
relays, in order to gain benefits in terms of lower packet delivery
delay and reduced loss probability. Bayesian network analysis
is exploited to compute the probabilistic relationships between
local parameters and overall performance, whereas the selection
of the nodes to share is made by means of a game theoretic
approach. Our results are then validated through the use of a
system level simulator, which shows that an accurate selection of
the shared nodes can significantly increase the performance gain
with respect to a random selection scheme.

Index Terms—Bayesian network, game theory, inter-network
cooperation, multi-hop networks.

I. INTRODUCTION

Cooperation is one of the most promising enabling tech-

niques to meet the increasing rate demands and quality of

service requirements in wireless networks, especially since

nowadays many techniques to share the spectrum resources

among different networks are envisioned [2]. Beyond spectrum

sharing, also relay sharing is possible: namely, when a multi–

hop network decides to cooperate, it shares some or all of its

nodes, that become available as relays for another multi–hop

network as well. In such a scenario, cooperation can leverage

the benefits of multi–path diversity, since more paths connect-

ing two nodes will be available, obtaining a considerable gain

in the efficiency of shared resources. Sharing the whole set

of nodes provides the highest number of paths available for

each of the participating networks. However, this comes at
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Fig. 1. Logical structure of the proposed approach.

the cost of increased traffic that should be handled by some

of the shared nodes. In a realistic scenario, an operator may be

willing to share only a (possibly small) subset of nodes, e.g.,

for security or privacy reasons. If this is the case, it becomes

important to assess how the effectiveness of the cooperative

scheme depends on how many nodes are shared and which

ones, and to provide suitable selection schemes. Indeed, some

nodes deployed in crucial positions may be particularly suited

for helping the other network; on the contrary, nodes placed

close to the network border are likely to be less useful or even

useless. Furthermore, an operator sharing some of its nodes

may face a higher latency for the traffic of its own network.

In this paper, we consider two wireless multi–hop networks

deployed in the same region but operated by different entities.

Each node is sending packets to every other node in the same

network. In the case of no cooperation, the two coexisting

networks perform their operations separately: each network

only uses its own resources to deliver the data packets gener-

ated by its nodes. Since they are assumed to share the same

spectrum resources, they compete to access the channel, and

inter–network interference may limit the overall performance.

In our approach, each network can also share with the other

network a limited number of nodes to jointly increase the

performance of both networks. The logical structure of the

proposed approach is depicted in Fig. 1. During a learning
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phase, we observe a set of local parameters: some of them

are directly observable (i.e., we can assume that each network

knows their values), and depend only on the topology of the

network (topological parameters, TPs), like the number of

neighbors at a given node. Some other parameters depend on

the local characteristics of the traffic load (local performance

parameters, LPs).
We use the observed data to build the probabilistic relation-

ships among all the parameters, summarized in a Bayesian

network (BN). Then we consider the scenario of interest, we

observe the TPs in such a scenario, and we use the BN to infer

the LPs that will be used to calculate a cost metric. We can

finally use this information to model the interaction between

the two networks through game theory (GT) and to select

the best nodes to be shared in order to minimize the chosen

cost metric. We measure through simulation the performance

improvement due to cooperation.
Note that we do not need to repeat the learning phase every

time the topology changes, since the BN learned from the

observation of the training topologies can be reused for every

topology of interest. Instead, we need to repeat the GT strategy

selection for every new topology. Anyway, given a certain

topology, our approach does not affect the run-time operations

of the nodes in the networks. Hence, given that the network

topology does not change too frequently, our scheme does not

impact the average power consumption of the nodes.
In brief, the main contributions of this paper are:

• the definition of the cooperation problem between two

networks sharing the same spectrum resources as a strate-

gic game;

• the use of BN theory to learn the probabilistic relation-

ships among a set of parameters in the network, in order

to infer the network performance from the observable

TPs;

• the definition and analysis of a cooperative game among

networks to choose the best nodes to share;

• the implementation of the BN predictor and the strategic

game in an actual wireless network simulator that evalu-

ates the network behavior at the physical (PHY), medium

access control (MAC) and network layers;

• a performance comparison showing the effectiveness of

our algorithm, which achieves the same performance as a

fully cooperative approach by sharing only few selected

nodes.

The rest of the paper is divided as follows. In Section II we

overview some related work. In Section III we describe our

network scenario and in Section IV we define the performance

metrics that are the basis of the cooperation choices. Then in

Section V we overview the BN theory and apply it to infer the

network performance as a function of the cooperation choices.

In Section VI we detail the game involved among the networks

and the cooperation strategy adopted, while in Section VII

we present the simulation setup and show the main results.

Section VIII concludes the paper.

II. RELATED WORK

In recent years, a huge effort has been put on the in-

vestigation of cooperative techniques in wireless networks.

Cooperation has been regarded as an effective way of improv-

ing the network performance, e.g., in terms of throughput,

latency, or energy efficiency. This improvement is granted

by letting other terminals help the communication between

a wireless source and its intended destination. The study of

the cooperation between terminals in a very simple three–

node scenario paved the way for a number of cooperation-

based protocols. In [3], a TDMA scheme with feedback

is adopted, whereas the simultaneous transmission of two

cooperating nodes is considered in [4] and [5]. In multi–

hop wireless networks, the use of relays can be seen as a

form of cooperation, since they create new multi–hop routes.

Several protocols have been designed to balance the enhanced

link reliability and the increased number of transmissions [6]–

[9]. Coded cooperation is developed in [6] and [8], whereas

an implementation based on hybrid automatic repeat request

(HARQ) is introduced in [9]. The use of relays shows how

cooperation can also be exploited for routing purposes, as

investigated in [10]–[12]. The choice of the best relay, based

on the channel conditions, is discussed in [10], whereas several

relays, chosen according to topological criteria, simultaneously

cooperate in forwarding a packet in the scheme described in

[11]. Finally, a cross-layer approach, where cooperation is

exploited in ad hoc networks together with the opportunistic

routing paradigm, has been shown in [12].

Although a wide literature is available about cooperation

among terminals of the same network, fewer works have

focused on cooperation between different networks. In most of

them, the idea behind a cooperative behavior of two coexisting

networks is to share the spectrum resources. Such a paradigm,

known as spectrum sharing, is exploited by primary/secondary

cognitive radio networks: an unlicensed network is allowed

to exploit the same spectrum assigned to a licensed one,

provided that a given QoS is guaranteed to the latter. The

spectrum can be shared through strategies exploiting different

levels of awareness and coordination, whose performance has

been analyzed and discussed in [13] and [14]. In [15], the

authors investigated the case where two cellular networks

share their own spectrum resources and cooperate in order to

minimize the mutual interference, observing a gain inversely

proportional to the number of nodes in the networks. Also

infrastructure sharing has been considered as a promising

cooperation technique for cellular networks; in [16] the sharing

of some parts of the network structure is described from a

business and regulatory perspective.

To enable the use of cooperation, it is necessary to infer

the network gain and cost in advance, thus choosing whether

or not it is worth to perform cooperation. Other choices,

which require some knowledge about the network, must be

made, e.g., which nodes to select as relays. An effective tool

to exploit the available information and make a real-time

estimate of the expected performance is given by probabilistic

graphical models [17]. The use of this probabilistic tool is

very promising for wireless network optimization, and has

been recently exploited, e.g., in [18] where a BN approach

is adopted for predicting the occurrence of congestion in a

multi-hop wireless network. The use of Bayesian prediction in

a game theoretic framework to allow cooperation is discussed
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in [19].

In spite of the considerable gain allowed by cooperative

transmission, modeling the involved agents as selfish decision-

makers usually leads to inefficient non-cooperative outcomes,

like in the IEEE 802.11 distributed MAC protocol [20]. In [21],

a situation similar to the prisoner’s dilemma occurs in a slotted

Aloha MAC protocol developed in cooperative, competitive

and adversarial scenarios. In this paper, we formulate the

problem as a repeated game [22], [23], which consists of a

number of repetitions of a base game. In repeated games,

users must account for the consequences of their current

actions on the evolution of the game, and cooperation is

obtained by punishing deviating users in subsequent stages.

Repeated interactions have already been applied to the study

of cooperative relaying. A packet forwarding mechanism

balancing the relaying opportunities that each node gives to

and receives from other nodes is proposed in [24]. A virtual

currency and a mechanism to charge/reward a player that

asks/provides a relay service are introduced in [25] and [26].

Finally, [27] considers a reputation mechanism, where a user

gains reputation acting as relay and can choose not to serve

users having low reputation.

III. SYSTEM MODEL

In this section, we describe the network scenario under

investigation from the physical up to the routing layer. In

our scenario, two ad hoc wireless networks coexist and share

the common spectrum resource. Networks 1 and 2 consist of

n1 and n2 static terminals, respectively, randomly deployed

in the same space. Each node is a source of traffic and

generates packets according to a Poisson process with intensity

λ packets/s/node. The final destination of each packet is

another node in the network chosen uniformly at random.

Thus, all the nodes in the network act as both sources and

destinations, as well as relays, when needed. Furthermore, time

is divided in slots and slot synchronization is assumed across

the whole network.

We remark that this is only one exemplifying scenario, and

that several details at PHY and MAC layer can be modified

without hampering the applicability of the framework. With

minor modifications, our approach is particularly suited for

multi-hop cellular networks [28], but also for relay-aided

cellular networks employing spectrum and/or infrastructure

sharing [15], a promising paradigm which is being currently

investigated. Vehicular networks, where packets can be sent

over multi-hop routes, are another interesting scenario [29].

A. Physical Layer

At the physical layer, code division multiple access

(CDMA) with fixed spreading factor is employed to separate

simultaneous transmissions, since both networks share the

same spectrum resources, and a training sequence for channel

estimation is added at the beginning of each transmission.

The receiving node, D(j), uses a simple iterative interference

cancellation scheme to retrieve the desired packet when M
simultaneous communications are received. We define the

signal to interference plus noise ratio (SINR) at D(j) for the

incoming transmission T (i) from node D(i) as

Γ(i,j) =
SfP

(i,j)

N0 +
∑

k 6=i P
(k,j)

, (1)

where N0 is the noise power and Sf is the spreading factor.

P (k,j) indicates the incoming power at D(j) due to T (k), i.e.,

for all k = 1, . . . ,M :

P (k,j) =
PT |hk,j |

2d−α
k,j

χ
, (2)

where PT is the transmission power, which is considered to

be the same for all nodes in the network, χ is a fixed path-

loss term, dk,j is the distance between the receiving node

and the source of T (k), α is the path loss exponent, and hk,j

is a complex zero mean and unit variance Gaussian random

variable, which represents the effect of multi-path fading.

According to (2), each link is statistically symmetric, although

the interference levels are likely to be different for D(k) and

D(j). According to commonly used channel models, in our

scenario we consider a time correlated block fading. Therefore,

for the channel between nodes D(k) and D(j), the multi-path

fading coefficient in time slot t is

hk,j(t) = ρ hk,j(t− 1) +
√

1− ρ2 ξ , (3)

where ρ is the time-correlation factor and ξ is an independent

complex Gaussian random variable with zero mean and unit

variance, as in [12]. The iterative interference cancellation

scheme works as follows:

• the destination node D(j) sorts the M incoming trans-

missions according to the received SINR, in decreasing

order (for simplicity, assume Γ(1) ≥ · · · ≥ Γ(M));

• starting from transmission T (1), D(j) tries to decode the

corresponding packet, with a decoding probability that is

a function of Γ(1) and of the modulation scheme;

• if the packet is correctly received, its contribution is

subtracted from the total incoming signal;

• D(j) attempts to decode the transmission with the next

highest SINR, T (2), and goes on until the transmission

being decoded is the packet of interest.

B. MAC Layer

At the MAC layer, we implement a simple transmission

protocol based on a request-to-send/clear-to-send (RTS/CTS)

handshake. Every time node D(i) wants to send a packet to

node D(j), it checks the destination availability by sending

an RTS packet; if D(j) is not busy, it replies with a CTS so

that D(i) can start transmitting the packet. Correct reception

is acknowledged by means of an ACK packet. In the case

of decoding failure, after a random backoff time, node D(i)

schedules a new transmission attempt, unless the maximum

number of retransmissions Mtx has been reached, in which

case it discards the packet. Signaling packets only need a

single time slot for transmission, and are transmitted twice in

order to increase their robustness through time diversity. Data

packets may instead span several time slots, and only error

detection (with retransmission in case of error) is performed

on them.
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C. Network Layer

The source and destination nodes are not necessarily within

coverage range of each other, so we consider multi-hop

transmissions. Two nodes can communicate directly if their

distance is less than or equal to the transmission range r. To

transmit to destinations that are not within coverage, nodes

use static routing tables, which are built using optimized link

state routing (OLSR) [30]. Each time a node generates a new

packet, or receives a packet to be forwarded, it puts it in the

node queue, with first-in-first-out (FIFO) policy. The buffer

size b is fixed and equal for all nodes. If a new packet arrives

when the buffer is full, it is discarded.

IV. COST METRICS

In this section, we define two different cost metrics that can

be used as performance indicators by the networks. These cost

metrics can be computed from path parameters (PPs, relative

to the source and destination nodes), which in turn can be

decomposed in LPs (defined for each single node in the path)

that can be estimated through a Bayesian approach.

Given the path from D(i) to D(j), the first PP is the delivery

delay ζ(i,j), defined as the average end-to-end delay of a

packet sent along the path, given that the packet is received.

The other PP is the packet loss probability p
(i,j)
pl , defined as the

probability that a packet is lost along the path. Notice that no

end-to-end packet retransmission mechanism is implemented

in our network. These PPs are taken into account by each of

the cost metrics. In fact, ignoring lost packets (i.e., computing

the delay statistics only on correctly delivered packets) may

lead to an optimistic evaluation of the network performance

under heavy traffic, where few packets actually reach the

destination. In this case, a high-loss path might end up being

considered better than a more reliable path with a slightly

higher delivery delay. The other extreme, i.e., defining the

delay contribution of a lost packet as infinite, makes the delay

evaluation meaningless. Clearly, neither option is desirable in

our case.

In the following we define two cost metrics designed for two

different network scenarios. We consider different cost metrics

because this paper is not focused on a particular network

application, thus, the cost metrics can be thought of as the

performance indicators of different scenarios. Moreover, we

want to remark that the approach used in this paper does not

critically depend on the considered performance metric, and

different metrics can be easily accommodated.

A. Lost or not in-time packet rate: PIT

In many applications, the packets should be delivered within

a given maximum delay, dmax, e.g., in a VoIP application.

If a packet successfully reaches the destination after a delay

longer than dmax, it is considered obsolete and discarded. In

this scenario, to calculate a cost metric we should estimate

the probability p̂
(i,j)
IT of in-time delivery of a packet in the

path from D(i) to D(j), given that the packet is correctly

received. Considering K successful transmissions, each with

packet delivery delay ζ
(i,j)
k , k = 1, . . . ,K, we can estimate

p̂
(i,j)
IT =

K
∑

k=1

1
(

ζ
(i,j)
k ≤ dmax

)

K
, (4)

where 1(·) is the indicator function. Thus, the in-time packet

arrival rate is

λIT =
(

1− p
(i,j)
pl

)

p̂
(i,j)
IT

λ

n− 1
, (5)

where n is the number of nodes, and the lost or not in-time

packet rate can be written as:

P
(i,j)
IT =

(

p
(i,j)
pl +

(

1− p
(i,j)
pl

)

(1− p̂
(i,j)
IT )

) λ

n− 1
. (6)

B. Information obsolescence: PIO

In a monitoring application, we assume that each node is

tracking a specific signal and we are interested in calculating

the average time interval since the last correctly received

packet was generated, i.e., the average obsolescence of the

information from node D(i) at the receiving node D(j). We

recursively define it as:

P
(i,j)
IO =

(

1− p
(i,j)
pl

)(

ζ(i,j) +
τ

2

)

+ p
(i,j)
pl

(

τ + P
(i,j)
IO

)

,

(7)

where the two terms account for the obsolescence of the

information in case of correctly received and lost packets,

respectively. In the case of a packet correctly received, we

consider that the obsolescence of the last correctly received

packet varies linearly from ζ(i,j) at the moment in which

the packet is received, to ζ(i,j) + τ , immediately before

the next packet is received. Thus, the average information

obsolescence is given by ζ(i,j) + τ/2. In the case of a packet

loss, an additional time interval τ is added to the information

obsolescence every time a packet is lost.1 From the recursive

definition in (7) we obtain:

P
(i,j)
IO = τ

p
(i,j)
pl

1− p
(i,j)
pl

+ ζ(i,j) +
τ

2
. (8)

Once we have estimated the cost metric for each couple of

nodes in the two networks, we can estimate the cost metric

of the whole network, P , defined as the average of a cost

metric (chosen between PIT and PIO) over all the couples of

nodes belonging to the network. The aim of each network is

to adopt a cooperation strategy that minimizes its cost metric

P , as addressed in Section VI. In the following section, we

propose a method to decompose ζ(i,j) and p
(i,j)
pl , needed for

the computation of P , into local parameters.

C. Computation of the PPs from the LPis

The delivery delay ζ(i,j) is determined by the number of

retransmissions in each link on the path. Indeed, for multi-

hop routes, a packet has to wait at each relay node until all

1Notice that in our network scenario the packets are received at the
destination node in the same order they are transmitted.
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the packets ahead in the FIFO queue have been sent. The

loss of a packet can be caused either by an excessive number

of retransmissions, which lead to a packet drop, or by buffer

overflow, i.e., the packet is discarded if the next relay has

a full queue. Thus, both the delivery delay ζ(i,j) and the

loss probability p
(i,j)
pl depend on the channel and interference

conditions in each link of the path, that in turn depend on the

nodes that the routing protocol selects as relays.

In a static network, it is possible to estimate ζ(i,j) and

p
(i,j)
pl during a training period, which on the other hand is

impractical if the network is dynamic, i.e., in the presence of

mobile nodes or time-varying traffic. We propose a different

way of estimating the delay and the loss probability, based only

on instantaneous topological and routing information. Since a

packet sent over a multi-hop path has to traverse a number

of nodes before reaching the destination, we decompose the

overall path delivery delay and the overall path loss probability

into contributions given by the various traversed nodes, and

we assume that such contributions are independent. More

precisely, the overall delivery delay is given by the sum of the

average delays required to traverse every single node (time

in queue plus transmission time), whereas the overall loss

probability is obtained from the loss probabilities at every node

(probability of too many transmission failures and probability

of buffer overflow). If R(i,j) is the set of nodes belonging to

the path between D(i) and D(j) (excluding D(i) and D(j)),

we have:

ζ(i,j) = ζ(i) +
∑

h∈R(i,j)

ζ(h) , (9)

where ζ(h) is the average time between the arrival of a packet

at node D(h) and its reception at the next hop. This delay

depends on the next relay; indeed, while the time needed

for traversing the queue is the same for all packets, the time

required for a successful transmission depends on the channel

condition and on the receiver availability, and hence on the

next hop chosen. We consider ζ(h) as averaged over all the

packets sent by node D(h) to the next-hop relays.

The packet loss in the multi-hop path is calculated in a

similar way, i.e.,

p
(i,j)
pl = 1− (1− p

(i)
tf )(1− p(j)qo )

∏

h∈R(i,j)

(1− p
(h)
tf )(1− p(h)qo ) ,

(10)

where p
(h)
tf is the probability that a transmission from node

h to the next hop fails because the maximum number of

retransmissions is reached, and p
(h)
qo is the probability that a

packet correctly received at node D(h) is discarded due to

buffer overflow. Furthermore, we notice that p
(h)
qo depends on

the queue of the receiving node D(h), while p
(h)
tf depends also

on which node is used as next hop. For this reason, similarly

to ζ(h), we consider a value averaged over all the neighbors

of D(h).2

2The underlying assumption is that the probabilities p
(h)
qo and p

(h)
tf

, with

h ∈ R(i,j), are all independent. This is a reasonable assumption since there
are multiple flows that contribute to the queue length in each node, and the
fading considered is spatially uncorrelated.

V. BAYESIAN NETWORK ESTIMATION OF PERFORMANCE

PARAMETERS

In this section we describe how the values of the LPs are

estimated at each node with a BN approach as a function of

the TPs. First, we overview the BN method, then we describe

the learning phase, in which we collect all the variables in a

centralized fashion and exploit this data to learn the BN that

describes the probabilistic relationships among them. Finally,

we show how the BN is used to estimate the LPs for each

node in the network.

A. Bayesian Network preliminaries

A BN is a probabilistic graphical model [17] describing

conditional independence relations among a set of M random

variables through a directed acyclic graph (DAG), which is

composed of vertices and directed edges. A vertex v in the

graph represents a random variable, while a directed edge from

vertex v to vertex u represents a direct probabilistic relation

between the corresponding variables. In this case, we say that

node v is a parent of node u.

Learning the DAG is equivalent to calculating an approx-

imate structure of the joint probability distribution among

the M variables. In the general case, in which there are

no conditional independences among the variables, the joint

probability is represented by a complete DAG, in which every

pair of nodes is connected by an edge. In this case the

joint probability is very complex, so the size of the dataset

of realizations needed to learn the quantitative probabilistic

relationships can be extremely large. Thus, it is important to

study the conditional independences among the variables in

order to simplify the joint probability, or, equivalently, to cut

some of the edges of the complete DAG.

B. BN: learning phase

The BN learning phase can be summarized in the following

algorithm:

1) collect the dataset D from training topologies;

2) select a set A = {S1, . . . , S|A|} of DAGs (possibly

including the best fitting DAG);

3) for each S ∈ A, calculate θS , the maximum-likelihood

(ML) parameters of the distribution (parameter learning);

4) choose the DAG S and the parameters θS that maximize

the score function BIC(S|D).

Points 2)–4) are known as the structure learning phase, while

point 3), which is part of the structure learning phase, is known

as the parameter learning phase of the BN learning algorithm.

In the following, we detail how these steps are implemented,

and what is the computational complexity of each of them.

Dataset Collection. In this phase, we need to collect a

dataset D with instances of all the parameters involved. D
will be used to learn the probabilistic relationships among the

parameters. The TPs are the number of flows F (i), obtained

from the routing table, and the number of neighbors N (i).

These two parameters can be calculated for each node in

the network based on the network topology, i.e., with the

knowledge of the available relays and of the routing table.
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Given a specific training topology, we can evaluate also the

values of the LPs ζ(i), p
(i)
tf , and p

(i)
qo .

In this paper, we simulate several training topologies, as

detailed in Section VII, in order to study the probabilistic

relationships among all the variables. In a real network, in

which the topology changes due to mobility, the instances that

populate the dataset D can be collected during a training phase

at the beginning of the communications. Since the nodes are

mobile, assuming a sufficiently long training period, the entries

collected in this scenario are analogous to the ones collected

over several static topologies.

Structure learning. This is a procedure to define the

DAG that represents the qualitative relationships between the

random variables, i.e., the presence of a direct connection

between a pair of variables. We use a score based method [31],

i.e., we do not assume any a priori knowledge on the data, but

we just analyze the realizations of the variables and we score

each possible DAG with the Bayesian information criterion

(BIC) [32] that we have chosen as a score function. The BIC

is easy to compute and is based on the ML criterion, i.e.,

how well the data D is represented by a given structure, and

penalizes DAGs with a higher number of edges. The BIC score

function can be written as:

BIC(S|D) = log2 P (D|S, θ̂∗S)−
size(S)

2
log2(N) , (11)

where S is the DAG to be scored, θ∗S is the set of parameters

of S estimated with ML, and N is the number of realizations

for each variable in the dataset. In our case we have M = 5
multinomial variables, where each variable v has a finite set

of outcomes rv . We define qv as the number of configurations

over the parents of v in S, i.e., the number of possible

combinations of outcomes for the parents of v. A specific

realization over all the parents of v is named p. We define

also Nvpk as the number of outcomes of type k in the dataset

D for the variable v, with parent configuration of type p. Nvp

is the total number of realizations of the variable v with parent

configuration p. Given these definitions, it is possible to rewrite

the BIC for multinomial variables as [31]:

BIC(S|D)=

M
∑

v=1

qv
∑

p=1

rv
∑

k=1

log2

(

Nvpk

Nvp

)

−
log2 N

2

M
∑

v=1

qv(rv−1),

(12)

which reduces the complexity of the scoring function to that of

a computationally tractable counting problem. For a detailed

comparison of scoring functions for structure learning, please

refer to [33]. The best BN structure is then obtained as:

S∗ = argmax
S

BIC(S|D) , (13)

and is represented in Fig. 2. We have verified that this BN

is the same for all values of λ, while quantitatively the

probabilistic relationships, i.e., θS∗ , change with λ.

Parameter learning. This phase consists in estimating the

parameters of the joint distribution for each DAG S ∈ A.

To obtain the joint distribution, it suffices to estimate the

probability of each variable conditioned by the variables that

correspond to its parent nodes in the graph. The parameters

Fig. 2. BN showing the probabilistic relationships among the 5 variables of
interest: ζ, ptf , pqo F , and N . This BN is valid for any node D(i) in the
network.

of the joint distribution given by the DAG S are θS , and the

ML choice of the best fitting parameters is:

θ∗S = argmax
θS

P (D|S, θS) . (14)

In our case this can be seen as a simple counting problem,

since all the variables are multinomial, see [17].

Computational complexity The structure learning phase

is an NP-complex problem, and in particular the number of

structures that should be evaluated with the BIC algorithm

increases super exponentially with the number of nodes in

the DAG, making the problem intractable even for a moderate

number of nodes. In our case, with M = 5 variables, there are

almost 3 · 104 DAGs, so an extensive search would require to

evaluate all the data for each possible DAG to select the DAG

that best fits the data according to the BIC criterion. This is

computationally very intensive, so we have chosen to perform

this search with a hill climbing algorithm, e.g., see [34], that

can efficiently find local maxima, and can be restarted multiple

times to find a good approximation of the optimal DAG.

For what concerns the parameter learning phase, the ML

estimation of the parameters of the distribution is just a

counting problem, so each parameter can be estimated in linear

time as a function of the size of the dataset, |D|. This phase

should be repeated for each choice of S ∈ A.

We remark that the whole learning phase should be run

only at the beginning of the transmissions. The result is a

DAG that is valid for each node in the network, can be used

to calculate the cost metric for the whole network, and need

not be recalculated if the network changes due to mobility or

to a different choice of relay nodes.

C. Bayesian Network estimation

The BN estimation algorithm works as follows:

1) for each node in the network, the values of the TPs, N
and F , are observed;

2) the estimation of the LPs is obtained using the joint

probability distribution with structure S∗ in (13) and

parameters θ∗S∗ ;

3) the expected values of the LPs, from all the nodes, are

used to calculate the cost metrics.
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After the initial training phase, we can exploit the BN

to infer the values of the LPs in constant time, since we

just need to apply the joint probability that was previously

calculated. Observing the BN structure in Fig. 2, we notice that

according to the D-separation rules [17] all the nodes in the

DAG are statistically independent if they are conditioned by

the observation of the value of F . Thus N does not influence

the values of the three LPs if F is also observed. Furthermore,

once we calculate from the routing table the value of F , we

can estimate separately the probability distribution of the three

LPs. From these estimated parameters, we can also calculate

the cost metric for the network P , as detailed in Sec. IV. The

expected values of the LPs can be determined by each node,

or they can be calculated by a central entity that knows the

number of flows F at each node 3.

We stress the fact that this BN is representative of the gen-

eral probabilistic relationships among the variables involved,

thus the same BN can be exploited for different topologies. In

the case of a mobile network, every time the topology changes

due to mobility the TPs N and F change as a function of the

available relay nodes. However, the BN structure remains the

same, so we can easily estimate the new LPs.

We should notice that this procedure is different from using

a training period to directly derive the LPs in the scenario

of interest. Indeed, in that case, a training period would be

needed every time the topology changes, in order to estimate

the new LPs for each node in the network. On the contrary,

with our procedure we can estimate the general joint prob-

ability distribution among TPs and LPs, and this probability

distribution can be applied to any network topology.

VI. GAME THEORETIC COOPERATION STRATEGY

Game theory [35] is a branch of applied mathematics

that studies strategic situations, called games, in which self-

interested and strategic individuals, called players, interact

together. The goal is to find equilibria in these games, i.e.,

a set of strategies from which players are unlikely to deviate.

In this section, we model and analyze through GT the

interaction between the two networks. Even though cooper-

ation allows a social gain, it will be actually enabled only

by individual choices of all the networks, which individually

decide their interests in cooperating, and accurately select the

set of nodes to share. We first consider a static game with

complete information, which models a one-shot interaction of

the networks, and show that the networks do not have any

incentive to cooperate in such a context. Then, we consider a

repeated game model, which is more suitable for our scenario

and allows to trigger cooperation among the networks.

A. Static game with complete information

We label the nodes of the networks from 1 to n1 + n2,

where the nodes in sets S1 = {1, ..., n1} and S2 = {n1 +
1, ..., n1 + n2} belong to networks 1 and 2, respectively. We

formally define the static game with complete information Γ

3The number of flows F at each node can be easily determined knowing
the topology of the network and the routing algorithm adopted.

as a tuple 〈N,A, U1, U2〉, where N = {1, 2} is the set of

players, i.e., the two networks, and A = A1 ×A2 represents

the set of action profiles, in which Ak is the set of actions

for player k, k ∈ N . An action ak ∈ Ak represents the

set of nodes shared by player k. An operator may not be

willing to share too many nodes or some important nodes,

e.g., for security or privacy reasons, thus the action set Ak

is a subset of the power set of Sk, Ak ⊆ 2Sk . The utility

function Uk : A1 × A2 → R quantifies player k’s goodness

coming from the adopted actions, and we reasonably assume

that this is a decreasing function of Pk(a1, a2), which denotes

the cost metric for network k, given that the sets of nodes

shared are a1 ∈ A1 and a2 ∈ A2. Given the actions a1 and

a2, the routing tables change accordingly, the number of flows

for each node can be computed, Pk(a1, a2) can be estimated

through the framework introduced in Sections IV and V, and

finally the utility Uk(a1, a2) can be obtained. In particular,

Uk(∅, ∅) is the utility of network k when no nodes are shared.

We say that an action ak is non trivial if the shared nodes are

exploited by the other network to obtain more efficient paths.

Except for the no cooperation action ak = ∅, we consider

only non trivial actions. Indeed, a trivial action is equivalent

to the no cooperation action ∅. We assume that all the actions

are played simultaneously (static property), and all the action

sets and utility functions are known by every player (complete

information property).

We define the Nash Equilibrium (NE) as the action profile

aNE = (aNE
1 , aNE

2 ), where each player obtains its maximum

utility given the action of the other player, i.e.,

U1

(

aNE
)

≥ U1

(

a1, a
NE
2

)

, ∀ a1 ∈ A1 ,

U2

(

aNE
)

≥ U2

(

aNE
1 , a2

)

, ∀ a2 ∈ A2 . (15)

A NE is an action profile which is stable against unilateral

deviations and is an important solution concept in static games

with complete information. Unfortunately, the existence and

uniqueness of NEs in A are not guaranteed in general, and NEs

can be inefficient from a social point of view. The efficiency

is captured by the concept of Pareto optimality. An action

profile is Pareto optimal if there exists no other action profile

that makes every player at least as well off, while making at

least one player better off.

Proposition 1. The only NE of Γ is aNE
1 = aNE

2 = ∅.

Proof: For every action played by the other network, a

generic player k strictly prefers playing action ∅ , i.e., not

to share any node. In fact, shared nodes strictly increase the

traffic handled by the network, which in turn strictly increases

the cost metric and strictly decreases the utility.

In the considered static game formulation it is not possible

to provide incentives for the networks to cooperate, since

whatever the other network decides, a network would never

want to manage additional flows of packets belonging to the

other network. However, we argue that this static formulation

is not a proper model for the scenario we have in mind,

in which the interaction among the networks is sustained

over time. In this case, a repeated game formulation is more

suitable.
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B. Repeated game

We consider the repeated game ΓR that takes place through

stages in time, and at each stage the players play the same

stage game Γ repeatedly, knowing the actions the other net-

work has adopted in the previous stages. Because players can

condition their play on the information they have received in

the past, a player has to take into account how its current

action will affect the future evolution of the game.

We define the average utility of a generic network k as

UR
k = (1− δ) lim

T→+∞

T
∑

t=1

δt−1U
(t)
k ,

where U
(t)
k is the utility obtained by network k at stage t and

δ ∈ (0, 1) is a discount factor, which captures the fact that a

present reward is better than a future one.

In the context of repeated games, a player k has to select

a strategy sk : Hk → Ak which specifies every action to

take conditioned on the past history hk ∈ Hk. The NE

concept defined by (15) for game Γ can be easily extended

to the repeated game ΓR, by substituting the actions with

the strategies, the action sets with the strategy sets, and the

single stage utility with the average utility. A subgame-perfect

equilibrium (SPE) is a particular NE, in which the players’

strategies are a NE in every subgame, i.e., starting from any

possible stage and for any possible history.

We can design an efficient cooperation strategy profile

s∗ = (s∗1, s
∗
2), which is a SPE of ΓR. The key idea is

the adoption of a so-called trigger strategy s∗ in which the

two networks follow by default the cooperation action profile

a∗ = (a∗1, a
∗
2) and, as soon as one of the two networks

deviates from this action profile, the other network punishes

it by adopting the no cooperation action ∅ forever.4 Being

selfish players, the networks select their desired cooperation

profile so as to maximize their own gain. Thus, in general,

the cooperation profiles preferred by the two networks do

not coincide. Inspired by the Nash bargaining solution [35],

we assume that the two networks coordinate to the same

cooperation action profile a∗ solving the following problem5

a∗ = argmax
a∈A

(U1(a)− U1(∅, ∅)) (U2(a)− U2(∅, ∅)) , (16)

subject to:

Uk(a)− Uk(∅, ∅) > 0 , k = 1, 2 .

This corresponds to the solution that an impartial arbitrator

would recommend to increase in a fair way the utilities of both

networks. Notice that such a solution is a Pareto optimal action

profile in the stage game Γ. In fact, if there existed an action

a ∈ A such that Uk(a) ≥ Uk(a
∗), k = 1, 2, with the inequality

4For the sake of simplicity, we avoid considering more complicated
strategies, where the cooperation action changes at each stage, as they would
cause several intricacies at the network layer, e.g., for what concerns routing
table updates and route repairing.

5To solve (16) each network must know which are the nodes the other
network is willing to share (i.e., the action space) and how its own utility and
the utility of the other network are affected by each cooperation possibility.
How the two networks collect this information is out of the scope of this
paper, and is left for future research.

being strict for at least one player, then the constraints would

be satisfied also for a and the objective to maximize would

be higher in a than in a∗, leading to a contradiction.

Proposition 2. If (16) has no solution, there exist no cooper-

ation action profile a∗ 6= (∅, ∅) and trigger strategy s∗ such

that s∗ is a NE of ΓR.

Proof: Assume that (16) has no solution; thus, for any

trigger strategy s∗ that uses a cooperation profile a∗, either

network (or both) cannot have a larger utility for a∗ than for

the no cooperation point. Without loss of generality, assume

U1(a
∗) ≤ U1(∅, ∅). Thus, if network 2 plays s∗, network 1

can play the no cooperation profile ∅ achieving on average

UR
1 (∅, s∗2)=(1− δ)U1(∅, a

∗
2) + (1− δ) lim

T→∞

T
∑

t=2

δt−1U1(∅, ∅)

> (1− δ) lim
T→∞

T
∑

t=1

δt−1U1(∅, ∅) = U1(∅, ∅) ≥ UR
1 (s∗1, s

∗
2)

where the first inequality, i.e., U1(∅, a
∗
2) > U1(∅, ∅), is valid

because network 1 can exploit the nodes shared by network 2
to find better paths and only non trivial actions are considered.

The last inequality is valid by assumption. Thus, network 1
has an incentive to deviate from s∗ and therefore no trigger

strategy can be a NE.

Since a SPE is a particular NE, if (16) has no solution

then no trigger strategy SPE exists. In this case, we assume

that the networks never cooperate (a = (∅, ∅) is a NE of the

stage game Γ, hence it is also a SPE of ΓR if it is played

in every stage). Notice that (16) is without solution if there

exists no action profile a 6= (∅, ∅) such that both networks can

benefit from cooperation, which is possible, though unlikely (it

would happen, for example, if the networks were topologically

disjoint).

Proposition 3. If a∗ is a solution of (16) and δ is close enough

to 1, then the trigger strategy s∗ is a SPE of ΓR.

Proof: This proposition is a direct consequence of Fried-

man’s theorem [35]. It can be proven by observing that, if

either network deviates at step t from the trigger strategy s∗,

it gets punished by the other for every subsequent repetition

and therefore faces a utility loss from step t+1 onwards. Thus,

if δ is close enough to 1, the utility loss is sufficiently high to

discourage a deviation from the trigger strategy.

If the assumptions of Proposition 3 are satisfied, then the

two networks can agree to share the nodes according to the

cooperation action a∗, and the trigger strategy s∗ is a guarantee

for both of them that the agreement will be fulfilled.

VII. RESULTS

In this section, we describe the simulation setup and present

the performance results of the proposed framework that can

be summarized in the following steps: 1) we measure the

parameters of interest over several random training topologies

with fixed setup; 2) we use the BN method to infer the joint

distribution among ζ, ptf , pqo, F , and N , valid for each

node in the network; 3) in the scenario of interest, the two
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TABLE I
SIMULATION PARAMETERS

Number of nodes per network 10

Network area size [m2] 200× 200

Transmission range, r[m] 75

Transmission power [dBm] 24

Chip rate [chip/s] 7.5× 10
6

Noise floor [dBm] −103

Path loss exponent 4

Path loss fixed term 1000

Fading correlation factor, ρ 0.9

Modulation type BPSK

Time slot duration [ms] 1

Spreading factor Sf 32

Packet length [bit] 4096

Packet transmission time [slots] 6

Transmission rate, λ [pkts/s/node] 1 to 5

Buffer size b [pkts] 16

Maximum number of MAC retransmissions 5

Initial backoff window [slots] 16

Routing algorithm OLSR

Simulation duration [slots] 10000

networks evaluate the cost metrics Pk(a1, a2), k ∈ {1, 2}, for

all possible choices of the sets a1 and a2 of shared nodes; 4)

the two networks compute the two sets of nodes to be shared

a∗1 and a∗2 by solving (16), and adopt the trigger strategies s∗1
and s∗2 to enforce the cooperation choice.

A. Simulation Setup

We developed a MATLAB network simulator which en-

compasses the layers from physical to routing, as described

in Section III. We adopt a standard Rayleigh fading channel

between each pair of terminals in each time slot, and the BER

of each transmission is determined through the BPSK SINR-

based expression. The system parameters are reported in Table

I, with the packet size being typical of a generic information

packet sent in vehicular ad hoc networks. Each simulation run

is performed with randomly generated connected networks,

deployed on a square area of fixed size, and lasts for 10000
time slots. With the given parameters setup, we first identified,

through simulation, the value λt of packet generation intensity

which results in an end–to–end packet loss probability of 0.1.

This can be seen as a threshold value between a lightly loaded

and an overloaded network. Different values of the normalized

traffic generation intensity λn = λ/λt were considered, from

λn = 0.4 up to λn = 2.

In the learning phase we performed 500 simulation runs

(training topologies) for each value of λn. The data collected,

D, is used for BN learning as detailed in Section V. The joint

distribution is derived, and the expected values of the LPs

(namely the average delivery delay ζ, the probability of buffer

overflow pqo and the probability of transmission failure ptf )

conditioned on F are inferred for every node.

In the subsequent steps, a new set of 500 simulation runs

was performed for each value of λn. In each run, two networks

are again randomly deployed. We investigate the average

performance of the networks when 1) no nodes are shared,
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Fig. 3. BN estimation of the average delivery delay ζ as a function of the
number of flows F passing through the node.
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Fig. 4. BN estimation of the probability of buffer overflow pqo as a function
of the number of flows F passing through the node.

namely No Coop; 2) two randomly chosen nodes are shared,

namely 2 Rand; 3) two nodes selected through the proposed

game theoretic approach are shared, namely 2 GT; 4) all nodes

are shared, namely Full Coop. To adopt the game theoretic

approach, we define the utility function for each network

as the reciprocal of the cost metric for that network, i.e.,

Uk(a1, a2) = [Pk(a1, a2)]
−1, and the networks can share

either no nodes or exactly 2 nodes. Although our approach

can be extended to a number of cooperating nodes larger

than 2, our results show that a large fraction of the available

cooperation gain is already achieved with this choice. Finally,

(16) is solved through an exhaustive search.

B. Bayesian Network estimation

Exploiting the BN approach proposed in Section V, we can

evaluate the expected value of the three LPs, as a function of

the number of flows F passing through the node and of the

normalized traffic intensity λn. The expected values of ζ, pqo,

and ptf are shown in Figs. 3, 4 and 5, respectively. Note that

there is only a limited number of flows with different sources

and destinations that can be injected in the network and, in

the considered scenario, this number is very unlikely to exceed
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Fig. 5. BN estimation of the probability of transmission failure ptf as a
function of the number of flows F passing through the node.
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with two nodes shared, chosen via game theory (2 GT); and with all nodes
shared (Full Coop).

90, which explains our choice of the scale for the x-axis in

the figures. We also observe in Fig. 3 that for very high values

of F and λn, the average delivery delay remains stable. We

conjecture that this happens since the queues of these nodes

are full most of the time, so the time to traverse them cannot

grow further.

Notice that the choice of different values for the setup

parameters, such as the transmission power or the buffer size,

would result in different distributions of the LPs (ζ, pqo and

ptf ). The framework is therefore able to adapt to different

configurations and to derive the corresponding cooperation

strategy which best fits the analyzed scenario.

C. Cooperation performance

In Fig. 6, we adopt the cost metric PIO for the relay

selection with the GT approach. We present the actual gain,

in terms of reduction of PIO, offered by the considered co-

operation strategy. The curves are obtained by averaging over

all the random topologies, each consisting of two networks,

with n = 10 nodes each.
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As intuition suggests, full cooperation grants the highest

benefits, due to the higher spatial diversity. Hence, this is

the minimum achievable cost for the scenario investigated.

This benefit is most pronounced when λn = 1.4, i.e., when

the cost metric PIO reaches its minimum as a function of

λn. When the networks are heavily loaded, cooperation still

grants a significant benefit, but the cost PIO increases, since

more packets are lost due to congestion. When only two

nodes can be shared, the choice of the shared nodes makes

the difference. In fact, Fig. 6 shows that a careful selection

of the resources to be shared can significantly increase the

achievable gain when compared to a blind random selection.

A random selection does not offer any significant gain for

lightly loaded networks, while, for heavily loaded networks, it

can offer only one third of the gain granted by full cooperation.

On the contrary, if the shared nodes are chosen by means of

our game-theoretic approach, the maximum achievable gain is

almost fully obtained for lightly loaded networks and closely

approached for heavily loaded networks.

In Fig. 7 and Fig. 8 we adopt the cost metric PIT for

the relay selection to study the in-time packet performance.

Instead of showing PIT , which is decreasing as a function
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of the normalized packet generation intensity λn, we show

the performance of the four cooperation strategies in terms of

in-time packet arrival rate, λIT , which has a more interesting

behavior, with a global maximum. In Fig. 7 we show λIT for a

maximum allowed delay dmax = 100 slots and for dmax = 600
slots. We notice that also in this case, an accurate choice of

the cooperating nodes made by our cooperation strategy 2 GT

achieves the same performance of the case in which all nodes

are shared, namely Full Coop. Instead, a random choice of the

nodes to share, 2 Rand, provides only a third or less of the

total gain achievable with full cooperation.

In Fig. 8, we show λIT as a function of the maximum

allowed delay dmax for a packet generation intensity λn =
1.2 and for λn = 2. We observe that varying the maximum

allowed delay dmax with our cooperation strategy 2 GT we

obtain the same gain as with full cooperation, while with a

random choice of the cooperating nodes we obtain less than

a third of the total gain achievable with full cooperation.

We have also studied situations with different numbers of

nodes. The results (not reported here due to space constraints)

show that the advantage of relay sharing depends on the sizes

of the two networks, as expected. In particular, a high node

density provides increased diversity to each individual net-

work, thus reducing the benefit of cooperation. An important

conclusion is that the proposed framework proved to be able to

obtain most of the available cooperation benefit in all cases we

considered, reaching a performance very close to that of full

cooperation when sharing only a small fraction of the nodes.

D. Extension to a generic number of networks

So far, we have considered for simplicity a scenario with

two networks, but the proposed methodology can be applied

to a generic number m of coexisting networks. First, the

sharing model must be identified. Possible options include the

following: 1) each network selects m−1 sets of nodes to share,

one for each of the other networks; 2) each network selects

a single set of nodes to share with all the other networks;

and 3) networks are divided in subgroups (e.g., 2 networks

for each subgroup) and cooperation is possible only within

the same subgroup. 1) represents the most general case, but

if there are many networks the best cooperation action may

be computationally too expensive, so that in this case 2) and

3) may be preferable. Once the sharing model is identified,

the approach described in this paper can be applied: the

parameters of interest can be measured over several random

training topologies, the BN approach can be used to infer the

joint probability distribution among them, a fair cooperation

action profile can be computed, and trigger strategies can be

used to enforce cooperation. Some minor modifications to the

proposed approach are necessary for the design of the trigger

strategy. If the computed cooperation action profile is such that

any network can benefit from the nodes shared by each of the

other networks, then a trigger strategy equivalent to the one

considered in the paper can be used (i.e., if network i refuses to

share its nodes with network j, then network j punishes it by

adopting the no cooperation action forever). If the cooperation

gain is more complex (e.g., network i benefits only from the

nodes shared by network j, j from the nodes shared by k,

and k from the nodes shared by i), then it may be beneficial

to consider a trigger strategy in which all other networks

jointly punish the deviating one. A full specification of the

cooperation strategy and a detailed performance investigation

for the case of more than two networks is left for future study.

VIII. CONCLUSIONS

In this paper, we have developed a framework which can

be used to select the best cooperation strategy between two

coexisting wireless networks sharing some of their nodes.

A Bayesian network approach has been used to derive the

statistical correlation between local topological parameters

and global system performance. Based on this information,

a game theoretic selection of the nodes which can guarantee

the highest benefit has been made. Even when only a small

fraction of the nodes is shared, a significant gain can be

obtained. In particular, for both lightly and heavily loaded

scenarios, the selection scheme based on game theory can

achieve almost the same performance as a full cooperation

scheme, for the two cost metrics considered.
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