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Abstract—Cooperative Spectrum Sharing (CSS) is an appeal-
ing approach for primary users (PUs) to share spectrum with
secondary users (SUs) because it increases the transmission
range or rate of the PUs. Most previous works are focused on
developing complex algorithms which may not be fast enough
for real-time variations such as in channel availability. Instead,
we develop a learning mechanism for a PU to enable CSS in a
strongly incomplete information scenario with low computational
overhead. We model the learning mechanism of the PU to
discover which SU to interact with and what offer to make
to it with a combination of a Multi-Armed Bandit (MAB) and
a Markov Decision Process (MDP). By means of Monte-Carlo
simulations we show that, despite its low computational overhead,
our proposed mechanism converges to the optimal solution and
significantly outperforms the ε-greedy heuristic. This algorithm
can be extended to include more sophisticated features while
maintaining its desirable properties such as the fast speed of
convergence.

I. INTRODUCTION

The demand for wireless communications has kept growing
in the recent years, to the point of making the traditional
fixed licensing process obsolete [1], [2]. Cooperative Spectrum
Sharing (CSS) [3] has been proposed as a more efficient man-
agement mechanism of spectrum access. The basic premise
of CSS is that secondary users (SUs) without license may
act as transmission relays for a licensed primary transmitter
(PT) in exchange for transmission opportunities in the spectral
resources of the PT. CSS fosters the creation of transmission
opportunities in the PT spectrum: by increasing the transmis-
sion rate of the PT, it reduces its spectrum usage. A CSS
system poses the following key challenges: 1) the PT has to
undergo a negotiating process with the nearby SUs, having no
previous information about them, in general; 2) the SUs may
belong to self-interested networks different from the PT’s, and
thus, the PT should not expect that the SUs will collaborate
in maximizing the PT’s profit; 3) spectrum opportunities may
happen on a short timescale (of the order of seconds or less),
thus, for CSS to be effective, this negotiation must be carried
out in real-time.

A. Related work

Previous works in CSS do not address these issues si-
multaneously. As we discussed in [4], they are focused on
requirements 1 and 2, but the time required to reach elaborated
solutions (requirement 3) is not adequately studied. Multiple

factors in spectrum trading (e.g., supply, demand, channel
gains) vary rapidly with time, and trying to reach a complex
allocation solution for a particular spectrum opportunity, as in
[5], could take so long so as to render the solution impractical.

Works such as [3], [6] assume the PT holds previous
information about the SUs. However, it is unlikely that SUs
belonging to a different operator would reveal private infor-
mation (e.g., battery level) to the PT, taking into account that
they may improve their utility functions by hiding it, at the
cost of worsening the performance of the whole system. In
[7] the authors do not make this assumption and develop a
stochastic optimization based on contract theory. Nevertheless,
in contrast to our proposal, they do not implement any learning
process from successive interactions with SUs.

Although it is possible to design mechanisms that provide
incentives to selfish SUs to collaborate with the PT (coopera-
tion in terms of game theory [8]), they require the exchange
of several messages between these individuals, and therefore a
loss in transmission efficiency. These selfish entities, however,
do have incentives to make strategies and/or collude against
the PT. In our proposal the PT employs one-to-one bargaining
instead of broadcast offers, as [9], but we consider more than
one SU. The benefits of one-to-one transactions are: the reduc-
tion of the strategic power of the SUs, as they cannot overhear
public offers or other information about their competitors; their
robustness against collusions of SUs [10]; and the reduction
of the communication overhead on the control channels in
comparison to widespread mechanisms such as auctions [5]
(e.g., multiple rounds of bidding messages).

B. Contribution

We focus on meeting all the aforementioned requirements
from the perspective of a PT, requesting help from selfish
SUs to communicate with an intended primary receiver (PR).
In each transmission period, the PT has to choose an SU
to act as a relay for its transmission and an offer in terms
of transmission time for the SU. The PT obtains a payoff
related to the achieved transmission rate and offer. We propose
a novel algorithm for the PT to gradually learn the optimal
SU and offer combination based on the rewards it observes.
Because in a realistic setting the situation around the PT can
change quickly (e.g., SUs arriving and leaving the system),
our algorithm aims to achieve a balance between the time
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Fig. 1. Cooperative Spectrum Sharing scenario.

devoted by the PT to exploration of options and the time
spent exploiting the best alternative known so far, to maximize
the PT’s payoff over time. In Section II, we formulate the
problem by means of a multi-armed bandit problem (MAB)
[11] with dependent arms. Multi-armed bandits have been
previously used in spectrum sharing, but mainly for sensing or
resource allocation [12]. We solve the MAB problem in Section
III, combining stochastic MAB index policies and a Markov
Decision Process (MDP), inspired by [13]. However, our
dependency model is different enough to require substantial
changes in the algorithm, such as the integration with an
MDP. We evaluate the performance, scalability and robustness
of our approach with Monte Carlo simulations as shown in
Section IV. Our solution is not only directly implementable
and without strong assumptions, but also extensible to more
complex scenarios, as indicated in Section V.

II. SYSTEM MODEL

The protocol considers a PU transmitter (PT) and receiver
(PR) pair and a set of SU cognitive pairs in the coverage
area of the PT denoted by S ≡ {s1, s2, . . . , sS}, as in Fig. 1.
The system is under the “exclusive-use” coexistence model by
which the PUs are the only entities with the right to transmit
in a certain band. When the PU pair’s channel conditions are
not suitable for direct transmission, the PT would be willing
to use the SUs as relays.

In exchange for its services, the PT makes an offer to
the SU, consisting of a certain amount of time for SU data
transmission over the PU channels. The SUs transmit with
fixed power, the same for relaying and their own transmissions.
The SUs are assumed to have their own, but limited, spectral
resources. Therefore, although it is not crucial for their com-
munication purposes, the SUs may benefit from the additional
spectrum resources obtained from the PU. As a consequence,
it is the PT who contacts the SU and initiates the bargaining.

Time is divided into fixed transmission periods or frames,
which we will consider of duration T = 1 units of time
and numbered as n = 1, 2, . . .. The offer that the PT makes,
denoted by α ∈ [0, 1], is the fraction of the transmission period
during which the SU is allowed to transmit its own data.1 For
tractability, we discretize that interval in equal increments and
A = {α1, . . . , αA} denotes the set of possible offers.

1In practice we will assume α ∈ [z, 0.9], with z > 0, as neither the SU
nor the PT may “work for free.”
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Each transmission period is composed of a decision phase,
an optional bargaining phase, and a communication phase as
in [3] and [9]. See also Fig. 2. During the decision phase, the
PT has to choose which SU to bargain with and what offer
to make to it: (s, α) ∈ S × A, aiming to maximize its utility
function, and based on previous interactions. We consider the
PT has full bargaining power and makes a take-it-or-leave-it
offer to an SU. The bargaining phase models the time spent
in sending the offer and waiting for an answer. Finally, during
the communication phases the PT directly transmits for the
rest of the frame to the PR if the offer is rejected by the SU.
If the offer is accepted by the SU: first, the PT transmits its
information to its receiver and to the selected SU; secondly,
the selected SU re-transmits the information to the PR; and
finally, SU’s own transmission takes place.

A. Payoff Functions

PT’s payoff. For the cooperative transmission, the system
employs the decode and forward relay communication scheme
from [14]. For a given SU s ∈ S , the links initially in-
volved are: PT-PR, PT-s, and s-PR. Let Γ

(n)
P,P , Γ

(n)
P,s , and Γ

(n)
s

be their respective SNR values averaged over the duration
of transmission frame n. The achievable data rate satisfies
R

(n)
P = K min{log(1+Γ

(n)
P,s ), log(1+Γ

(n)
P,P +Γ

(n)
s )}, where K

is a constant. We assume that the SUs always decode the PT
data correctly in the first phase, and thus we focus on the s-PR
link and we have R(n)

P = K log(1 + Γ
(n)
P,P + Γ

(n)
s ). Since the

PT-PR and s-PR links are considered to be in bad and good
propagation conditions respectively, i.e., Γ

(n)
P,P � Γ

(n)
s , and

1 � Γ
(n)
s ∀n, the achievable data rate can be approximated

as R(n)
P ≈ K log(Γ

(n)
s ).

The time allocated to the s-PR transmission within a frame
can be considered long compared to fast fading variations.
That is, the effect of multipath is assumed to be negligible
in terms of the average SNR, Γ

(n)
s . Therefore, Γ

(n)
s is mainly

determined by pathloss attenuation and shadowing, remaining
constant during an s-PR transmission. Successive SU relay
phases between s and the PR are sufficiently distant in time
for the channel to decorrelate. Thus, the SNR samples Γ

(n)
s

are modeled as i.i.d. random variables, following a log-normal
distribution which typically characterizes shadowing [15], i.e.,
log(Γ

(n)
s ) = γ

(n)
s ∼ N(µγs , σγs). The PR can observe the

value of γ(n)s and feed it back to the PT at the end of each



transmission frame. Then, the reward for the PT in frame n
is the transmission rate it gets, multiplied by the time the
transmission lasts:

W (n)(s, α) =

{
(1− β)(1− α) log(Γ

(n)
s ) if α is accepted

(1− β) log(1 + Γ
(n)
P,P ) otherwise

(1)
For the sake of clarity, from now on we set β = 0 and
log (1 + Γ

(n)
P,P ) = 0 for all n. Nevertheless, our model is also

applicable with different values of these parameters.
SU’s payoff. The payoff obtained by an SU acting as relay is

the difference between its net transmitted data during a frame
when using the PT channel, αRP

s, and the net data it would
transmit when using its own spectral resources, Rs. An SU
accepts any offer that provides positive payoff, which results in
a threshold behavior. SU s accepts an offer αa ∈ A whenever
αa ≥ α∗s , where α∗s is the minimum offer SU s is willing to
accept. The type of an SU, τs, is the index of the smallest
offer that this SU accepts, i.e. τs = arg mina{αa : αa ≥
α∗s , αa ∈ A}. If the link between the SU pair is stable (e.g.,
a close ad hoc connection) and the offered PT bandwidth is
constant (only the time offered changes), the thresholds, and
therefore the type of each SU, remain constant over multiple
transmission frames.

B. Multi-armed bandit formulation

Mathematically, we model the sequential decisions of the
PT as a multi-armed bandit (MAB) problem. The PT selects
SU-offer pairs (s, α) from the action set U = S × A. In the
MAB model each u = (s, α) is an arm, and U is the set
of arms. At round n, the arm pulled is u(n) = (s(n), α(n)),
and the reward received by the PT is W (n) = W (n)(u(n)).
The history of the system up to time n, h(n), is defined
as the sequence of decisions and observed rewards: h(n) =
W (0), u(1),W (1), . . . u(n),W (n) (where W (0) corresponds to
initial samples γ(0)s ). A policy π is a function that, at each
stage n, prescribes a decision u(n+1) based on h(n). There-
fore π induces a history W (0), u

(1)
π ,W

(1)
π , u

(2)
π ,W

(2)
π , . . .. The

usual performance metric in learning problems is the regret.
At decision stage n, we define the regret of a policy π

as r(n) = maxu E
[∑n

k=1

(
W (k)(u)−W (k)

π

)]
. The regret

quantifies the performance loss of a policy with respect to
a policy that knows the average values µγs and the type of
each SU. However, in a realistic setting, the PT has no initial
information and faces the challenge of learning both the SU
types and µγs , while trying to maximize the reward. This is
known as the exploration - exploitation tradeoff, which implies
balancing immediate gains (pulling the arms that seem to be
better in expectation) with gaining information to make better
decisions in the next rounds (pulling arms that seem to be
worse initially but could potentially be the best).

Learning about the arms of the MAB should not be treated
independently. The reward obtained from an SU s when
offered a particular α will give the PT information about the
rewards it can obtain with all the other offers or associated
arms. The following example illustrates why.

Example. Consider the following set of offers A =
{0.3, 0.5, 0.7, 0.9}, and assume that the PT’s initial beliefs
about the probability that an SU, s ∈ S , is of a particular
type are equiprobable, i.e., P (αa < α∗s ≤ αa+1) = 0.25
for a = 1 . . . A − 1;P (α∗s ≤ α1) = 0.25. Thus, the beliefs
about the probabilities of acceptance of each offer by s are
P (α∗s ≤ α1) = 0.25, P (α∗s ≤ α2) = 0.5, and so forth. With
these probabilities we can build the following initial belief
vector: [0.25, 0.50, 0.75, 1]. If the PT makes the offer α = 0.5
to SU s and s accepts it, then the PT will learn that s is neither
type 3 nor type 4. Therefore, the belief vector is updated to
[0.5, 1, 1, 1]. In addition, the PT observes a sample of γs and
updates its sample mean γ

(1)
s , affecting the belief about the

reward of all the arms u = (s, αa) of that SU s.
In the following section we explain how, inspired by [13],

we handle correlation by grouping the arms of an SU, exploit-
ing mutual information.

III. MAB - MDP ALGORITHM

We could think of a reduced MAB with S arms, one for
each SU, where each arm integrates the information the PT has
observed about each SU up to stage n, that is, the belief about
the acceptance of offers and the sample average SNR γ

(n)
s . We

must then answer two questions: how do we represent an SU
in the reduced MAB? Once an SU has been chosen by means
of the reduced MAB, what offer should the PT make to the
selected SU?

Offer selection policy. We are interested in finding a policy
πMDP
s that, given an SU s ∈ S , maps PT’s knowledge about

the type of s, to the next offer α to s. Given α, the reward ψ
that the MDP observes is (1 − α) if the offer is accepted,
and 0 otherwise. Therefore, a given policy πMDP

s induces
a sequence of rewards ψ(1), ψ(2), . . . , ψ(n). The uncertainty
about the time horizon n is captured by a discount factor
δ < 1, characterizing the expected lifetime of the system,
e.g., the probability that the s-PR pair remains active in each
frame. The search problem of discovering the optimal offer to
s consists of finding the policy maximizing E

[∑∞
n=1 δ

nψ(n)
]
.

This problem is formulated as an MDP as follows.
The set of states of the MDP for SU s, denoted by Xs, are all

the possible knowledge states about the type of s. Assuming
uniform probability for the type of an SU, the state of the
MDP is completely defined by a two dimensional vector x,
whose elements, h and l, contain the index of the highest offer
rejected by s, and the index of the lowest offer that s accepted,
respectively. The PT knows that the SU accepts every offer αa
with index a ≥ l, and rejects those with index a ≤ h, αa ∈ A.
The initial state is (0, A), since the PT does not know anything
about rejections initially (h = 0) and αA is known to be surely
accepted (l = A).

Each transition probability Ps(x, x′, αa) from a state x to a
state x′, with x, x′ ∈ Xs, given an offer αa, is determined by
the PT’s beliefs about the acceptance probability of the offer



αa at current knowledge state, x. This probability is defined
as:

P (α∗s ≤ αa|x) =


0 for 0 < a ≤ h
a−h
l−h for h < a < l

1 for l ≤ a ≤ A
(2)

Therefore, the transition probabilities between every pair of
states are given by:

Ps(x, x
′, αa) =

 P (α∗s ≤ αa|x) for a = l′

1− P (α∗s ≤ αa|x) for a = h′

0 otherwise
(3)

Finally, the reward associated to a transition of the MDP is:

ψ(x′, αa) =

{
1− αa for a = l′

0 for a = h′
(4)

We can now formulate the Bellman equation that allows us to
obtain the value function Vs for each state:

Vs(x) = max
αa∈A

∑
x′∈Xs

Ps(x, x
′, αa)(ψ(x′, αa) + δVs(x

′)) (5)

which can be readily solved offline by standard algorithms
such as policy iteration [16].

SU representation in the reduced MAB. In a classic
stochastic MAB, rewards when pulling an arm are drawn from
a probability distribution associated to that arm. Proposed
policies in the literature compute an index for each arm
(dependent on that arm only), I(n)s , and dictate to pull the arm
with the highest index on each decision round. A commonly
used family of index policies are the Upper Confidence Bound
(UCB) policies proposed by [11]. The index of these policies
consists of the sample average reward obtained from arm s up
to round n, plus an additional term, the UCB, related to the
uncertainty of that estimation.

In our case, the reward W when pulling arm s depends not
only on s but also on α: W (n)(s, α) = (1−α)log(Γ

(n)
s ). When

choosing arm s and offering α, the reward is drawn from the
Gaussian distribution log(Γ

(n)
s ) ∼ N(µγs , σγs), multiplied by

a constant (1 − α). Let us denote by x
(n)
s = (h

(n)
s , l

(n)
s ) ∈

Xs the state of SU s at round n. We characterize the SU
in the reduced MAB by its presumed best achievable offer
αmin(x

(n)
s ), denoting the minimum α ∈ A in state x(n)s with

positive belief of being accepted and also being achievable by
the offer selection policy πMDP

s .2

By applying this SU characterization to the UCB index for
Gaussian distributions shown in [11], we obtain:

I(n)s = Ŵ (n)
s + 4σ̂Ws

(x(n)s )

√
ln(n{W>0} + 2)

ns + 1
(6)

where Ŵ (n)
s is the estimated average reward of arm s up to

round n, σ̂Ws(x
(n)
s ) is the estimated standard deviation of the

2For a policy πMDP
s that ends up exploring all the offers of an SU,

αmin(x
(n)
s ) is simply the lowest α not rejected for the current state x.

For more conservative policies that may dictate not to explore all offers,
αmin(x

(n)
s ) is the lowest α that policy is willing to explore given the state

x
(n)
s . Note that, in general, αmin(x

(n)
s ) 6= αa, with αa = πMDP

s (x
(n)
s ).
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Fig. 3. MAB-MDP algorithm for S SUs and A = 3 possible offers . Each
SU is chosen according to a MAB and the offer according to an MDP. “acc”
represents the event that the offer is accepted and “rej” that it is rejected.

rewards of arm s, ns is the number of times arm s has been
pulled up to round n, and n{W>0} is the number of rounds
in which the PT obtained a positive reward from any SU.
Since s is characterized by its presumed best achievable offer
in state x

(n)
s , we have that Ŵ (n)

s = (1 − αmin(x
(n)
s ))γ

(n)
s

and σ̂Ws
(x

(n)
s ) = (1 − αmin(x

(n)
s ))σγs , with γ

(n)
s and σγs

denoting the sample mean and known standard deviation of
γ
(n)
s , respectively. In practice, removing the factor 4 from the

UCB yields a significantly lower regret, while still achieving
convergence. However, despite this empirical evidence, there
are no theoretical bounds on the regret for this version of the
UCB.

We proceed to give a detailed description of the MAB -
MDP algorithm. Its diagram can be found in Fig. 3. Initially,
for each SU s ∈ S:

1) The PT computes the exploration-exploitation policy
πMDP
s for the offers α ∈ A.

2) Given that policy, for the initial state x
(0)
s = (0, A),

the PT computes the presumed best achievable offer
αmin(x

(0)
s ) of each SU. The PT chooses that offer as

representative of the SU.
3) With αmin(x

(0)
s ) and the initial sample of the SNR γ

(0)
s ,

the PT builds the UCB index I(0)s (6).

Then, in each round n:

4) The PT selects the SU z with the highest UCB index
I
(n)
z and the offer αa ∈ A is indicated by the MDP

policy πMDP
z .

5) If the SU rejects the offer, the PT updates its knowledge
state (MDP) x

(n+1)
z and checks if αmin(x

(n+1)
z ) 6=

αmin(x
(n)
z ). If that is the case, the PT computes I(n+1)

z

according to (6). Otherwise, I(n+1)
z = I

(n)
z .

6) If the SU accepts, the PT updates x(n+1)
z , and sets nz =

nz + 1. The indices Is, for all s ∈ S , are also updated
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The results are averaged over 2000 independent experiments.

because n{W>0} = n{W>0} + 1.3

Note that it cannot be assured that this algorithm performs
a fully optimal learning. An optimal learning algorithm would
imply solving a continuous-space MDP comprising all the in-
formation gathered by the PT, which is intractable in practice.
Our MAB-MDP algorithm decomposes the learning problem
into two simpler sub-problems (the MAB and the MDP).
Each sub-problem can be solved very efficiently because it
uses only partial information about the global system. Despite
its simplicity, MAB-MDP shows a remarkably low regret in
numerical evaluation.

IV. NUMERICAL RESULTS

Benchmark strategy. Given the main features of our
proposed mechanism (real-time operation and exploration-
exploitation tradeoff), the best candidates for comparison are
the families of reinforcement learning heuristics [17] known
as ε-greedy policies. Specifically, we will compare our al-
gorithm to the ε-descending strategy. This strategy chooses
the alternative u = (s, α) with best expected reward with
probability 1 − ε(n), and performs random exploration with
probability ε(n), which, in each round n, takes the value
ε(n) = min

(
ε(0)/n, 1

)
, or ε(n) = min

(
ε(0) ln(n)/n, 1

)
for

a log-descending variant, where ε(0) is a tunable parameter.
The alternative u is chosen according to: u = (s, α) =

arg maxs,α(1−α)γ
(n)
s P (α∗s ≤ α). As noted in [11], [17], the

ε-descending greedy strategy performs as well as (and most
of the time, even better than) many other complex policies. Its
main drawback is that the ε(0) parameter has to be carefully
chosen and there is little that can be said theoretically about
its optimal value except for distributions with support on [0, 1]
(see [11]). We show the performance of ε-greedy for several
values of ε(0) in Fig. 4, for both variants of the strategy. We
empirically set ε(0) = 10 for all other figures. We set the
discount factor δ of the MAB-MDP to 0.98.

Fig. 4 shows the performance of our proposal over time
compared to the ε-greedy, for S = 7 SUs and A = 7 possible

3In a classic stochastic MAB, every arm pull increases n{W>0} because
every arm pull gives a reward from a probability distribution. This is not our
case due to the possibility that an offer is rejected.
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Fig. 5. Mean SNRs and SU types are fixed over experiments. µγ =
{35, 32.5, 32.5, 30, 30, 27, 27} and SU types = {1, 1, 1, 2, 2, 3, 3}. On the
left, regret at n = 3000 for the MAB-MDP and the ε-greedy algorithms
for different values of σγs . On the right, regret at n = 3000 for different
estimations of σγs , with the real value of σγs = 10 dB.

α offers. The standard deviation of the SNR of each arm s is
σγs = 5 dB. Our proposal, MAB-MDP, makes a more effective
use of the information than ε-greedy, and therefore one can
expect a significantly better performance in terms of regret, as
shown in the figure.

1) Performance versus standard deviation: On the left of
Fig. 5 the performance of the algorithms is shown versus dif-
ferent values of σγs . The higher the deviations, the harder the
problem, as the samples of each distribution can overlap. The
MAB-MDP standard deviation term is adjusted accordingly.
The ε-greedy policy experiences a more notable performance
degradation under high variance. This is because it relies just
on estimates of the mean reward. The higher the variance of
the samples, the more the rounds needed for the sample mean
to get close to the true average value. Nevertheless, due to its
random exploration nature, ε-greedy manages to eventually
find the optimal arm. The proposed UCB-based algorithm
shows certain robustness under high variances, since it takes
the standard deviation into account when making its decisions.

2) Performance under mis-estimation of standard deviation:
On the right of Fig. 5 the effect of misestimating the standard
deviation σγs in the MAB-MDP algorithm is shown. ε-greedy
performs a frequentist inference and therefore does not make
use of the variance. Underestimating or overestimating σγs
implies being less or more optimistic, respectively, about the
values of the true average rewards of the SUs, based on the
sample means observed. Thus, an overestimation implies more
exploration of each SU and an increased probability of finding
the optimal arm. An underestimation implies more exploitation
of SUs and less exploration. As we can see in the figure,
overestimation is safer than underestimation in terms of regret.
Overestimation leads to a slower convergence towards the
optimal arm but underestimation could lead to convergence to
a suboptimal solution and thus, linear regret with the number
of rounds: the difference between the rewards of the optimal
and that suboptimal arm on each round accumulates over time.
Note that, under severe underestimation, MAB-MDP can even
do worse than the ε-greedy algorithm. Underestimation may
be justified in a scenario where the SUs are expected to stay
a short time in the coverage area of the PT. Then, the PT
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Fig. 6. Regret at n = 3000 for different number of SUs, S, and offers, A.

may be better off sacrificing the search of an optimal arm for
exploiting suboptimal arms with “good enough” rewards.

3) Performance against number of SUs and discretization
levels of the offers: Fig. 6 illustrate how regret grows with
respect to the optimal policy for the different algorithms
when increasing the number of SUs S in the system or the
granularity of the offers A the PT can make. Note that a
higher regret represents worse performance with respect to
the optimal policy. With a higher number of SUs or higher
number of possible offers, the optimal omniscient policy
obtains better rewards. In short: finding the optimal arm is
harder but that optimal arm provides a higher reward than the
optimal arm of a scenario with fewer SUs or fewer possible
offers. That said, both figures show that the proposed MAB-
MDP algorithm scales well when increasing the size of the
problem, as the regret grows dramatically less than for ε-
greedy. This is because of the more effective use of the
available information made by the UCB-based algorithms.
Moreover, the computational cost or memory requirements do
not experience a significant growth, even for the worst case,
which is increasing the number of offers. The state space of
the MDP of an SU, Xs, grows with the number of offers, A,
as |Xs| = A(A + 1)/2, which for a fine-grained range of 20
possible offers becomes 210 states and 20 actions on each
state.

V. CONCLUSION AND FUTURE WORK

We have proposed a spectrum trading mechanism in coop-
erative secondary spectrum access using multi-armed bandits,
from the perspective of a primary transmitter (PT), modeling
channels under shadowing effects. We have focused on a
scenario where the PT has no knowledge of the performance
of the SUs acting as relays, nor of the offers they are willing
to accept. We have built an algorithm that learns payoff-
maximizing actions for the PT with little communication
or computation overhead. Our numerical results show that,
despite its simplicity, MAB-MDP significantly outperforms the
classical exploration-exploitation ε-greedy algorithm. MAB-
MDP has also been shown to be robust to inaccuracies in the
little information it needs and to scale well when the size of
the problem increases, i.e., for more SUs and available offers.
This work can be the starting point to develop more complex
scenarios. Considering the explosion of MAB variants in the
recent literature, as the next steps it would be possible and

interesting to study: 1) how to exploit the spatial fading
correlation across different SUs, 2) extension of the algorithms
to a multiple PT and/or multiple PR case, 3) inclusion of more
dimensions to learning, such as learning the staying time of
SUs in the PT coverage area or the distribution of the SU
types, and 4) inclusion of SU and PU strategic behavior.
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