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Abstract—We investigate a jamming problem in an underwa-
ter acoustic sensor network, where nodes try to communicate
in spite of an adversary that is attempting to block their
communications. We take into account that the attenuation
of underwater acoustic channels is strongly dependent on the
communication distance and the signal frequency. We frame
the problem in a game theoretic setup, as a Bayesian zero-sum
game where the sensor network acts as the maximizer of the
transmission capacity, while the jammer is the minimizer. In
particular, we are interested in evaluating the effect of the nodes’
position on the resulting equilibrium. The Bayesian character
comes into play to represent the uncertainty on the position
information of the nodes. Our evaluations show that for many
network configurations, the equilibrium strategy of the jammer
is pure. Thus, the transmitters can act as though the jammer only
causes a higher level of interference. This allows us to identify
positions where the damage caused by a jammer is easier to
quantify, but the jammer itself is harder to detect.

Index Terms—Underwater communication; Acoustic sensors;
Wireless sensor networks; Frequency division multiaccess; Jam-
ming; Zero-sum games; Bayesian games.

I. INTRODUCTION

UNDERWATER acoustic sensor networks (UASNs) can
be employed in a wide array of applications, from

monitoring and prevention of seismic events (tsunamis, earth-
quakes), to equipment control and surveillance for autonomous
systems operating undersea [1]. As any other kind of commu-
nication systems, they may be subject to malicious attacks, for
example jamming, where an adversary tries to disrupt network
operation by contrasting the transmission at the physical layer.
Since most of the practical solutions for counteracting jammers
are designed with terrestrial radio networks in mind, they may
be unsuitable for UASNs, which can therefore be extremely
vulnerable to such attacks [2].

In this paper, we tackle this scenario with game theory
instruments, an approach that has recently become quite pop-
ular in the networking research community over the last ten
years [3], [4]. Several papers analyze the situation where a
jammer contrasts the legitimate network transmitters to disturb
their communications. In many contributions, such as [5], the
jammer is assumed to be capable to disrupt the communication
exchange by adopting some processing of the messages.
Conversely, we consider a simpler scenario, similar to [6],
where the jammer creates noise-like interference with the
aim of producing denial-of-service attacks. Indeed, underwater
sensors do not usually possess sophisticated signal processing
capabilities and, consequently, it is reasonable to assume that

jamming attacks just consist of raising the noise level. In our
setup, the sensor nodes are able to use several communication
channels and the resulting utility of the network is determined
by its total transmission capacity. The jammer is only able
to produce noise-like interference on a channel at a time. In
addition, the interference caused by the attacker on a channel
depends on the attenuation perceived on it.

In this scenario, we embrace a classic formulation of the
problem as a zero-sum game [5], [7], [8], in which the sensors
play together as the maximizer of a given objective, i.e., the
sum capacity that the network can reach on the channels
involved in the transmission, and the jammer is the minimizer
of the same objective. We are interested in computing the
equilibrium value of the game when all involved actors are
rational, that is, they only aim at maximizing their own
objective.

Since signal attenuations are position-dependent, our ob-
jective is to examine the role of the mutual placements of sen-
sors and jammer. Thus, we consider that the maximizer may
have several types according to the position of its nodes, and
consequently we discuss a Bayesian approach [9], to represent
the fact that the jammer may have an imperfect knowledge
about the network structure. Our purpose is to analyze the
role of the attacker’s position and to underline the effects
that it has on the resulting equilibrium. As a consequence, we
assume that the position of the jammer is common knowledge.
To further clarify, we are not suggesting that the network is
actually able to know the position of the jammer. This is just an
assumption for the game theoretic setup. We want to explore
if the jammer’s presence in a certain position is relevant for
the network and if it changes its gameplay, and the position
of the jammer will be actually considered as the independent
variable of the numerical evaluations.

According to the propagation scenario chosen, there may
be many situations where the impact of the jammer is limited,
e.g., it is so far from the network that it cannot damage it.
However, our findings are not limited to these simple cases.
Depending on the game formulation, the presence of the
jammer can be ignored if the resulting zero-sum game has
a single Bayesian Nash Equilibrium (BNE) in pure strategies
for the attacker, meaning that there is only one behavior that
the rational jammer can assume. This does not mean that the
jammer does not cause any damage, but rather that its impact
is predictable, whereas, at the same time, there are also no
effective countermeasures in order to contrast it. It can be
argued that the jammer would not even be detected in the first



place [8], since if the equilibrium play of the jammer is a
certain pure strategy, sensors cannot distinguish the presence
of the attacker in the network from a high interference level.

On the other hand, we can label some jammer candidate
positions as critical, if a jammer located there will play a
mixed strategy at the BNE, and consequently sensors have to
counter more than one possible jamming action. In general,
the choice of the appropriate strategy against jamming attacks
should consider the location of the jammers; moreover, we
infer that surveillance of the area should give special care to
possible positions of a jammer that are critical in the sense
defined above.

The rest of this paper is organized as follows. Section
II describes the underwater scenario, detailing the relevant
aspects of acoustic propagation and modeling. In Section III,
we formulate a Bayesian zero-sum game between a network
and a jammer, of which we compute the BNEs and the value
in Section IV. Section V presents some numerical results and
Section VI draws the conclusions.

II. UNDERWATER SCENARIO

Research on UASNs is somehow more limited compared
to terrestrial sensor networks based on radio communications.
These two kinds of networks share similarities for what
concerns their many potential applications and their distributed
nature; the main difference relates to the specific physical
layer utilized, which relies on acoustic and radio waves,
respectively, since it is generally accepted that radio signals
do not propagate well underwater [10].

While the wireless medium is fairly understood in the
literature, the acoustic channel for underwater communications
is more difficult to characterize and utilize. Also, the standard
uses of acoustic communications mostly involve echolocation
(with applications such as the sonar and the fathometer),
which, from a networking standpoint, have little interest as
it only involves a single transmitter-receiver pair. The study
of acoustic communications in a network context is more
constrained, also because, still differently from terrestrial
networks, equipment may be much more expensive.

Still, it may be expected that in specific environments and
fields of application, submarine networking can find suitable
exploitation. Moreover, due to the inherent difficulty of coordi-
nating multiple nodes underwater, game theory investigations
can be useful to devise distributed solutions. The major
features and challenges that need to be faced in underwater en-
vironments include, but are not limited to, the following issues
[11]. First of all, underwater channels have a small bandwidth
compared to their terrestrial counterparts, resulting in lower bit
rates. Also, the speed of acoustic waves in water is five orders
of magnitudes lower than that of electro-magnetic waves in air
(about 1.5·103 m/s versus 3·108 m/s, respectively); this results
in a huge propagation delay in underwater channels. Thus, it
is hinted in [12] that frequency division multiaccess (FDMA)
may be more attractive than its time division analog. However,
underwater channels have much lower carrier frequencies
than radio (kilohertz versus gigahertz), thus they cannot be
considered as narrowband and frequency-selectivity must be

accounted for even in a simple analysis. Actually, the use of
cognitive and opportunistic access techniques can be a solution
to adapt communication to the varying conditions at different
times, distances, and channels.

All of these elements will be taken into account in our anal-
ysis. Other aspects that are not explicitly considered but are
worth mentioning regard the higher unreliability of underwater
networks, even in controlled scenarios: radio networks can be
unreliable too, but to a lower extent and/or only if adverse
conditions are assumed. Underwater links may lose connec-
tivity due to propagation phenomena under the sea surface,
or because of node mobility due to oceanic currents. Finally,
underwater sensor nodes have severe energy constraints, since
battery replacement or energy harvesting, e.g., through solar
panels, may be extremely difficult or unavailable.

For these reasons, jamming attacks may be extremely
harmful in underwater environments, and mechanisms to de-
tect and prevent them are important. The huge propagation
delay might forbid the sensor nodes from communicating with
external controllers; as a consequence, an underwater network
has to exploit its own resources to detect and mitigate the
jamming attack [2].

The acoustic power attenuation of underwater channels is
strongly dependent on the communication distance and on the
signal frequency. An absorption loss is present, due to the
conversion of acoustic pressure into heat, which increases with
the signal frequency f as well as with the communication
distance d. As a consequence, shorter communication links
offer higher data rates. Attenuation A(d, f) can be expressed
in dB using Urick’s model as [13]

10 log10 A(d, f) = A0 + k log10 d+ d 10 log10 a(f) (1)

where k is a spreading factor term, a(f) is an absorption
coefficient, and A0 is a normalization constant (the value
for A(d, f) at 1 m and very low frequencies). Formula
(1) shares structural similarities with path loss expressions
commonly used for the wireless case [14]. There are some
relevant differences, though. First of all, since water is a much
more dispersive medium for acoustic waves than what air
is for electro-magnetic beams, there is a further dependence
of distance: beyond the geometrical spreading, i.e., the first
summand, d also appears in the second one, the absorption
term. Also, the spreading factor k, describing the geometry of
propagation, has lower values than what usually considered in
radio environments [14]. Spherical spreading, that would lead
to k = 20, is taken to be a best-case value in radio propagation,
where the presence of obstacles lead to much higher values.
Instead, for underwater acoustic propagation, shallow water
scenarios may even have a more favorable spreading than
spherical, since physical waveguide effects may produce a
cylindrical spreading [15], and therefore 10 ≤ k ≤ 20.

Absorption is expressed using Thorp’s formula, giving
a(f) as a function of frequency f as [16]

10 log10 a(f) =aWf2 + α1
f2

f2
1+f2

+ α2
f2

f2
2+f2

+ . . . (2)

where aW is a pressure-dependent coefficient describing ab-
sorption in pure water, while the αjs, with j=1, 2, . . . weigh
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Fig. 1. Frequency-dependent part of the SNR [A(d, f)N(f)]−1 for a tone
transmitted underwater with d = 1, 5 km (s = 0.5, w = 0 m/s).

further terms due to saline absorptions, and the terms fj are the
relaxation frequencies for these terms. For sea water, two such
terms are usually included, j = 1 is for boric acid, especially
relevant at low frequencies, and j = 2 for magnesium sulphate.

The oceanic noise can be modeled as the sum of several
components, including turbulence, shipping, surface motion,
and thermal noises [17]. Thus, we consider a power spectral
density (PSD) of the noise N(f) = Nt(f)+Ns(f)+Nw(f)+
Nth(f), where Nt(f), Ns(f), Nw(f), and Nth(f) are noise
terms corresponding to turbulence, shipping, surface motion,
and thermal noise, respectively.

These components can be expressed in dB re µPa per Hz
as a function of frequency f in kHz as [12]

10 log10 Nt(f) = 17− 30 log10(f) (3)

10 log10 Ns(f) = 40 + 20(s− 0.5) + 26 log10(f)−

60 log10(f + 0.03) (4)

10 log10 Nw(f) = 50 + 7.5w1/2 + 20 log10(f)−

40 log10(f + 0.4) (5)

10 log10 Nth(f) = − 15 + 20 log10(f) (6)

The parameters in (3)–(6) are the shipping activity s, ranging
from 0 for lowest activity to 1 for most intense shipping and
w, i.e., the wind speed value in m/s, since surface motion
noise is caused by wind-driven waves. In our numerical setup,
we considered practical spreading with k=15, A0=0 dB,
intermediate shipping activity s=0.5 and no wind (w=0),
and a frequency range between 10 and 40 kHz. At these
frequencies, absorption due to pure water and boric acid are
negligible, while we consider the absorption associated to
magnesium sulphate, with parameters f2=66 kHz and α2=48
dB/km [18].

If a communication channel operates on a frequency band
Bi with bandwidth Bi = |Bi|, using a flat power profile, then
the average signal-to-noise ratio (SNR) for a tone at frequency
f can be expressed as [12]

SNR(d, f) =
PS

A(d, f)N(f)Bi
(7)

where PS is the power of the transmitting sensor node, A(d, f)
is the attenuation PSD and N(f) is the noise PSD. In particu-
lar, A(d, f) increases with f while N(f) decreases with f (at
least in the relevant interval for acoustic communications). As
a result, [A(d, f)N(f)]−1 has a maximum for some frequency.
Fig. 1 shows the frequency-dependent part of the SNR for
a tone transmitted underwater with d = {1, 5} km with the
aforementioned choice of parameters.

For this transmission over Bi, Shannon’s capacity Ci is

Ci =

∫

Bi

log2
[

1 + SNR(d, f)
]

df . (8)

However, if a malicious node also causes noise-like interfer-
ence on a specific channel, this has to be taken into account
in the computation of the capacity. Therefore, we replace
the SNR with the average signal-to-noise-plus-jammer ratio
(SNJR) which is

SNJR(d, f) =
PS

A(d, f)[N(f)Bi + PJA(dJ, f)−1]
(9)

where PJ is the power of the malicious node and dJ is
the distance from the receiver. The channel capacity in the
presence of a jammer becomes

C′
i =

∫

Bi

log2
[

1 + SNJR(d, f)
]

df . (10)

III. GAME THEORY MODEL

We consider an underwater network with 2 sensors, de-
noted as S1 and S2, transmitting data to a sink node, both
using the same transmission power PS. The distances from
the sink are d1 and d2 for S1 and S2, respectively. The
network implements an FDMA scheme, so that the entire
communication band available to the sensors is split into two
channels in the frequency bands B1 and B2. In such a scheme,
either B1 is assigned to S1 (and B2 is assigned to S2) or B1 is
assigned to S2 (and B2 to S1). This entire network, consisting
of S1, S2, and the sink node, plays a single player S, whose
aim is to maximize the overall network capacity, computed as
the sum of the capacities achievable on channels B1 and B2.

The legitimate transmissions of the 2 sensor nodes are
obstructed by a malicious jammer J that acts to minimize the
total network capacity. The jammer is located at distance dJ
from the sink node and can only transmit over either B1 or
B2 (but not both) using a transmit power PJ.

The interaction between S and J is modeled as a two-
player zero-sum game with incomplete information. Actually
S can be of many types, represented by a finite set Θ =
{(d(1)1 , d(1)2 ), ..., (d(|Θ|)

1 , d(|Θ|)
2 )}, This means that each element

of Θ is a pair of distances of S1 and S2 from the sink node,

i.e., d(k)i is the distance of Si in the kth pair. We denote the
kth type as θk and the probability that S can be of type θk
as pk, such that pk ≥ 0 and

∑

k pk = 1. In this setting J has
no type. We actually consider the distance dJ to be common
knowledge in the game, together with the prior probability
distribution p = (p1, ..., p|Θ|).

This approach reflects that of Bayesian games [9], where
a fictitious player called “Nature” is introduced to select the
types of players according to the prior probability distribution



[7]. In this setting, Nature decides upon S’s type θk according
to p. Then S is informed of his type θk and decides its own
action, which can be either of the following:

• A1: assign B1 to S1 (and, consequently, B2 to S2)
• A2: assign B2 to S1 (and, consequently, B1 to S2)

It follows that S has N = 2|Θ| pure strategies, since S can be
of |Θ| different types and for each of them it has 2 actions
to choose from. We describe S’s pure strategies as |Θ|−tuples
and we denote their set as X = {Xi}i=1,...,N . The kth entry,
denoted as Xi(k), of the ith pure strategy defines the action
played by S when it is of type θk. J has instead 2 pure
strategies, which coincide with its 2 possible actions:

• Y1: attack channel B1

• Y2: attack channel B2

We denote the set of J’s strategies as Y = {Y1, Y2}. We
define a mixed strategy for S as an N -tuple σ = (σ1, ...,σN )
representing a probability distribution over X and therefore
satisfying σi ≥ 0 ∀i = 1, ..., N and

∑

i=1,...,N σi = 1.
Analogously, we define a mixed strategy for J as a 2-tuple
η = (η1, η2) where η1, with η1 ≥ 0, and η2 = 1 − η1 are a
probability distribution over Y . Once the prior probability dis-
tribution p is given, this Bayesian game can be represented in
an equivalent normal form using a N × 2 matrix M = {mij}
with i = 1, ..., N and j = 1, 2. The entry mij is the expected
payoff for S when the ith and jth strategy are played by S
and J, respectively, and is

mij =

|Θ|
∑

k=1

pkCtot

[

Xi(k), Yj

]

(11)

where Ctot

[

Xi(k), Yj

]

, represents the overall network capac-
ity when S is of type θk (which is chosen with probability pk)
and thus performs the action Xi(k), while J plays Yj . Thus,
we can compute it through (8) and (10) as

Ctot(Xi(k), Yj) =

{

C′
1 + C2 if Yj = 1

C1 + C′
2 if Yj = 2

(12)

and J’s expected payoff can be also computed as −mij .
Moreover, the expected payoff associated to a joint mixed
strategy (σ,η) can be easily obtained by summing over all
the entries of M and weighting them by the corresponding
probabilities in σ and η. By writing the original Bayesian
game in this equivalent normal form allows to derive its BNEs
as the saddle points of the expected payoff matrix M.

IV. BAYESIAN NASH EQUILIBRIA COMPUTATION

We can find the BNEs of the game thanks to von Neu-
mann’s Minimax Theorem [19], which assures that a zero-sum
game has at least one Nash equilibrium, all equilbria yield the
same payoffs, and the mixed strategies played at equilibrium
are maximinimizer strategies (or, alternatively called, security

strategies) for both players, that guarantee to maximize the
payoff in the worst-case scenario of the opponent’s move.

For our game, we denote one of the equivalent BNEs as
(σ̃, η̃), where σ̃ is the mixed strategy played by S and η̃ is

that played by J. We denote as v the payoff yielded by each
BNE to S and we refer to it as the value of the game. It holds

v = max
σ̃

min
1≤j≤2

N
∑

i=1

σ̃imij

= min
η̃

max
1≤i≤N

(η̃1mi1 + η̃2mi2) . (13)

We then look for a strategy σ̃ such that the quantity

w1= min
1≤j≤2

N
∑

i=1

σ̃imij (14)

is maximized and for a strategy η̃ such that the quantity

w2= max
1≤i≤N

(η̃1mi1 + η̃2mi2) , (15)

is minimized. From the Minimax Theorem, we know that the
resulting pair (σ̃, η̃) is a BNE and that v coincides with w1 =
w2. We solve (14) and (15) by a conversion to two linear
programming problems [7]. We reformulated them as

max w1 (16)

s.t. w1 ≤
N
∑

i=1

σimi1 , w1 ≤
N
∑

i=1

σimi2

σi ≥ 0 ∀i = 1, . . . , N ,
N
∑

i=1

σi = 1

and
min w2 (17)

s.t. w2 ≥ η1m11 + η2m12

...

w2 ≥ η1mN1 + η2mN2

η1 ≥ 0, η2 ≥ 0, η1 + η2 = 1

We use the simplex algorithm [20] to get the solutions
corresponding to different values of the prior probability
distribution p and of the distance dJ. Since we are interested
in establishing if (σ̃, η̃) is a mixed or pure joint strategy, we
compute the maximin and the minimax in pure strategies and
compare the corresponding payoffs with the payoff at BNE.

V. NUMERICAL RESULTS

We consider the scenario where S1, S2, and J communicate
with constant power PS = PJ = 95 dB re µPa and evaluate
the performance of the network with dJ ranging from 0.01 to 6
km. S1 and S2 share a common spectrum of bandwidth 10-40
kHz, divided into 2 channels (B1 and B2) of 15 kHz. Moreover,
B1 operates over [10, 25] kHz and B2 = [25, 40] kHz. Noise
and attenuation over these channels can be determined through
what discussed in Section II. This results in the following noise
terms for the two channels:

N1 =

∫

B1

N(f)df = 37.44 dB re uPa ,

N2 =

∫

B2

N(f)df = 32.87 dB re uPa .

We set the possible positions for the sensors at 1 and 5
km. In principle, we could consider all pairs (4 alternatives)
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Fig. 3. J mixed strategy as a function of dJ ∈ [0.01, 6] km (prior distribution
for S’s type: [1/3 1/3 1/3]).

to be included in Θ, but since (1, 5) km and (5, 1) km give
the same results, we only consider Θ =

{

(1, 1), (1, 5), (5, 5)
}

km. As a consequence, each of the 8 pure strategies of S is
in the form [1 1 2], meaning that S assigns B1 to S1 only if it
is of type 1 or 2, while it assigns B2 to S1 if it is of type 3.

Given this setting, we plot the BNE of the game as a
function of dJ. Figs. 2 and 3 report the probability distribution
over the BNE strategies of the players. In particular, we
consider the case of a uniform prior distribution for S’s type,
i.e., p = [1/3 1/3 1/3]. Fig. 2 shows that there exixts a
critical distance d̃ for J such that the BNE strategies of S are
pure strategies. In particular, S plays a mixed strategy with
support given by all pure strategies in the form [. 2 .], i.e., S
plays A2 if it is of type (1, 5), meaning that it assigns the
closer node to the worst channel. Furthermore, S randomly
plays A1 or A2 if it is of types (1, 1) or (5, 5), meaning
that it is indifferent on its alternatives if the distances of
the nodes are equal. Fig. 3 shows the same results from J’s
perspective, i.e., there exists a distance d̃ for J at which it
disrupts communication on B1 with probability 1.
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Fig. 4. BNE payoff in mixed strategies as a function of dJ ∈ [0.01, 6] km
(prior distribution for S’s type: [1/3 1/3 1/3]).
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Fig. 5. BNE payoff in mixed strategies as a function of dJ ∈ [0.01, 6] km
(prior distribution for S’s type: [3/4 1/8 1/8]).

Fig. 4 also reports the payoff at BNE for S, quantified
as the sum capacity of the network in bit/s. The BNE ex-
pected payoff for S is bound by the maximin’s payoff and
the minimax’s payoff in pure strategies, computed as the
maximum of the minima and the minimum of the maxima
over rows and columns of M . According to the previous
performance analysis, the three curves converge at d̃ for J and
then coincide for dJ ≥ d̃. In this region the sensor network
behaves almost independently of the jammer’s action, and vice
versa. According to Fig. 4, the Bayesian game is uncertain of
its outcome at the equilibrium only when dJ ≤ 1.68 km, i.e.
only when the jammer is close to the receiver but not as close
as the sensor node with the minimum distance.

Then, in Fig. 5 we consider a different configuration of the
network, with a non-uniform prior distribution for S’s type,
such as p = [3/4 1/8 1/8]. Note that in this configuration
the transmitting sensor nodes are more likely to be close to
the sink node and located at the same distance (this is also
known to the jammer). The figure shows the BNE payoff for S,
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together with the maximin’s payoff and the minimax’s payoff
in pure strategies. The performance is similar to the previous
case, i.e., the three curves converge if dJ is greater than d̃,
but this time such a value is even smaller than before, since
d̃ = 1.01 km. Moreover, the maximin and minimax bounds
are tighter, thus the situation resembles a quasi-pure strategy
case regardless of dJ.

In Fig. 6, we consider another non-uniform prior distribu-
tion for S’s type, p = [1/8 1/8 3/4]. In this case, the BNE
payoff for S, the maximin’s bound, and minimax’s bound
coincide for every dJ ranging from 0.01 to 6 km. Thus, if
transmitting sensor nodes are likely to be far from the sink
node, then S’s strategy is always independent of dJ. Intuitively,
in this case the jammer will always disrupt communication on
the better channel, i.e. B1. This does not mean that the jammer
has no impact, as it can be noticed that the achieved capacity is
much lower than what achieved in the previous cases (Figs. 4
and 5). However, the network performance is more predictable.
Also, in this case the sensor network actually knows that there
is a jammer; however, in reality it would be actually difficult to
detect it in such a scenario, since its actions would be identical
to a higher noise (e.g., due to a more intense shipping or wind
noise) on channel B1.

VI. CONCLUSIONS

We formulated a Bayesian zero-sum game for a jamming
problem in an underwater sensor network, where we especially
investigated the role played by the positions of the nodes.
The sensor network is characterized by a Bayesian type,
corresponding to the actual placement of the nodes among
the candidate positions, and we considered a variable distance
dJ of the jammer from the intended receiver.

We computed the BNEs and the value of the game, and
we investigated their dependence on dJ. In many cases, it is
found that there is a unique BNE where the jammer adopts a
pure strategy; thus, the gameplay of the jammer is transparent
to the sensor network, which simply sees a decrease in the
transmission capacity, without any variability. In this sense,

the sensor network may not be significantly affected by the
jammer (even though the capacity indeed decreases), and it
might even not notice that an attacker is there. Conversely,
there are cases where the jammer is placed in a certain position
and, as a result, plays a mixed strategy at the equilibrium.
These positions give to the jammer a better capability of
effectively disturb the network communication, and therefore
should be carefully monitored.

Future work beyond the present paper will extend the anal-
ysis by also considering uncertainty in the jammer position,
so as to deepen the game theoretic interaction between the
players. Especially, preliminary results seem to suggest that
in this setup the equilibrium strategies pool more frequently
towards pure actions, and therefore the positions where a
jammer can effectively threaten the network communication
are further reduced. A more elaborate game theoretic analysis
can be performed to fully characterize this scenario as well.
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