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Abstract—We analyze information delivery over a network
where direct data exchange via wireless is not possible and
therefore intermittent connection through vehicular relaying is
used. We refer to a multi-hop scenario where a stationary unit
exchanges data packets with a destination outside its communica-
tion range, using passing-by vehicles as information carriers. In
such a context, we propose an exact mathematical model based
on Markov chains to quantify relevant performance metrics. In
particular, while throughput-related parameters can be directly
obtained via queueing analysis, delay statistics are more complex
to derive, due to the in-order delivery requirement for the
transmitted information content. Hence, data packets transported
by fast vehicles still need to wait for the reception of all previous
packets, possibly carried by slower vehicles. Nevertheless, by
properly exploiting structural properties of the resulting Markov
chains, the delay statistics can be fully characterized.

Index Terms—Markov processes, vehicular networks, queue-
ing analysis, delay analysis.

I. INTRODUCTION

Vehicular ad-hoc networks (VANETs) are built from mo-

bile nodes consisting of vehicles such as cars or buses, which

are equipped with on board transmission units. The relatively

high speeds of the mobile nodes imply a rapidly changing

network topology, and for this reason, network connectivity

is generally intermittent [1]. However, mobility patterns can

be predicted and even exploited for networking purposes; in a

sense, coverage is even extended by mobility, although without

continuous connectivity [2].

Application-wise, VANETs are suitable for disaster recov-

ery by realizing a self-organizing backup infrastructure in the

aftermath of a catastrophe. Outside emergency contexts, they

can be employed for public safety, e.g., to monitor vehicular

traffic in real-time, notifying car accidents and/or road conges-

tions [3]. They may also offer ambient surveillance for public

safety, pollution, or other environmental parameters, and they

can offer, to some extent, Internet connectivity to the on-board

units of private vehicles [4]. For all these applications, timely

delivery of data is an issue, and a characterization of the delays

encountered by data transmission is key.

Wireless communications in a VANET may involve only

vehicles or also stationary roadside units (SRU) [5]. The role

of SRU is to empower the inherently unreliable communica-

tions among vehicles, for example, by storing relevant data that

otherwise would be difficult to retrieve, since the vehicles are

mobile. However, SRUs are assumed not to be in coverage

range with each other, and therefore they need to resort to

multihop routing through vehicles [6].

dSD
Fig. 1. The scenario: an intermittently connected VANET linking two SRUs.

The scenario investigated in this paper is presented in

Fig. 1, similar to what proposed in [7] and [8], where it is

referred to as an archetypal vehicular intermittently connected

network. It consists of two SRUs, which are outside the

communication range of each other. However, they can exploit

vehicles, such as cars, traversing the connecting road, as data

mules. More precisely, the source SRU (S) can transmit data

to any vehicle moving towards the destination SRU (D) when

it is within coverage range. In turn, the vehicle will move and

traverse the distance dSD between the borders of the radio

coverages. Upon entering SRU D’s coverage range, the vehicle

will transmit the data to the destination. Data are therefore

stored in a queue at the transmitter’s side, and transmitted to

passing-by vehicles according to a first-come first-serve policy,

i.e., whenever a vehicle is present to piggyback them.

We will refer to any amount of data carried by one vehicle

as a “data packet.” For the purpose of the analysis, it does

not really matter whether packet sizes are identical. Actually,

it does not even matter how large a packet is; still, the data

packets need to be received in the right order at the receiver’s

side. Any packet received out-of-order will be stored in a

resequencing buffer, from which it will be released only when

all the packets transmitted before it are received as well.

Hence, if the system is seen as a queue of data packets, the

service process is random due to the fact that a packet is served

only when a vehicle passes by. Moreover, the service time is

variable because of different vehicle speeds, and also due to

the in-order delivery requirement.

For the sake of simplicity, we consider that all packet trans-

missions are fully reliable [7]. This assumption is reasonable if

the time, during which a vehicle traverses the coverage range

of each SRU, is large enough. The data channel between the

two SRU can be evaluated in terms of stability and throughput,

which in turn relate to the arrival rates of packets and vehicles.

Conversely, it is much more challenging to quantify the delay

encountered by data packets in such a system.



We can identify different delay terms that a packet may

experience [9], [10]. The queueing delay is the time spent by

a data packet in the queue of SRU S before being transmitted.

The transmission delay in this case would be the variable time

that a vehicle takes to traverse the distance dSD . Before being

released at the destination, a data packet may have to wait for

a further resequencing delay in the destination’s buffer. The

delivery delay is then defined as the sum of these two last

terms, i.e., the transmission delay and the resequencing delay.

Our goal in this paper is to present a rigorous analysis

of all these terms. Especially, the delivery delay is interesting

as it shows the non-trivial effect of packet transmission and

re-ordering at the receiver’s buffer. While the queueing delay

is directly understandable as depending on the congestion in

the sender’s queue, the delivery delay is determined by the

speed differences between vehicles. In this sense, our analysis

justifies contributions such as [8] whose focus is on selecting

the vehicles to carry the data packets according to their speed,

rather than exploiting them all on a first-come first-serve basis.

The rest of this paper is organized as follows. Section

II reviews related works from the literature. In Section III

we describe the mathematical model and we derive the delay

statistics. Section IV presents a numerical evaluation of the

proposed analysis. Finally, we conclude in Section V.

II. RELATED WORKS

The scenario studied in the present paper is directly related

to that analyzed by Khabbaz et al. in [8], where the transmis-

sion scheme also follows Fig. 1. However, the focus of that

paper is on selecting the best vehicles to piggyback the packet

to destination, and there is no derivation of the full delay statis-

tics, but instead the goal is to achieve low delays on average.

Thus, our analysis is kind of complementary to that study and

can be seen as an enabler for a more detailed optimization

framework. A similar related investigation is presented in [11];

the focus is also different from our contribution here, since

it involves determining an optimal schedule of transmission,

instead of the delay statistics. In both [8] and [11] there is

no investigation either on the arrival rates of packets in the

transmitter’s queue, which is assumed to be always full.

According to the discussion of these papers, also following

the system description made in [7], an analysis via Markov

chains present similarities with the studies of retransmission-

based techniques, such as automatic repeat request (ARQ),

presented in [10], [12], [13]. Investigations of ARQ involving

non-instantaneous feedback, such as [12], take into account

that the round-trip time of a data packet and its acknowl-

edgment is significantly larger than the packet transmission

time. Thus, similar instruments can be employed to analyze

our scenario, where no error correction is required (as the

packets are always delivered) but the propagation delays are

significant as they relate to the speeds of the vehicles.

In particular, a closely related model is explored in [13],

which exploits the same definition of queueing and delivery

delay. However, the focus there is not on vehicular networks,

but on an ARQ system with variable round-trip time. Since

in our scenario vehicles have different speed, that part of the

model is also similar. Still, there are many relevant differences

involving that variability of the transmission time in our

scenario is just a consequence of different vehicle speeds.

Moreover, in our analysis no retransmission is involved.

Another related paper is [5], which considers a low-density

vehicular network, which makes it impossible to guarantee

full connectivity among the vehicles and therefore impose to

resort to SRUs. Depending on the traffic parameters of both

vehicles and data, the authors investigate how to stochastically

guarantee a packet delivery within a given time constraint.

However, the main investigation of that paper does not involve

the delay statistics, but just the worst-case delay; moreover, the

analysis explores in detail on the placement of SRUs from a

planning perspective, and in particular the inter-SRU distance

as a parameter; in our analysis, such a value is fixed.

Because of intermittent connectivity of VANETs, Banerjee

et al. in [6] discuss the improvement brought by auxil-

iary infrastructure such as base stations and stationary relay

nodes. Therefore, also this paper is a source of inspiration

for the present contribution, since we consider a vehicular

connectivity between two SRUs. However, in that paper the

focus is on the trade-off between infrastructure cost and the

technical improvement brought. The main conclusion is that

even a small amount of stationary nodes in a VANET can be

extremely beneficial for the technical performance, especially

for what concerns the delay. Thus, this result supports and

motivates our analysis here for the scenario discussed above.

III. ANALYSIS

For the following analysis we consider a discrete (slotted)

time axis, where the time slot duration is τ seconds. For the

purpose of system evolution, assume that relevant events, such

as arrivals of data and/or transits of vehicles only occur at the

end of a time slot. We also assume that vehicle arrivals are

independent and following a Bernoulli process of intensity µ
vehicles/second. Thus, denote with Kv the number of slots

between the arrivals of two vehicles in the coverage range of

SRU S; Kv is a geometrically distributed r.v. with distribution

fKv
(k) , P[Kv = k] = q(1 − q)k, k ≥ 0 (1)

where q = µτ is the probability of vehicle arrival in a slot.

For the arrival of packets in the buffer of SRU S, we

analogously assume an independent and identically distributed

(i.i.d) Bernoulli process with intensity λ packets/second. Thus,

denoting with Kb the number of slots between two packet

arrivals at the transmitter’s side, we have

fKb
(k) , P[Kb = k] = p(1− p)k, k ≥ 0 (2)

where p = λτ is the probability of packet arrival in a slot.

If a packet arrives at the SRU S’s buffer and finds it

empty, and a vehicle is passing by, it is immediately avail-

able to be transmitted. Otherwise, because either there is

no vehicle to carry it towards the destination, or there are

other packets in queue, the newly arrived packet is enqueued

at the transmitter buffer. For the sole purpose of evaluating

the system throughput, one may consider a Geo(p)/Geo(q)/1
queue [7]. For instance, the stability condition of the queue



simply corresponds to imposing p < q. However, to quantify

the delay experienced by a data packet, we need to resort to a

more detailed analysis. As we will show, we cannot limit the

delay characterization to the queueing delay, but we also need

the additional term represented by the delivery delay.

Assume that also the speeds of the vehicles are i.i.d. and

distributed in the interval [Vmin, Vmax], with average V . For

the numerical evaluations in Section IV, we will consider a

truncated Gaussian distribution with standard deviation σV .

For simplicity, we treat the speed of the vehicles as constant

during the entire movement over distance dSD between the

borders of the coverage regions of SRUs. This assumption is

not strictly needed, but just simplifies the description. Thus,

the traversing time of a vehicle having speed v ∈ [Vmin, Vmax]
is given by dSD/v. However, since the time axis is discrete,

we need to take the traversing time as an integer number of

slots, i.e., we consider it to be equal to T = ⌈dSD/v/τ⌉.
Such a value falls within the interval [Tmin, Tmax], where

Tmin = ⌈dSD/Vmax/τ⌉ and Tmax = ⌈dSD/Vmin/τ⌉. As

a side remark, if the speeds of the vehicles are Gaussian

distributed, the traversing time T is not Gaussian. This is a

further difference from the numerical results shown in [13].

Now, let ρT be the probability that a vehicle traverses

the distance dSD in T time slots. Such a probability can be

computed by partitioning [Vmin, Vmax] in Tmax − Tmin + 1
intervals, each related to a different traversing time. The value

of ρT is achieved by integrating the speed distribution of the

vehicles over the corresponding interval. Thus, during each

time slot, either no vehicle arrives with probability (1−q), or

a vehicle arrives, which will be reach the destination in T
slots, and this happens with probability qρT .

The system can be described by a discrete time Markov

chain (DTMC), whose transitions occur every τ seconds [10].

A DTMC description fully characterizes the system, since it

is immediate to prove that the system state at time t, denoted

as X(t), only depends on the state X(t−1) in the previous

time slot, regardless of the past history, i.e.

P[X(t)=xt |X(t−1)=xt−1, X(t−2)=xt−2, . . . , X(0)=x0]

= P[X(t)=xt |X(t−1)=xt−1]

The state X(t) of the system must contain the sequence

of the residual traversing time (in slots) of the vehicles that

are moving from SRU S to SRU D at time t. This is a vector

of integers y, whose elements are within [0, Tmax]. Actually,

to have a tractable model, one may think of keeping track

only of a limited number of vehicles. Thus, we set a cap to

Nmax vehicles tracked. If such a value is properly chosen,

the approximation induced is almost negligible. However, one

can still have a fully exact model by setting Nmax = Tmax,

since the highest number of vehicles is present in the system

whenever Tmax consecutive arrivals of vehicles happen for

Tmax consecutive time slots, and all of these vehicles have

traversing times equal to Tmax.

At time t, if a vehicle arrives and its traversing time is T ,

we set the last element of y to T . At time t+1, the last element

of y will contain the new traversing time of the next vehicle,

and the previous vehicle will have traversing time equal to

T−1, since one slot has elapsed. As an additional rule, we

set the last element of y to 0 if no vehicle arrived in that

time slot. Finally, the corresponding element of y is set to 0
also when a vehicle arrives, but no packets are available in the

transmitter’s queue to be piggybacked to SRU D.

To better understand the evolution of vector y, assume

that the queue is always full, and Nmax = 4, Tmax = 5. If no

vehicle are present before time 0, and in the following four

time slots the system sees four arrivals with traversing times

T0=5, T1=2, T2=3, T3=4, then the evolution of y is

y(0)=[0005] , y(1)=[0042] , y(2)=[0313] , y(3)=[2024]

Thus, the number of possible values for the last entry

of y is Tmax − Tmin+2, since all values are possible from

Tmin to Tmax, plus 0. A position k < Nmax in y describes

instead a vehicle that started moving towards the destination

Nmax−k slots before; thus, the highest value of the kth

element of y is Tmax+k−Nmax. Just to simplify the com-

putation, if Tmin = 1, the number of possible values of y

is (Tmax + 1)(Tmax) . . . (Tmax − Nmax + 2). In the example

above, y can thus take 360 possible values.

For higher values of Tmax and Nmax such a number rapidly

increases. However, observe that, still referring to the example

above, y=[2024] is equivalent to y=[0224], as they both

represent a situation where 3 vehicles are traveling from SRU

S to SRU D and are due to arrive in 2, 2, and 4 slots. We

can therefore represent y with a notational convention that

the entries are written in increasing order (in particular, zero

entries are all moved to the left). If m is the number of non-

zero entries in y, we have the following situations:

– if m = 0, i.e., no vehicles are traversing dSD, y can only

be an all-zero vector.

– if m = 1, i.e., only one vehicle is traversing dSD, y has

only one non-zero entry that can take Tmax different values.

– if 2 ≤ m ≤ Nmax, there are m vehicles and y can take

Tmax(Tmax−1) . . . (Tmax−m+1) different values.

Thus, the number of possible values of y is

Υ =

Nmax
∑

m=0

m
∏

i=1

(Tmax + 1− i) + 1 (3)

In the numerical example with Nmax=4, Tmax=5, we have

Υ = 206, with a considerable reduction from the 360 alterna-

tives of the previous representation.

To complete the description, we consider, beyond y, also

the number q of data packets in queue at SRU S’s buffer. If

such a buffer can store up to Qmax packets, then at any time

t, q(t) is an integer in [0, Qmax]. This value evolves to q(t+1)
in the next time slot through a transition matrix















1− p p 0 0 . . . 0
q 1− p− q p 0 . . . 0
...

...
...

...
...

...

0 . . . 0 q 1− p− q p
0 . . . 0 0 q 1− q















.

Therefore, the buffer occupancy q(t) evolves as a birth-and-

death process, and the entire system X(t) = (q(t),y(t)) can

be framed as quasi-birth-and-death (QBD) [14].



Since any combination of q and y is possible, the total

number of states is Σ = (Qmax + 1)Υ. We can derive a

corresponding transition matrix T of the full state X(t). Each

element tij of this Σ × Σ-matrix will contain the transition

probability from the ith state to the jth. Because of the QBD

property, many transitions will have probability 0, and T will

be sparse [10]. Also,
∑Σ

j=1 tij = 1. The non-zero entries in

T will be all related to p, q, and the ρT values.

Consider a given X(t) = (q,y), where y contains m
traversing times T1, T2, . . . , Tm and Nmax −m zero entries.

For notational simplicity, we omit time index t where obvious.

From this state, if 0<q<Qmax and m<Nmax with strict

inequalities, X(t) can only transition to X(t+1) equal to

(q + 1,y−) with probability p(1− q) (4a)

(q,y−) with probability (1 − p)(1− q) (4b)

(q,y−← T ) with probability pqρT (4c)

(q − 1,y−← T ) with probability (1 − p)qρT (4d)

where y− denotes a vector obtained from y by decreasing all

positive entries by one. In other words, y− = [y− 1]+ where

1 is an all-one vector and [·]+ denotes the maximum between

the argument and zero, applied element-wise. Notation a← T
implies that T is added to vector a replacing a non-zero entry.

Remember that in writing vector y we make no distinction

on possible permutations of its entries and always write them

in increasing order; thus, the transitions written above may

require adjustments to keep this convention into account.

The transitions described by (4a)–(4d) also hold if

m=Nmax but at least one of the element of y is equal to 1. In

this case, there is a zero entry in y− that can be overwritten by

T . Instead, if y contains Nmax entries larger than 1, vehicles

arrivals in that slot are neglected and the transitions simply

become towards X(t+1) equal to

(q + 1,y−) with probability p (5a)

(q,y−) with probability 1−p (5b)

These equations may introduce a small approximation in the

computations, which can actually made almost negligible by

properly choosing Nmax. In particular, as argued before, there

is no approximation if Nmax is at least equal to Tmax.

If q = 0, there is no packet to draw from the queue, unless

a packet arrives in the same time slot, since we assumed that

a packet is immediately available for being transmitted in the

slot it arrives. The transitions from X(t) = (0,y) are towards

X(t+1) equal to

(1,y−) with probability p(1− q) (6a)

(0,y−) with probability 1− p (6b)

(0,y−← T ) with probability pqρT (6c)

Instead, if q=Qmax then the queue is full and cannot accept

any more packets. Thus, the event of a packet arrival without a

vehicle arrival in the same time slot forces the system to drop

one packet. The transitions are towards state X(t+1) equal to

(Qmax,y
−) with probability 1− q (7a)

(Qmax,y
−← T ) with probability pqρT (7b)

(Qmax − 1,y−← T ) with probability (1− p)qρT (7c)

By combining (5a)–(5b) with the subsequent systems (6a)–

(6c) and (7a)–(7c) to keep into account all cases, such as,

for instance, a full queue at the transmitter’s side and m
vehicles still traversing dSD, all the transitions can be derived

and collected into matrix T. If the number of states Σ is

manageable, such a matrix can be handled by mathematical

software such as Matlab [15] exploiting its sparsity properties.

The transition matrix T heavily depends on the arrival

probability p = λτ of packets in the system. For example, if λ
is increased so that p=1, the system becomes unstable as there

is always a packet arriving in the queue, which can be sent

only if a vehicle is available to carry it towards destination;

such a condition is also referred to in the literature as Heavy

Traffic [9]. In such a case, matrix T can be written as T1;

under Heavy Traffic condition the queueing delay is infinite,

but still the delivery delay can be quantified. Similarly, we

denote with T0 the matrix describing the case, where there

are no arrivals in the system, i.e., λ=0.

Matrix T can also be used to derive the statistics of the

metrics of interest through a matrix-geometric approach [14].

In particular, one can obtain the overall delay experienced by a

packet, denoted as τG, split into the previously defined terms,

namely, the queueing delay τQ and the delivery delay τD [10].

The first step to derive such delay metrics is the evaluation

of the steady-state probabilities of the Markov system. These

correspond to the probability of finding the system in a given

state X(t) when t ≫ 0 and can be found as a normalized

fixed-point π of the matrix T. In other words, if the Markov

chain is positive recurrent (which is immediate to verify to

hold in our case), we can collect the probabilities that the

system is in each state X(t) at time t ≫ 0, denoted as πX ,

into a Σ-sized vector π = {πX}, for which

Tπ = π (8)
∑

all X

π = 1 (9)

One can see (8) as a system of equations; however, it is not

full-rank and normalization condition (9) must be added, as π

is a probability vector. Thus, π is promptly found as

π =

[

T− IΣ
1

]−1









0
...

0
1









(10)

where IΣ is a Σ× Σ identity matrix.

In the case of Poisson arrivals, any arriving packet would

encounter the system in the steady-state probability π, due

to the so-called PASTA (Poisson arrivals see time averages)

property [12]. However, in our DTMC, packet arrivals are

Bernoulli distributed with probability p. Thus, the distribution

b(0) of the system state probabilities upon a packet arrival is

b(0) = T1π . (11)

(Recall that T1 is the transition matrix under Heavy Traffic.)

The derivation of (11) was observed for the first time by [10]

and is due to the one-step memory of the Markov chain. Thus,

in the previous time slot the system state is distributed as π

and after one arrival it transits according to T1.



To evaluate the queueing delay τQ we remark that each

time a new packet enters the transmitter’s queue, future

packet arrivals do not affect its delay [13]. So, we can “turn

off” the arrival process and see how long it takes for the

queue to become empty. A newly arrived packet can even

be immediately transmitted in the same time slot it arrives, in

which case τQ=0. This happens when the queue is empty and

a vehicle is available to carry it to SRU D; this means that

P[τQ = 0] = P[τQ ≤ 0] =
∑

j∈Q0

b
(0)
j (12)

where Q0 is defined as the subset of the Σ possible states for

which q = 0, so that the summation is made on all values of

the state X = j where q is zero and instead y is arbitrary.

Since we turned off the arrival process, i.e., we set λ to

0, the system evolves according to transition matrix T0. If

no packet arrives in the system, the queue is bound to be

empty after sufficiently many time slots. The vector of state

probabilities after k slots is thus

b(k) = (T0)
k b(0) (13)

and the same reasoning of (12) can be applied to b(k) to derive

P[τQ ≤ k] =
∑

j|q=0

b
(k)
j (14a)

P[τQ = k] = P[τQ ≤ k]− P[τQ ≤ k−1] (14b)

To justify the above equations, observe that the packet

arrived when the state distribution is b(0) can be seen as exiting

the queue when the value of q becomes 0 for the first time.

Thus, τQ can be seen as the first passage time through any of

the states in Q0 [10]. Also, note that Q0 is an absorbing state.

A similar reasoning that involves the b(k) vectors can be

employed to evaluate the distribution of the overall delay τG.

This time, instead of set Q0 we consider the all-zero state,

also absorbing, denoted as X = (0,0), where not only q = 0
but also all traveling vehicles have reached destination. Thus,

P[τG ≤ k] = b
(k)
(0,0) (15a)

P[τG = k] = P[τG ≤ k]− P[τG ≤ k−1] . (15b)

Now, to derive the distribution of the delivery delay τD we

simply observe that τG = τQ + τD and therefore

P[τG = n] =
n
∑

k=0

P[τQ = k] P[τD = n−k] . (16)

In other words, P[τG=n] is the discrete convolution of

P[τQ=n] and P[τD=n]. Since we have found the distributions

of τQ and τG, the distribution of τD can be promptly found

by reversing the convolution operator, i.e., as the discrete

deconvolution of P[τG = n] and P[τQ = n].
Extension: correlated vehicle speeds – In the equations

above, we can consider correlation between the vehicle speeds,

tuned by a real parameter r, with values between 0 and 1.

Then, we replace the value of r.v. T with the same value of

the preceding vehicle with probability r, and with probability

1−r we keep drawing an i.i.d. value from distribution ρT (for

r = 0, the results coincide with the i.i.d. case). This model

just involves correlation on the speed values, not on whether

a vehicle arrivals between two subsequent slots.

IV. NUMERICAL RESULTS

We report a practical evaluation of the mathematical frame-

work discussed above, considering the following numerical

values. The time slot duration has been taken equal to τ=5
seconds, packet arrival and vehicle arrival rates are λ=0.02
packets/second and µ=0.04 vehicles/second, respectively. We

consider a source-destination distance dSD=220 m, and the

vehicle speed follows a truncated Gaussian distribution with

the following parameters: Vmin=10 m/s, Vmax=50 m/s, V=20
m/s, σV =10 m/s. For this choice of speed parameters, we

have Tmin=1 and Tmax=5. Fig. 2 represents the resulting

distribution of the vehicle speeds. From that distribution, it

is also straightforward to derive that of the traversing time of

the vehicles, i.e., of the transmission delay.
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Fig. 2. Truncated Gaussian distribution of the vehicle speeds.

Finally, we set parameters Nmax and Qmax to 4 and

10, respectively. These choices have negligible effect on the

analysis, but enable a heavy reduction in the number of states.

We preliminary remark that all the following evaluations

have been verified by means of simulation, and the simulation

results have been found to be in perfect agreement with the

analysis, since the analysis is exact and the simulation actually

just derive the statistics through Monte Carlo iterations instead

of the solution of the Markov chain.

Fig. 3 reports the cumulative distributions of the queueing

delay τQ, the global delay τG, and the delivery delay τD.

The queueing delay exhibits a smooth transition from low to

high values, and essentially depends on how many packets

are found in the transmitter SRU’s buffer. Note in particular

that there is a non-zero (about 10%) probability that a newly

arrived packet finds this buffer empty, and therefore τQ is equal

to 0. This does not apply to the delivery delay, which is at least
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Fig. 3. Cumulative distributions of the delay terms: queueing delay τQ,
delivery delay τD , and overall delay τG.



equal to the lowest traversing delay Tmin. The overall delay is

therefore also at least Tmin. More in general, the overall delay

exhibits a similar distribution to the queueing delay, however

with a horizontal bias caused by the delivery delay. Such a

value can be actually relevant; indeed, recall that the time slot

τ is equal to 5 seconds, and τD can be then of the order

of tens of seconds. Alternatively, we can observe that about

73% of the traffic has been sent within 50 seconds (i.e., 10
slots) since its arrival, but only 62% has also been delivered

within the same time, with a fraction of about one tenth of

the traffic that is still being transmitted or is waiting for some

older packet to be received.

Thus, the delivery delay has a relevant effect; especially, it

is due to not only the traversing time but also to resequencing

at the receiver’s buffer. To better highlight this fact, we focus

in Fig. 4 on the distribution of the delivery delay τD alone.

Clearly, the delivery delay cannot exceed Tmax, which happens

when the packet is transported by a slow vehicle whose speed

is around Vmin, and therefore it is received after a traversing

time equal to Tmax, and all past packets have been surely

received by then. However, the packet can even be carried by

a faster vehicle, so that its traversing time can be down to

Tmin, but in that case it may have to wait for the reception of

some older packet, which is carried by a slower vehicle. As

shown in the figure, the delivery delay distribution is for this

reason skewed to the right, and the average τD is 2.698 slots,

i.e., 13.49 seconds.

Finally, Fig. 5 investigates the effect of correlation in the

speeds of subsequent vehicles. The general effect is found to

be almost negligible. However, likely depends on the correla-

tion model: preliminary results involving also correlation in the

arrival process of vehicles show a more pronounced difference.

Surely a thorough investigation of the impact of correlation

[12] on the delays is worth of deeper investigations, which

are left for future research.

V. CONCLUSIONS AND FUTURE WORK

We investigated an intermittently connected vehicular net-

work scenario and we derived via Markov chains the full

statistics of the delay terms experienced by a packet. Our

analytical model can be used as the basis to formulate more

general optimization problems where data delivery in such a

scenario is subject to delay constraints.

Notice that, thanks to our proposed approach, delays are

not only quantified on average, but the entire statistics is ob-

tained for each delay term, therefore enabling also to quantify

higher-order moments, such as delay jitters, and formulate

stochastic constraints on the probability that the delay exceeds

a given threshold.

Our analysis can also be extended to more complex inves-

tigations with a similar approach. For example, packet errors

and retransmissions can also be included in the analysis; in

this spirit, the investigations could borrow even more results

from the studies of ARQ schemes. Moreover, more complex

arrival statistics for packets and vehicles can be considered. It

could be worth considering the impact of correlation models in

the vehicle movements (e.g., both vehicle arrivals and speeds),

which is left for future work as an interesting extension.
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Fig. 4. Distribution of the delivery delay.
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