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Abstract—We consider a jamming problem, modeled as a
zero-sum game with incomplete information played by a wireless
network and a malicious jammer that wants to disrupt communi-
cation, in a wireless scenario with distance-dependent loss of the
wireless medium. Multiple access is achieved by means of parallel
channels, characterized by different propagation parameters. The
jammer is unaware of the exact positions of the network nodes,
but knows the prior distribution of where they can be located.
We investigate the dependence of the equilibria of this game on
the actual position of the jammer itself. We conclude that there
are regions where the actual gameplay of the jammer at the
Nash Equilibrium only consists of pure strategies, and therefore
the wireless network can consider itself to be insensitive to the
presence of the jammer. This does not mean that the jammer has
no effect whatsoever, but if it is known to be physically located
in such regions, its damage to the network can be quantified
in advance with certainty; on the other hand, there is also no
way of counteracting this jammer, and if its presence is not
known, the network is not able to distinguish it from background
interference.

Index Terms—Wireless communication; Jamming; Game the-
ory; Zero-sum games; Incomplete information.

I. INTRODUCTION

JAMMING problems are a classic application of game
theory to wireless networks. The situation where a le-

gitimate transmitting network is contrasted by a malicious
attacker that acts on the purpose of disrupting communication
can be faced in several contexts; wireless ad hoc networking
for military and civil purposes can be considered, where
the jammer tries to disable the communication capabilities
of the network [1], or the investigation can be extended to
the physical layer, where the jammer is also able to corrupt
the messages exchanged by the legitimate transmitters [2].
Also, cognitive spectrum access [3] can be investigated as
another scenario of application, where the jammers can exploit
vulnerabilities of reconfigurable cognitive radios.

From the modeling standpoint, a jamming problem has a
quite direct appeal in that, if properly formulated, it involves
just two agents and therefore can be naturally framed as a
two-player game between a legitimate network owner/user,
hereafter called the transmitter (T), and the adversary that
wants to cause disturbance or disruption in the communication,
referred to as the jammer (J).

In this paper, we focus on a simple setup where T can
use multiple wireless channels for communicating and can
select among them based on their quality, described, e.g.,
through some capacity expressions that ultimately depend on

the signal-to-interference-plus-noise ratio (SINR). Thus, if the
ambient noise is fixed, the data capacity of a channel only
depends on the signal attenuation on it, and of course on the
actions of J. On the other hand, we assume that J is only
capable of “brute-force” attacks at the physical layer, which
aim at raising the interference level on a given channel [4].
Also the interference that J can cause on a channel depends
on the attenuation that its transmission gets on it.

We adopt a standard formulation of the problem as a zero-
sum game [2], [4], where T is the maximizer and J is the
minimizer. The value of the game will simply be the sum
capacity that T is able to achieve on the channels used for
transmission. Our goal is to investigate the role of mutual
positioning between T and J, since the attenuation can be
related to the path loss experienced on the channel, which in
the end is related to the distance. For the sake of simplicity,
we will consider a simple distance-based path loss model, but
it is immediate to generalize the results to any situation where
the channel quality is position-dependent.

Also, we consider a Bayesian approach as done for jam-
ming in [5] (and also in [6], [7] for other networking prob-
lems), where T has different types depending on the positions
of its nodes. This reflects the imperfect knowledge that J may
have on the network structure. Our goal is to investigate the
role of the position of J, and how this can impact on the
resulting equilibrium. For this reason, J is not considered to
be a player with type, i.e., its position is known to all the
players. Actually, with this assumption we want to investigate
whether the presence (or the knowledge thereof) of a jammer
in a given position is a relevant element for the network and
it changes its gameplay.

It turns out that, depending on the propagation scenario,
there may be several situations where the effect of J is limited.
These of course include cases where J is so far from the
network that it cannot cause any damage; in this sense, our
investigation includes physical layer security considerations
[8], but it is not limited to them. In reality, the cause of J’s
irrelevance is more game theoretic than physical. Depending
on the structure of the game, if the resulting zero-sum formu-
lation has a single Nash Equilibrium (NE) in pure strategies
for J (that is to say, there is a single behavior that a rational
jammer can adopt), its presence can be ignored, not because
it does not cause any harm, but rather there is no effective
countermeasure that can be taken against it.

One can also argue that such a jammer would not even
be detected in the first place [4]. Indeed, if J’s equilibrium



move is to play along a certain pure strategy, T cannot tell
whether J is really present in the network or there simply is
a high interference level. Because of this ignorance, T has
no margin of loss, and no margin for improvement either.
Conversely, there are positions of J where the resulting NE
dictates that J plays a mixed strategy, which means that T
should counteract more than one possible jamming action.
We label these positions as critical, and we identify them by
looking at where the maximin of the game is different from
the minimax and therefore, roughly put, there is something at
stake for the communication network. As a general conclusion,
the choice of the proper countermeasures against jamming
attacks should take into account the position of the jammers
and possibly scan the interested area with different purposes,
depending on whether a potential position of a jammer is
critical or not.

The rest of this paper is organized as follows. In Section II
we describe the propagation scenario, with simplified funda-
mentals of wireless communications. In Section III we give the
game theoretic model for the problem, and in Section IV we
compute the NEs. Finally, we present some numerical results
in Section V and we draw the conclusions in Section VI.

II. WIRELESS SCENARIO

Radio waves propagate in different ways depending on the
frequency used, and more in general on the physical scenario
of communication [9]. However, the most important charac-
teristic of interest in our analysis is that the perceived signal
strength of a radio signal depends on the mutual positions
of transmitter and receiver. In many simplified models, the
larger the distance, the weaker the signal. This is also the
rationale that we adopt in our analysis, which allows for a
simple description by means of few parameters.

It is worthwhile noting, however, that radio propagation
is much more complex than what discussed in the following;
it involves a thorough description of the frequency channel
and the geometry of the area surrounding the transmitter
and the receiver to account for factors such as: the presence
or the absence of a direct path (line-of-sight) between the
terminals; the effect of reflections, refractions, scattering, and
related phenomena, from other objects present in the area; the
characterization of the noise on said channel; the existence of
other transmitters located close-by that can cause interference;
and many other relevant issues. Also, these characteristics of
the wireless channel are inherently time-varying [10]. Rapid
fluctuations of the signal strength are possible, especially in
mobile environments. Thus, the proper characterization of the
wireless channel is that of a stochastic process and what we
give in the following is to be meant as its statistical description
derived from different realizations (which can be just samples
at different time instants if the process is ergodic).

All these issues are outside the scope of the present paper,
where, for simplicity reasons, we consider a stationary channel
with a straightforward distance-dependent attenuation through
a power law, whose exponent is the only parameter that
summarizes the scenario. More refined models are certainly
possible but do not qualitatively change the conclusions that
we draw later.

Thus, a signal transmitted with power PT is received with
a power attenuation a(dT) depending only on the distance dT
between the transmitter and the receiver, and therefore called
the path loss at a distance dT. We assume that a(dT) follows
a power law with positive exponent α, usually α ∈ [2, 4], i.e.,

a(dT) = K0

(

dT
d0

)α

(1)

where d0 is a reference distance (in particular, we can consider
d0 = 1 m, so as to drop it from the equation) and K0 is the
attenuation at d0. The received power will be PT/a(dT).

We can assume a background noise with power spectral
density N0 to be present on the channel, whose bandwidth is
equal to B. It is common to take the noise term as an additive
white Gaussian noise (AWGN). The noise power will thus
be N0B. The meaning of this term can also be extended to
include interference effects from other transmitters. Moreover,
note that the background noise does not necessarily have to be
white (and thus N0 be a constant), nor Gaussian [11]; however,
basic communication theory descriptions often regard the noise
in terms of equivalent thermal noise characterizations, e.g.,
through noise temperature. Or alternatively, the term N0B can
be replaced with a more complicated expression where we
compute the integral of the power spectral density over the
channel band [9].

In short, we use N0B to include both noise and also any
unintentional interference. We can therefore compute the SINR
at the receiver when the transmitter is at a distance dT, denoted
as Γ(dT), in the absence of jamming, as

Γ(dT) =
PT

a(dT)N0B
. (2)

Instead, if a jammer is present on the same channel, located
at a distance dJ from the receiver and using a jamming power
PJ, we must consider it when computing the SINR; therefore
we denote it as Γ(dT, dJ), and put it equal to

Γ(dT, dJ) =
PT

a(dT)
[

N0B + PJ/a(dJ)
] . (3)

We can use (1) to model the attenuation of both the
transmitter and the jammer. However, to take into account
that the propagation models of the two may be different,
we consider two different parameters in the equation, i.e.,
we denote with α (as before) the path loss exponent of the
transmitter, and conversely we use β for the jammer (for
simplicity, we use the same K0, though). From (3), we obtain

Γ(dT, dJ) =
PT

dT
α
[

K0N0B + PJ/dJ
β
] (4)

If noise, bandwidth, and transmission powers (both the useful
and the jamming terms) are constants, the impact of the
distance can be summarized as

Γ(dT, dJ) =
[

dT
α(K1 +K2 dJ

−β)
]−1

, (5)

with K1 and K2 being suitable constants. An infinitely far
jammer has no effect on the SINR, as Γ(dT) = Γ(dT,∞).

A suitable performance metric that may describe what
a transmitter would like to maximize (and a jammer to



minimize) is the channel capacity C. For example, we can use
the formula of the Shannon capacity for an AWGN channel,
which results in defining C as

C = B log2
[

1 + Γ(dT, dJ)
]

, (6)

which depends on the SINR (and thus, also on the presence
of a jammer).

If the transmitter operates over F multiple channels
spanned by index i = 1, 2, . . . , F , and each of them has
bandwidth Bi, we take χi to represent an indicator function
that equals 1 whether the jammer is disturbing with power PJ

the transmission on the ith channel, and 0 otherwise. The sum
capacity available in the system in the presence of a jammer
is therefore

Ctot =
F
∑

i=1

{

χiBi log2
[

1 + Γ(dT, dJ)
]

+(1− χi)Bi log2
[

1 + Γ(dT)
]

}

(7)

Remarkably, the Shannon capacity is a good choice in
terms of utility in the micro-economic sense [12], since it is
a concave function of the SINR. In the following section, we
will use it to characterize the payoff received by T in a zero-
sum game.

III. GAME THEORY MODEL

We consider a wireless network with 2 transmitters, de-
noted as T1 and T2, sending data to a receiver (sink node),
whose distances from the receiver are d1 and d2, respectively.
The available spectrum is divided into 2 channels (c1 and c2)
of equal bandwidth B. For the sake of simplicity, all propa-
gation aspects of the channels will be represented through the
path loss exponent of (1). In particular, we assume that c1 and
c2 are characterized by parameters α1 and α2, respectively,
when the useful transmitters operate on them. The entire
network is represented by the single player T in the game,
which thus comprehends T1, T2, and the receiver, as they
are assumed to act towards the same goal, i.e., maximizing
the total network capacity. To coordinate multiple access of
T1 and T2, the network adopts a frequency-division multiple
access (FDMA) scheme, i.e., either of the channels c1 and c2
is assigned to T1 and the other to T2, without overlap. Nodes
T1 and T2 use the same transmission power PT.

However, the network activity is menaced by a malicious
jammer J whose aim is to minimize the overall capacity of
the network. The jammer is placed at distance dJ from the
receiver, and can operate over only either c1 or c2, with a fixed
power PJ, as per (3). Also, the path loss exponent perceived
by J on channels c1 and c2 is equal to β1 and β2, respectively.

Our goal is to model the interaction between T and J
as a zero-sum game with incomplete information. Thus, we
consider a finite set D that has cardinality D and contains

pairs of distances, i.e., D =
(

(d(1)1 , d(1)2 ), . . . , (d(D)
1 , d(D)

2 )
)

,

where d(k)i is the ith transmitter’s distance in the kth pair.
Each of the elements of D is considered to be a type of

player T, denoted as θk = (d(k)1 , d(k)2 ). T can be of type θk
with probability pk, where the terms pk are values between 0

and 1 for which
∑

k pk = 1. For example, if a finite set of
distances Z = {zj}j=1,...,L is available for both transmitters,
and the transmitters can even have the same distance, then
D = Z × Z and D = L2. For the analysis of this paper we
consider that dJ can only have one value (a possible extension
of the present investigation is to allow also uncertainty for dJ).
The distance dJ is known by both players. Conversely, type
θk is only known to player T, but the probability distribution
p = (p1, p2, . . . , pD) is common knowledge in the game. This
characterization with types follows that of Bayesian Games
(BGs) [5].

In game theory terms, our BG is initiated by a virtual player
“Nature” that selects the type for T according to distribution p

[12]. Once the type θk of T is given, T can perform either of
these two actions: (A1) assign c1 to T1 (and, consequently, c2
to T2); (A2) the exact opposite, i.e., assign c2 to T1. Since the
channels are fully described by the propagation parameter αi,
if A1 is chosen, then the index i of αi is the same of Ti; for
A2, they do not match. Hence, T has N = 2D pure strategies,
since a strategy is defined as a D-tuple of actions, one per
each type that T can be, and each action has two alternatives
to choose from. We write the ith pure strategy of T as Xi,
then the kth element of the associated D-tuple, referred to
as Xi(k), defines whether T plays action A1 or A2 when its
type is θk. J can instead perform either of the two actions:
(Y1) attack channel c1 with attenuation parameter β1, or (Y2)
attack c2 with attenuation parameter β2. Therefore, J has just
two pure strategies, coinciding with its actions Y1 and Y2.

We denote the sets of all possible pure strategies of the
players as X = {Xi}i=1,...,N and Y = {Y1, Y2}. We define a
mixed strategy ξ for T as an N -tuple (ξ1, . . . , ξN ) that belongs
to the space of probability distributions over X , ∆X , i.e.,
ξi ≥ 0 for all i = 1, . . . , N and

∑

i=1...N ξi = 1. So, ξi
denotes the probability that T plays Xi. Similarly, a mixed
strategy η for J belongs to ∆Y and is the pair of probabilities
η1 and η2 = 1− η1 that J plays Y1 and Y2, respectively.

Given the prior probabilities p = (p1, . . . , pD) for the type
of T, we can put this BG in normal form using a N×2 matrix
M = {mij}, where entry mij with i = 1, ..., N and j = 1, 2,
represents the expected payoff for T when players T and J
play their ith and jth pure strategy, respectively, computed as

mij =
D
∑

k=1

pkCtot(Xi(k), Yj) (8)

where Ctot(Xi(k), Yj) is the sum capacity of the network
according to (7) when T is of type θk, and thus performs
action Xi(k) with probability pk, while J chooses action Yj .

Also note that since the game is zero-sum, we do not
need to represent J’s payoff, which will be −mij . Finally,
the expected payoff of a joint mixed strategy (ξ,η) can be
computed by averaging the entries of M with weights equal
to the probabilities of ξ and η.

IV. NASH EQUILIBRIA COMPUTATION

The NEs of the zero-sum game, given the prior distribution
p for the type of T and the resulting payoff matrix M, can be
found via von Neumann’s Minimax Theorem [13]. Since the



game is a classic zero-sum game, it can be found to have at
least one NE in mixed strategies, and actually all NEs yield
the same payoffs. The mixed strategies played at NE will be
maximinimizer strategies for both players, i.e., they assure to
the players the highest payoff they can get in the worst-case
scenario of the strategy played by the opponent.

We denote one of these equivalent NEs as (ξ∗,η∗), where
ξ∗ is the mixed strategy played by T and η∗ is that played by
J. There will be a unique quantity v, called the value of the
game, such that each NE yields a payoff equal to v to T (and
correspondingly a payoff equal to −v to J), for which

v = max
∆X

min
1≤j≤2

N
∑

i=1

ξ∗i mij

= min
∆Y

max
1≤i≤N

(mi1η
∗
1 +mi2η

∗
2) . (9)

To solve numerically, we search for w1 and w2, with

w1= min
1≤j≤2

N
∑

i=1

ξ∗i mij (10)

w2= max
1≤i≤N

(mi1η
∗
1 +mi2η

∗
2) , (11)

so that w1 is maximized and w2 is minimized. The Minimax
Theorem guarantees that the pair (ξ∗,η∗) is a NE and the
value is given by w1 = w2. To solve the maximization of
(10) and the minimization of (11) we reduce them to two
linear programs with proper slack variables for w1 and w2

[12]. Thus, the problems become

max w1 (12)

s.t. w1 ≤
N
∑

i=1

ξimi1 , w1 ≤
N
∑

i=1

ξimi2

ξi ≥ 0 ∀i = 1, . . . , N ,
N
∑

i=1

ξi = 1

and analogously

min w2 (13)

s.t. w2 ≥ η1m11 + η2m12

...

w2 ≥ η1mN1 + η2mN2

η1 ≥ 0, η2 ≥ 0, η1 + η2 = 1

Both problems can be solved by means of optimization tech-
niques; we used Dantzig’s simplex algorithm [14]. We evaluate
and compare the solution for different choices of the set D,
the prior p, the distance of the jammer dJ, and the propagation
coefficients αi and βi.

We also compute the maximin and the minimax in pure
strategies, which can be done by considering the same prob-
lems as above but imposing ξ and η to have all the elements
equal to 0 but one, which is equal to 1. In this case, w1 gives
the maximin and w2 the minimax. As a matter of fact, these
values can be immediately found by scanning the matrix M

and taking minima and maxima over rows and columns.
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Fig. 1. NE strategy of T as a function of dJ ∈ [0.01, 15] m
(α1=α2=β1=2, β2=2.5, prior distribution for T’s type: [1/3 1/3 1/3]).
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Fig. 2. NE strategy of J as a function of dJ ∈ [0.01, 15] m
(α1=α2=β1=2, β2=2.5, prior distribution for T’s type: [1/3 1/3 1/3]).

V. NUMERICAL RESULTS

We evaluate a scenario where the propagation parameters
α1, α2, β1, β2 take different values in the range 2 ÷ 3. We
take N0B, which represents the noise power plus the external
unintentional interference, as equal to −120 dBm. We set the
transmission power terms of the transmitter and the jammer
to be the same, i.e., PT = PJ = 0 dBm.

We set 3 types for T in D = {(5, 5), (5, 10), (10, 10)} m.
As a consequence, each of the 8 pure strategies of T is a triple
of binary values (for brevity, we just write 1 or 2 instead of A1

or A2). For example, strategy [1 2 1] denotes that T assigns c1
(i.e., the channel with attenuation parameter α1) to transmitter
T1 when it is of type 1 or 3, while it assigns c2 (i.e., the one
with attenuation parameter α2) to T1 if it is of type 2; in other
words, this strategy means that channel c1 is assigned to T1

when the transmitters are at the same distance, and to T2 if
T1 is closer to the sink. Finally, we place the jammer at a
distance dJ ranging from 0.01 to 15 m.

In this scenario, we evaluate the NE of the BG, and its
dependence on dJ. First, we considered the case of a uniform
distribution for the types of T, i.e. pk = 1

3 , k = 1, 2, 3, with
attenuation parameters α1 = α2 = 2 for T, and β1 = 2,
β2 = 2.5 for J. Figs. 1, 2, and 3 refer to this setting.
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Fig. 3. NE payoff in mixed strategies as a function of dJ ∈ [0.01, 15] m
(α1=α2=β1=2, β2=2.5, prior distribution for T’s type: [1/3 1/3 1/3]).

Figs. 1 and 2 show T’s mixed strategy and J’s mixed
strategy, respectively, depending on dJ. In particular, Fig. 2
reveals that there are values of dJ for which the strategy of
J at equilibrium is pure. For these cases, the corresponding
strategy of T is a mixed strategy with probability 1/4 split
over a support represented by all pure strategies [. 2 .], i.e.,
those for which action number 2 is played by T when its type
is θ2. In other words, T surely plays A2 when the nodes T1

and T2 are placed at different distances, otherwise it randomly
chooses between its alternatives; indeed, when the strategy of
J is pure, and the nodes are placed at identical distances, T is
indifferent on which channel to assign to the nodes.

This result is also visible from figures such as Fig. 3,
in which we plot the NE payoff for T (quantified as the
capacity per unit of bandwidth: this is also what displayed in
all similar plots afterwards), together with the maximin and
minimax payoff in pure strategies. In the very region where J’s
equilibrium move is a pure strategy, the three curves coincide.
In these cases, the transmitter strategy can be regarded as
insensitive to the presence of a jammer. From Fig. 3, the game
has some degree of uncertainty in its outcome only when dJ
is less than 4.484 m, which means that the jammer has an
unpredictable behavior more or less only when closer to the
receiver than the closest position available to the transmitters.

Fig. 4 shows the comparison between NE’s payoff,
maximin’s payoff and minimax’s payoff for a configuration
slightly different from the previous one. We considered the
same a priori probability but we set α1 = β1 = β2 = 2
and α2 = 2.5. In this case, the NE always imply a pure
strategy for the jammer, regardless of the distance of J from the
destination, since the maximin and minimax, and also the NE
payoff, coincide for every dJ, and thus T’s strategy is always
insensitive to J’s presence. This result is also correct since, in
the presence of an unbalanced situation for the transmitter but
not for the jammer (a channel has lower αi and therefore has
better quality, while the two βi are identical), intuitively the
jammer should always cause disturbance on the better channel.

Fig. 5 shows the comparison between NE’s payoff,
maximin’s payoff and minimax’s payoff for α1 = β2 = 2 and
α2 = β1 = 2.5. In this case, the NE strategy of the jammer
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Fig. 4. NE payoff in mixed strategies as a function of dJ ∈ [0.01, 15] m
(α1=β1=β2=2, α2=2.5, prior distribution for T’s type: [1/3 1/3 1/3]).

0 5 10 15
22.5

23

23.5

24

24.5

25

25.5
NE payoff in mixed strategy

distance J [m]

n
or
m
al
iz
ed

ca
p
ac
it
y
[b
it
/s
/H

z]

minimax payoff
maximin payoff
NE payoff for T

Fig. 5. NE payoff in mixed strategy as a function of dJ ∈ [0.01, 15] m
(α1=β2=2, α2=β1=2.5, prior distribution for T’s type: [1/3 1/3 1/3]).

does not degenerate into a pure strategy for a whole region
of intermediate distances, 5.298 m < dJ < 8.730 m, which
is more or less comprised between the available positions for
the two transmitters.

Figs. 6, 7, and 8 show the results obtained considering
the same values for the parameters used in Figs. 3, 4, and 5,
respectively, for a non-uniform distribution of T types, where
p2=2/3, and p1=p3=1/6. This leads to an expansion of the
critical regions in which the jammer plays a mixed strategy.
In particular, in Fig. 6 the border of the critical region is
pushed to 5.830 m, i.e., beyond the smallest value in D, i.e.,
5 m, and a similar and even more relevant enlargement of
the region happens in Fig. 8, where J plays a mixed strategy
in the entire interval 0 < dJ < 10.012 m. Also, in Fig. 7,
differently from the similarly shaped Fig. 4, the equilibrium
strategy of the jammer is not a pure strategy for a very wide
range of positions, namely, for dJ < 11.740 m, even though
the differences are minor.

VI. CONCLUSIONS

We investigated a game theoretic setup of the jamming
problem with variable distances of the players involved. In
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Fig. 6. NE payoff in mixed strategy as a function of dJ ∈ [0.01, 15] m
(α1=α2=β1=2, β2=2.5, prior distribution for T’s type: [1/6 2/3 1/6]).
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Fig. 7. NE payoff in mixed strategy as a function of dJ ∈ [0.01, 15] m
(α1=β1=β2=2, α2=2.5, prior distribution for T’s type: [1/6 2/3 1/6]).

particular, we formulated a BG where we framed the posi-
tions of the useful transmitters as the type of the maximizer
player, whereas the jammer, i.e., the minimizer player, can
only occupy a fixed position, which is characterized by a
distance dJ from the intended receiver. We investigated the
dependence of the NEs and the resulting payoff on dJ; the
main result is that, depending on the propagation parameters,
there are intervals (in certain cases quite wide) for dJ where
the NE solution implies that the jammer adopts a pure strategy,
which means, a given channel is jammed with probability 1.
As a result, the network manager should especially control
those situations where this does not happen, i.e., the jammer
occupies a position according to which at the equilibrium its
strategy mixes multiple jamming actions. Such scenarios have
been classified as critical positions for the jammer. This also
leads to the conclusion that any security enforcement should
especially check those areas for jammers.

However, it would make sense to consider a deeper inter-
action between the network and the jammer, where the game
formulated here is used as a basis. In particular, it can be
thought of relaxing the assumption of knowing the jammer’s
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Fig. 8. NE payoff in mixed strategy as a function of dJ ∈ [0.01, 15] m
(α1=β2=2, α2=β1=2.5, a priori probability [1/6 2/3 1/6]).

position with certainty, and let this to be the type of the
jammer. Our preliminary investigations indicate that the game
becomes even more interesting. Especially, a more complicate
interaction takes place and in the end the region where a
jammer exhibits critical influence may change and even shrink
further. Future analysis will be required to extend the analysis
and identify challenges in an expanded setup with more
advanced game theory instruments.
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