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Abstract—Coordination and cooperation among transmitters
are fundamental paradigms to improve the performance of next
generation mobile networks. By grouping multiple transmitters
into clusters, interference can be managed to improve the
performance at the end user’s side. In this paper, we present
a novel distributed clustering algorithm that adapts the cluster
configuration according to the users distribution and the average
cluster size. We compare the performance obtained with other
clustering solutions in an LTE scenario using the open-source
network simulator ns3. Our proposed algorithm is shown to
significantly outperform the other approaches especially for
the users with low signal-to-noise ratio (SNR), with a 26%

improvement of throughput for the worst 10% of the low-SNR
users compared to a greedy clustering.

Index Terms—Cellular radio; MIMO systems; clustering; Long
Term Evolution; coordinated beamforming.

I. INTRODUCTION

Mobile data traffic is rapidly growing in volume: an 11-fold

increase is expected over the years from 2013 to 2018 [1]. To

face this trend, the standard mobile communication network is

evolving into a heterogeneous network (HetNet) characterized

by a huge density of base stations (BSs) and different trans-

mitter tiers. This leads to new challenges concerning spectrum

and interference management, especially for the users at the

edge of the cell coverage area, which are more affected by

intercell interference [2].

A very promising concept to achieve high spectral efficiency

for interference-limited cellular networks is the cooperative

communication between BSs, often referred to as coordi-

nated multipoint transmission (CoMP). This technique encodes

(for downlink; for uplink, it decodes) messages for multiple

users, exploiting a distributed multiple-input multiple-output

(MIMO) system. Multiple BSs are grouped to form a CoMP

cluster, which is the elementary coordination unit. Interference

among BSs belonging to the same cluster is then cancelled to

achieve a multiplexing gain [3]. Two transmission schemes are

considered for downlink CoMP transmission: joint transmis-

sion (JT) and coordinated scheduling/beamforming (CS/CB).

In JT, the transmission to a single user is performed coherently

by the BSs of the same CoMP cluster. Thus, interference

is mitigated and the signal-to-interference-plus-noise ratio

(SINR) is improved. As a special case, it may even be that

only one BS of the cluster, e.g., the one with the best channel

to the user, is allowed to transmit at a time, while the others

are inactive [4]. Differently from JT, in CS/CB multiple users
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are allocated simultaneously in the same resource unit. Then,

the CoMP cluster forms a distributed MIMO system, where

cooperative beamforming is adopted. By exchanging channel

state information (CSI) among the BSs, linear precoding beam-

forming can be applied to mitigate the interference perceived

by the users. The higher the number of cooperating BSs,

the higher the mitigation of the interference. However, in

realistic systems the number of cooperating BSs is limited by

coordination signaling [5]; thus, the set of transmitters should

be partitioned into clusters of proper size.

The problem of network clustering has been treated in the

literature especially following a centralized approach. In [6],

a centralized clustering technique is proposed, where the users

report the SINR gain expected when merging neighboring

clusters and a central unit uses these data to optimize the

network coordination. In [7] and [8], dynamic joint clustering

and scheduling are studied by assuming limited CSI at the

BSs, and adopting a greedy algorithm, respectively.

The use of a centralized approach leads to an increase

of traffic signaling (CSI estimation, CSI feedback, synchro-

nization) and infrastructure overhead [9] that may turn the

network clustering procedure into a bottleneck. To reduce

this overhead, a cooperative distributed approach may be

adopted. In [10] a decentralized framework is presented in

a simplified scenario, where BSs negotiate the composition

of fixed size clusters. In [11], a dynamic coalition formation

game is modeled for cooperative spectrum sharing; the BSs

are serving one user and the spectrum is orthogonally divided

among the BSs of the same cluster. Coalitions are formed by

joining the BSs according to a utility value based on channel

capacity and coalition size. Network topology is taken to be

fixed, so rearrangements of the clusters are not considered.

In [12], coalitional game theory is used to develop a merge-

and-split algorithm. A utility function is computed by each

cluster, seen as a coalition, considering the signaling cost

among the BSs and the gain obtained through cooperation.

According to this computation, existing coalitions may be

joined or split. This algorithm offers the additional advantage

that cluster sizes are not fixed; a goal size can be set,

which works well on average. However, this algorithm is only

partially distributed; being based on game theory, it computes

distributed utilities for each BS, but requires their coordinated

exchange within each cluster, which may be expensive.

In this letter, we present a novel fully distributed algorithm

for the LTE downlink, based on the utility perceived by each

BS. Our proposal can be seen as a further improvement over

the game-theory based algorithm. Similarly to it, we use

a (different) utility function based on the SINR, and also

the cluster size is specified only on average. However, the



important advantage over all existing algorithms (including

the game theoretic ones) is that all the computations made by

the BSs within our approach are fully distributed, and there is

no need for additional signaling exchange.

We implemented our algorithm and evaluated its perfor-

mance for a large LTE network through the open-source

network simulator ns3 [13]. We compared it with static

clustering, a greedy algorithm based on [5] and the coalition

game theoretic algorithm inspired by [12], also originally

implemented in the simulator. These benchmarks are fully

representative of the existing clustering techniques.

Our distributed approach, where each BS decides about its

participation to a coalition without negotiating it with the

entire cluster, still achieves good performance, while being

able to significantly decrease signaling. Also, it is even able to

improve the performance for the worst users of the scenario;

in particular, we observe a significant improvement for the

low-SNR users, since the BSs are able to manage them more

promptly, without the need to coordinate with the entire cluster

it belongs to.

II. SYSTEM MODEL

We consider a scenario with a set S = {1, 2, ..., S} of pico

LTE BSs, each equipped with one omnidirectional antenna. A

set I = {1, 2, ..., I} of users are placed according to a Poisson

point process (PPP) with intensity λ, and associated with the

BS with the strongest signal.

In LTE, the downlink channel is organized according to time

division and orthogonal frequency division multiplexing. We

consider time frames of 10 ms, each consisting of 10 sub-

frames of 1 ms, while the downlink spectrum is divided into

groups of adjacent sub-carriers, called sub-channels. The allo-

cation atom is a time/frequency unit element called resource

block (RB), i.e., a sub-channel in frequency for a sub-frame

in time. We consider that each BS adopts a proportionally fair

scheduler and allocates a single user in each RB. Assuming

uniform power allocation over the entire bandwidth, if no

coordination is adopted among the BSs, user i assigned to BS

j is affected by interference received from the neighboring

BSs and its SINR value is

SINRi =
|hji|

2Pj

σ2 +
∑

s6=j,s∈S |hsi|
2
Ps

(1)

where hmn is the channel coefficient from BS m to user n,

Pm is the power transmitted by BS m and σ2 is a noise term.

When coordination among a subset K = {S1, S2, ..., SK} of

the BSs is allowed, a BS cluster can be seen as a MIMO

distributed system so as to exploit the use of linear precoding

beamforming matrices to mitigate the mutual interference. If

H (K,Q) ∈ CK×Q denotes the matrix of channel coefficients,

where Q is the subset of the Q users scheduled within the

cluster, zero forcing (ZF) can be obtained by selecting the

Moore-Penrose pseudoinverse of the channel as the precoding

matrix W (K,Q), with

W (K,Q) =
[

HH (K,Q)H (K,Q)
]−1

HH (K,Q) (2)

so that W (K,Q)H (K,Q) = IQ (identity matrix of size Q).

If cluster K manages user i and internal interference is

cancelled, the resulting SINR is

SINRi =
Pj

|wi|
2 σ2 +

∑

s∈S\K |hsi|
2 Ps

(3)

where wi is the beamforming coefficient for user i.
The benefits of CoMP depend on the size of the clusters and

the BS distribution within the clusters. The larger the clusters,

the more effective the interference cancellation but also the

higher the overhead. Thus, the cluster size is the result of a

trade-off; we consider a realistic cluster size of about 4 BSs.

We compare the performance of our algorithm with three

different feasible algorithms. We emphasize that we have not

considered the exhaustive search among all the possible cluster

combinations because it is infeasible from a practical point of

view due to the high computational complexity.

Static Clustering. A simple clustering procedure defines

static groups of neighboring BSs, without rearranging them

over time. Signaling among the BSs is limited to the coherent

combining signal coordination within the cluster and no central

control unit (C-CU) is needed for dynamic updates. Even

though this scheme has the least amount of signaling exchange,

it is inefficient for what concerns interference management,

since it does not consider the distribution of the users. More-

over, the cluster size is fixed and cannot be adapted to the

actual amount of interference to be cancelled.

Greedy Clustering [5]. In this case, a BS is randomly

chosen and a cluster is formed iteratively with the BSs

maximizing the joint capacity, until a predefined cluster size

is reached. The scheme increases network fairness and cluster

efficiency, even though the CoMP benefits are higher for the

clusters formed in the earlier stages that can exploit more

degrees of freedom. Moreover, a C-CU is needed to get CSI

from the BS and run the clustering algorithm. As in static

clustering, the cluster size is fixed. Even though we refer to

the implementation of [5], other algorithms [8], [10] are also

based on greedy clustering and obtain similar performance.

Game Theoretic Clustering, inspired by [12] and based on

a coalitional merge-and-split. Consider cluster Ci comprising

a subset K = {S1, S2, ..., SK} of BSs, where the set of users

assigned to BS k is Mk =
{

mk
1 ,m

k
2 , ...,m

k
n

}

. Given that user

m is assigned to BS k within cluster K and scheduled in RB

r, its SNR and SINR are

SNRr,m,k =
Pk

|wr,m|
2
σ2

(4)

SINRr,m,k(K) =
|hr,km|2Pk

σ2 +
∑

s∈K\{k} |hr,sm|
2
Ps

(5)

where hr,mn is the channel coefficient from BS m to user n
in RB r. Thus, we define the cluster utility as

u(K,Mk,Rm)=
∑

k ∈ K
m ∈ Mk

r ∈ Rm

log2(1 + SNRr,m,k)

log2(1 + SINRr,m,k(K))
−β ξ(z−z0)

where Rm is the subset of RBs where user m is scheduled,

ξ(z−z0) = 1/(1+e−(z−z0)) is a sigmoid function where z is

the cluster size, z0 is equal to the reference cluster size, and β



is an adjusting parameter. The utility function has two terms:

the former is proportional to the capacity gained by canceling

the interference within the cluster, the latter is the cost due to

the coalition size, which serves to obtain a non super-additive

game and drive the average cluster size towards a predefined

value (z0=4 in our setup). The role of the sigmoid is to

penalize the utility of clusters bigger than z0 while allowing

for some flexibility. Given an initial set C = {1, 2, ..., C} of

clusters, a coalition is randomly chosen; the C-CU computes

the utilities for all possible merges among clusters and/or when

clusters are split. The following rules are adopted.

• Merge Rule: Two coalitions Cj and Ci can be merged if

u(Cj) + u(Ci) < u(Ci
⋃

Cj).

• Split Rule: A coalition Cj =
⋃k

i=1 Cji can be split into

Cj1, Cj2, ..., Cjk if
∑k

i=1 u(Cji) > u(Cj) .

The configuration that provides the best utility value according

to split and merge rules is formed and added to the set of

clusters. The external cluster interference is neglected.

As in the previous case this scheme needs the use of a C-CU

to manage all the CSI from the BSs and to apply split-and-

merge and rearrange the network clustering. In this specific

algorithm, the cluster size is not fixed and can be tuned through

β. Thus, cluster configurations are adaptive, i.e., clusters are

larger where the user density is higher.

The proposed Dynamic and Distributed Clustering. We

avoid using a C-CU and, at the same time, provide a dynamic

network clustering able to follow the evolution of the network.

The re-configuration of the clusters is shifted from the C-CU

to the BSs that we assume to be capable of collecting CSI from

all the users. We consider that the clustering configuration is

known at each BS and all BSs synchronously exchange data

and CSI over a logical X2 interface, see [14].

Each BS has a counter initially set to a random value that

decreases by 1 every transmission time interval (TTI). Given

a cluster configuration C, when the timer expires, the BS

computes the value of its utility for each coalition in C:

uk(Ci) =
∑

m∈Mk,r∈Rm

log2(1 + SNRr,m,k)

log2(1 + SINRr,m,k(Ci))
− (6)

∑

s ∈ Ci \ {k}
m ∈ Ms

r ∈ Rm

log2(1 + SNRavg)

log2(1 + SINRr,m,s({s, k}))

1

z
− βξ(z − z0)

where SNRavg is a reference SNR for all the users, and

SINRr,m,s({s, k}) is given by (5) with a reference fixed

power in the numerator. The first term of the utility represents

the gain achieved by BS k within cluster Ci, while the second

gives the contribution to interference mitigation of BS k in

the cluster. The latter makes the cluster stable, and considers

not only the improvement of BS k but also the effects on the

other BSs. To keep the terms comparable, the second one is

divided by the number of BSs in cluster Ci. As in the game

theoretic approach, the third term regulates the average size

of the clusters through the choice of β. After computing the

utilities for all the clusters, the BS joins the one providing

the highest utility, or stay within the current cluster if no

improvement is achievable.

III. PERFORMANCE EVALUATION

First of all, we compare the complexity of the considered

algorithms. The greedy strategy requires the evaluation of

O(S) steps. The game theoretic clustering requires O(C)
steps, where C = O(S/z0). For each step, O(M + D)
operations are required, where M is the number of possible

merges and D is the number of splits; note that M = O(C)
and D = O(2z0). Finally, our proposed algorithm requires

O(S) step, each with O(C) operations.

This means that the complexity of our approach is compa-

rable with the game theoretic clustering (actually, it is slightly

lower, since the term D is missing). The greedy algorithm

obviously has lower computational complexity (linear vs.

quadratic in S) but in our algorithm the quadratic term is

scaled down by z0, thus they are comparable in practical cases.

Besides, as shown next, the slight increase in complexity is

more than justified by the performance enhancement. More in

general, our proposed algorithm offers the additional advan-

tage of better reconfigurability and highly reduced signaling

exchange, since all the decisions are made by the BSs in a

fully distributed manner.

To evaluate the performance quantitatively, with reference

to a realistic LTE system, we used the open-source network

simulator ns3 [13]. This simulator, based on object oriented

programming, represents the entire protocol stack, from the

physical to the application layer. Thanks to its modular struc-

ture, the previously discussed clustering algorithm can be

implemented within an LTE compliant system.

The scenario consists of 40 pico base stations with trans-

mission power equal to 30 dBm placed on a rectangular lattice

structure, and a user distribution modeled using a PPP with

λ = 100 users/(entire area). Neighboring BSs are positioned

at distance 1.3 km from each other and equipped with one

antenna. The total downlink power of 30 dBm is equally

divided among the used RBs. The total downlink bandwidth

is 5 MHz and is divided into 25 RBs with a frequency reuse

factor equal to 1. Moreover, we assume a fully loaded scenario,

i.e., the downlink traffic saturates each BS buffer, so all the

RBs are used during each frame.

The detailed system parameters are reported in Table I;

in short, the simulator includes realistic propagation and

interference models and fully LTE-compliant specifications.

TABLE I
MAIN SYSTEM PARAMETERS

Parameter Value

1-st sub-channel frequency 2110 MHz

Total Downlink Bandwidth 5 MHz

Sub-Carrier Bandwidth 15 kHz

Resource block bandwidth 180 kHz

Resource block carriers 12

Resource block OFDM symbols 7

BS downlink TX power 30 dBm

Noise power spectral density -174 dBm/Hz

Pathloss at d meters, in dB 128.1 + 37.6 log10 d

Shadow fading log-normal with σ = 8 dB

Frame duration 10 ms

TTI (sub-frame duration) 1 ms

Target Bit Error Rate 5× 10−5

BS distance 1.3 km

User distribution PPP with λ = 100
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Fig. 1. Total Throughput CDF

We evaluate the per-user downlink throughput. To test the

adaptivity of the algorithms, we initially set all the clusters to

size 1 and we re-distribute the user positions as an independent

PPP every 1 s. To improve the readability of the results, we call

“low-SNR users” and ‘high-SNR users” those users obtaining

a throughput lower and higher than the average, respectively.

We set β to obtain the same average cluster size for each

clustering scheme.

Fig. 1 depicts the throughput CDF for all users. As expected,

the static scheme achieves the worst performance due to its

lack of adaptation. An improvement is obtained by the greedy

and game-theoretic schemes. In these cases, the clusters are

re-arranged according to the user distribution and, in the game

theoretic case, larger clusters can be employed if needed. How-

ever, since this latter scheme uses a cluster-wise computation

of utility, its improvements come at a higher complexity and

signaling cost. Moreover, we see that the proposed dynamic

algorithm obtains further performance improvements, in spite

of the lower required signaling.

To better emphasize the benefits of our scheme, Fig. 2 shows

the throughput CDF of the low-SNR users. Notice that low-

SNR users are more significantly affected by interference, thus

the performance improvement becomes more significant. Our

proposal brings an improvement to the top-90% throughput of

the low-SNR users by at least 15% versus all the competitors,

and by 43% versus the static approach. For the worst-case

low-SNR users that are in the bottom-10% of the throughput,

a higher improvement is present, about 26% (and 53% versus

the static approach). The improvement provided by the scheme

proposed is then twofold. On the one hand, it avoids the need

for a C-CU through a distributed approach; on the other hand,

it increases the throughput achieved by the low-SNR users

adapting the clusters to the user distribution.

IV. CONCLUSION AND FUTURE WORKS

We proposed a novel dynamic distributed clustering algo-

rithm for CoMP that adapts the cluster configuration to the

user distribution according to a predefined average cluster size.

We compare the throughput performance with other clustering

solutions developed in the literature, using the LTE module
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Fig. 2. Throughput CDF of the low-SNR users

of the ns3 simulator. Our approach decreases the signaling

exchange while at the same time improving the network

performance, in particular for the low-SNR users. For future

work, we will expand the model to different scenarios with

multiple traffic models and various HetNet setups. Also, the

clustering algorithm will be designed not only to improve the

SINR of the users but also to fit their quality requirements,

and different scheduling policies will be considered.
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