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Abstract—We consider a multi-stage Bayesian game to model
the interaction between an adaptive video streaming client and
a congested network adopting a token-based policy for QoS
provisioning. The Bayesian type of the network is its level of
congestion, which is initially unknown to the client, but heavily
influences its payoff. For this reason, the client may be interested
in iteratively estimating such a type as the game goes on. To
this end, the game is solved to find the equilibria solution, and
the estimation process performed by the client is simulated. We
discuss how the initial conditions can gauge the convergence
speed of the estimate. We find out that, while the network type
may be sometimes hard to estimate, especially in low congestion
scenarios, nevertheless the equilibrium action of the client is still
very close to the ideal best response with full knowledge of the
network type. We extend this result to the ability of the client
to even correctly estimate the prior distribution of the network
type from multi-stage streaming games.

Index Terms—Multimedia communication; Streaming media;
Quality of service; Game theory; Bayesian games.

I. INTRODUCTION

V IDEO streaming services are rapidly becoming the main
source of traffic on the Internet, as well as an essential

service for mobile and computer users. According to [1], video
traffic was 60% of total consumer traffic in 2013, and a further
increase to up to 75% is expected for the next few years.

Multimedia streaming is usually described as having strict
Quality of Service (QoS) requirements on both error rate and
delay, while having an extremely high bit rate. These require-
ments get even more taxing for high definition video, and can
become a heavy burden for congested wireless networks, in
which the available data rates are limited [2], [3].

A possible solution to this problem is dynamic video
code rate adaptation: the Quality of Experience (QoE) loss
when viewing a compressed video is both milder and more
controllable than the one caused by random packet errors or
high network delay. The streaming client can then request
different qualities basing on its assessment of the network
conditions, fully exploiting the available bandwidth and max-
imizing user QoE [4], [5]. However, when video streaming
start, the network conditions are not known by the client,
thus making it difficult to adapt the request, and the resulting
“barganing” of resources with multimedia users [6] can be
inefficient.

In this paper, we propose to study such an interaction
within a game theoretical framework. In the recent scientific
literature, game theory has often been applied to networking;

in many cases, the focus is on guaranteeing QoS and fair-
ness among multiple users accessing the same constrained
resource. For example, [7] considers multiple video streams
in an orthogonal frequency division multi-access (OFDMA)
downlink; game theory is used to accommodate the request of
the users and fairly allocate bandwidth among them. Along
similar lines, papers [8] and [9] adopt a Nash bargaining
solution, for a general network and for the specific case of
an OFDMA downlink, respectively, once again to maximize
fairness between multiple video users. Finally, in [10], with
a slightly different approach, game theory is applied to video
compression, optimizing the bit rate control via an estimation
of the coding complexity of frames; but game theory is invoked
again to obtain fair coordination of multiple users. Remark-
ably, in these contributions, a perfect information assumption
is often made, which means to deal with users that are fully
aware of the game’s payoffs, i.e., they perfectly know the
network conditions.

Differently from these previous works, our model does
not investigate multiple access management, which we assume
to be left to the network controller. Instead, we consider the
individual allocation of resources to a single user, and therefore
our game involves just the user and the network management
as two players. Also, the novelty of our approach is that we
consider that the user is unaware of the network condition,
and we resort to Bayesian games to capture the imperfect
information of this game.

In more detail, we consider a wireless network implement-
ing QoS provisions through a token-bucket method [7] as the
practical mechanism to coordinate the users. A strategic user
of the network, identified as player 1 in our framework, is
requesting the allocation of some resources for video trans-
mission, driven by a utility function describing its perceived
QoE. The network as a whole is the other agent in the game,
player 2, and reacts to this request according to its own utility
function, influenced by the congestion status [2], which is
known to player 2 (but not to player 1) and therefore represents
the type of this player.

The result is a multistage Bayesian game, in which player
1 requests video packets with different rates and chooses token
payments dynamically, gradually adapting to the information it
receives about network congestion. An advantage of the game
theoretical framework is that there is no explicit signaling
between the network and the video streaming client, but the
latter infers the congestion from the utility it gets after each
stage. Remarkably, we are able to show that the estimation
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Fig. 1. Structure of the game. The stage game is reported to the right.

of player 2’s type is not always successful (it is especially
difficult when the network load is low); however, player 1’s
action almost always converges quite rapidly to the ideal
allocation request. Indeed, when the type of player 2 is
correctly estimated, this is automatic, whereas in the case
of incorrect estimation but low network load, the allocation
is often successful. Thus, our game theoretical setup proves
that an iteratively updated mechanism of user requests can
be suitable to achieve an efficient multimedia allocation in
wireless networks.

The rest of this paper is organized as follows. In Section
II we introduce our game-theoretical characterization of the
network allocation problem for video streaming. We further
discuss the solution of the game, and how it can be reached
through iteration across game repetitions; finally, we extend
the analysis to the type estimation of the “network” player.
Section III reports some numerical results for the convergence
of the multi-stage game to the correct estimate of the types
and the optimal action. Finally, we conclude in Section IV.

II. GAME-THEORETICAL MODEL

We consider a video streaming scenario as a multistage
two-player game; players 1 and 2 are the streaming client
and the network, respectively. Each stage game represents the
quality setup for the transmission of a Group Of Pictures
(GOP); the client can choose the video quality dynamically
for each GOP. In addition, the network implements a token-
bucket scheme [7] to ensure fairness among the users. With
such a mechanism, the user can receive high quality GOPs,
but it needs to pay a higher price (more tokens) for it.

The perceived QoE of a GOP, and therefore the entire
game development, depend on the network congestion [?], [2].
This is represented as a type, denoted as t ∈ [0, 1] (where 0
means no congestion and 1 is the highest congestion level),
of player 2. Thus, the scenario is framed as a Bayesian game
[12]. While the actual value of t is known only to player 2,
its prior pdf, written as f0(t), is common knowledge for both
players; we assume it is a Gaussian truncated between 0 and
1, with average µt and variance σ2

t .

Each stage game is organized as follows (see Fig. 1): first,
player 1 chooses a price for the channel use, paying an integer
number of tokens c between 0 and 10. Then, the two players

TABLE I
PARAMETERS OF THE UTILITY FUNCTION.

q k0 k1 k2 k3

H 50 1 5 16

M 50 2/3 8 14

L 50 1/3 12 14

Fig. 2. Function u1 for the three quality values (with no noise, c = 5)

move simultaneously, as denoted by the dashed line: player
2 chooses how much bandwidth b to allocate to the client,
based on its own type and player 1’s choice of c. At the same
time, player 1 chooses the quality q for the next GOP, with
three possible choices: high (H), medium (M), and low (L); we
assume that these correspond to three available compression
levels of the GOP through scalable encoding [4]. After each
stage game, stage utilities are computed and cumulated with
the previously accrued utilities.

The variables involved are summarized as follows

f0(t) ∼ N[0,1](µt,σ
2
t ) c ∈ {0, 1, . . . , 10} (1)

q ∈ {H,M,L} b ∈ [0, 1]

The stage utilities are instead computed as follows

u1(c, q, b)=
k1(q)

1 + e−k2(q)+k3(q)b
−

(

c− 5

k0

)

+ w (2)

u2(c, b, t)=1−

(

1 +
c− 5

k0
− t− b

)2

(3)

where w ∼ N(0,σ2
w) is a superimposed noise term that keeps

into account video quality fluctuations. Parameters k1, k2, and
k3 represent the dependence of u2 on the chosen quality q,
while k0 is actually a fixed term. The values chosen for our
numerical setup are reported in Table I.

The client utility described in (2) and shown in Fig. 2 is a
sigmoid function; video Quality of Experience (QoE) is often
modeled with sigmoid functions in the literature [13]. The
perceived QoE may vary due to random parameters due to the
channel characteristics (such as fading in wireless channels)
or of the video itself (such as the current GOP’s dynamic
content), which is the reason for the noise term w.

As (3) shows, player 2’s utility function does not depend
on q: we assume that the network is large enough not to



Fig. 3. Function u2 for all possible moves b, c = 0 (left) and c = 5 (right)

be perturbed by a single video stream. As the default GOP
cost is assumed to be 5 tokens, if player 1 pays that amount
player 2 simply allocates the available bandwidth to the client,
whose amount depends on the network congestion, i.e., on t;
in other words, b is simply set to 1− t. If player 1 is willing
to pay c > 5 tokens, the network temporarily redistributes
the load to provide a larger bandwidth, while if it pays fewer
tokens than 5, it will receive less resource accordingly. The
fact that c cannot be increased indefinitely is reflected in its
direct influence on u1; the higher c, the lower u1. Fig. 3 shows
the network utility as a function of b and t for two different
values of c.

A. Solution of a game stage

Within a given stage, the behavior of player 2 only depends
on c and t, which are known to it when it makes its move: we
can then derive a closed-form equation for the best move s∗2,
corresponding to the selection of the most suitable b. If the
best move is out of the interval [0, 1], player 2 will play the
closest admissible move.

s∗2(c, t) = argmax
b

u2(c, b, t) = 1− t+
c− 5

k0
(4)

The best move of player 1 is instead

s∗1(t) = argmax
c,q

u1

(

c, q, s∗2(c, t)
)

, (5)

where maximization is more complicated, as it involves both
choices of c and q. However, since c and q have finitely many
values, the solution can simply be found by enumeration.

Now, as strategy s∗1 is a best response to s∗2, and knowing
that s∗2 is a best response to any strategy by player 1, a
hypothetical perfect information game would have (s∗1, s

∗

2)
as a subgame-perfect equilibrium (SPE) for each stage [12].
The uncertainty on the type of player 2 makes 1’s move sub-
optimal: in the first stage, player 1 has no information on
player 2’s type, and it chooses to play the Bayesian Nash
Equilibrium (BNE):

s∗1 = argmax
c,q

∫ 1

0
u∗

1

(

c, q, s∗2(c, θ)
)

f0(θ)dθ (6)

Each stage of the game can also be regarded a signaling
game, as player 2 reveals some information about its type t
with its move. The estimate t̂i is not perfect because of the
noise, but s∗2 would be a separating strategy in a noise-free
scenario as u2(c, b, t) is fully invertible.

Thus, player 1 can estimate b and t as

b̂ =

k2(q) + log

(

k1(q)

u1 + (c− 5)/k0
− 1

)

k3(q)
(7)

t̂ = 1 +
c− 5

k0
− b̂ (8)

where it is worthwhile noting that b̂ = b̂(q, u1), i.e., the
estimate of b (and consequently also that of t) depends on
u1, i.e., the partial utility perceived by player 1 in the present
stage. After a sequence of n further refined estimates of the
type t̂n = (t̂1, t̂2, . . . , t̂n), we can write an updated estimate
of the prior after n estimations as fn(t), for which it holds

fn(t) = Pp(̂tn|t)f0(t) (9)

fn(t) = P
1

√

2πσ2
w

exp

[

−ξ

2σ2
w

]

fn−1(t) (10)

with ξ =
(

u1

(

c, q, s∗2(c, t)
)

− u1

(

c, q, s∗2(c, t̂n)
)

)2

where p(̂tn|t) is the probability of getting t̂n conditioned on
the true type t. From (9) we can obtain the recursive formula
(10), which can be applied in practice; this is how player 1
can update its beliefs about the pdf of t to find the optimum a
posteriori distribution. Note that the normalization constant P
in (9) and (10) serves to scale the pdf so that

∫ 1
0 fn(t)dt = 1.

Therefore, the BNE strategy for stage n is

s∗1 = argmax
c,q

∫ 1

0
u∗

1

(

c, q, s∗2(c, t)
)

fn(t)dt (11)

We expect that player 1’s beliefs about player 2’s type will
converge to the real value if the value of σ2

w is small; it is also
possible to estimate the noise variance σ2

w along with the type,
but the convergence will be slower. Also, note that it may not
be important that t̂ converges exactly to the real type of player
2 as long as the estimate still allows player 1 to play through
(11) a strategy that is close enough to the real best move, see
(5). We will see that this is actually the case in many situations
where t is incorrectly estimated, but s∗1 is still adequate.

B. Multi-stage game and prior estimation

After deriving the optimal behavior for the two players in
a video streaming game, we can expand the model to perform
a prior estimation: if player 1 knows that f0(t) is a truncated
Gaussian distribution but not its parameters µt and σ2

t , it can
repeat the video streaming game several times in independent
network conditions to obtain several reliable values of t drawn
from the distribution.

After getting n estimates of the network type t as t̂n =
(t̂1, t̂2, . . . , t̂n), we can derive the prior parameters by using
the mean and variance unbiased estimators [14]

m̂t =
1

n

n
∑

i=1

t̂i (12)

v̂t
2 =

1

n− 1

n
∑

i=1

|t̂i − µ̂i|
2 (13)



so that we can estimate the parameters of the truncated
Gaussian distribution as µ̂n and σ̂n computed as

µ̂n = m̂t +
φ
(

− m̂t

v̂t

)

− φ
(

1−m̂t

v̂t

)

Φ
(

1−m̂t

v̂t

)

− Φ
(

− m̂t

v̂t

) v̂t (14)

σ̂2
n = v̂2t



1 +
− m̂t

v̂t
φ
(

− m̂t

v̂t

)

− 1−m̂t

v̂t
φ
(

1−m̂t

v̂t

)

Φ
(

1−m̂t

v̂t

)

− Φ
(

− m̂t

v̂t

)



− µ̂n
2

(15)

where φ(x) is a standard Gaussian pdf and Φ(x) is a standard
Gaussian cdf. The complexity of the formulas makes it hard in
some cases to accurately gauge the mean and variance of the
truncated Gaussian, as small variations in the sample mean
and variance, as well as errors in the estimates, may cause
noticeable errors in the resulting mean and variance.

III. NUMERICAL RESULTS

We evaluate the proposed game theoretical framework via
independent simulations implemented in Matlab. The type of
player 2 was quantized with a 0.01 step in order to have
repeatable results and reduce computation times; the formulas
only need slight adaptations for this discrete case. In the
following, we report the results for the proposed iterative
procedure, focusing on its convergence of both the estimation
of player 2’s type and the best action of player 1. Moreover,
we show how the same procedure can be used to gauge the
estimation of the prior distribution.

A. Performance metrics

As getting a certain estimate of player 2’s type is extremely
hard in a noisy scenario, and meaningless in the continuous
case, we had to define meaningful performance metrics; we
measured the speed of the convergence of the estimate as well
as the quality of the moves of player 1.

We can define the metric ∆u as the distance between the
maximum utility and the one resulting from the actual move
(without noise):

∆u = u1

(

s∗1(t), s
∗

2(c
∗, t)

)

− u1

(

c, q, s∗2(c, t)
)

(16)

We can see the evolution of ∆u to fathom how fast the
moves of player 1 converge to the optimum, and if the payoff
difference is significant.

Player 1 does not estimate player 2’s type directly, but
it maintains the best possible estimate of f0(t), using the
information from the previous rounds in order to keep playing
the Bayesian best response in each stage. We define three
convergence criteria to measure the number of stages it takes
for the estimate to be accurate enough; all three consider
a region around the true value, and consider the estimate
accurate if the probability of being inside that region is larger
than a chosen value. Formally, convergence is declared to be
reached whenever

Prob[t− tth ≤ te ≤ t+ tth] ≥ P0 (17)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

type t

co
nv

er
ge

nc
e 

tim
e

 

 
sigma = 0.01
sigma = 0.05
sigma = 0.1

Fig. 4. Average convergence time (criterion 1) for all types
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Fig. 5. Average convergence time for all criteria, σw = 0.01
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Fig. 6. Average convergence time for all criteria, σw = 0.1

We set tth = 0.05 and P0 = 0.9 for criterion 1, tth = 0.05
and P0 = 0.8 for criterion 2 and tth = 0.02 and P0 = 0.9
for criterion 3. Criterion 3 is the strictest, as it requires that
the estimated type fall inside a narrow region with very high
probability, while both the other criteria use a larger acceptable
region.

B. Type estimate convergence

We ran two simulation campaigns to evaluate the conver-
gence time of the type estimate: in the former, we ran the game
several times for every type, plotting the average convergence
time for each type, while in the latter we used a Monte Carlo
approach to plot a histogram of convergence times.

Fig. 4 shows that, as the noise on player 1’s utility
increases, it becomes more and more difficult for it to ascertain
player 2’s type. The effect of the noise is particularly strong
when t < 0.2, i.e., the network is free of congestion; the
flatness of the utility function in this area makes it hard
to distinguish between types even with low levels of noise.
The convergence times increase significantly already when
σw = 0.1, while for σw = 0.01 convergence is reached in
less than 10 stages for almost all steps.

In Figs. 5 and 6 we can see that convergence times increase
when using a stricter convergence rule such as criterion 3); for
σ = 0.01 the overlap is almost perfect, with the type estimate
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Fig. 7. Histogram of convergence times in the Monte Carlo simulation

Fig. 8. Average utility over 20 stages with no noise, compared with σ = 0.01

Fig. 9. Average utility over 20 stages for several noise levels

converging in very few stages with all criteria. This means
that, for low noise levels, the estimate for t > 0.1 is extremely
accurate after less than 10 stages.

The results of the Monte Carlo simulation, shown in
Fig. 7 (which considers criterion 1), substantially confirm
the analysis: convergence is extremely fast when the noise
level is low, but slows steadily as noise variance increases.
The error probability for low types may pose a problem in
getting accurate estimates, but this is due to the structure of
the utility functions; nevertheless, what is important is whether

Fig. 10. Utility over time for σw = 0.1

Fig. 11. Utility over time for σw = 0.3

the strategy of player 1 quickly converges to its best move,
even when its estimate does not converge to the correct type.
If the client really needs to estimate the network type for
reasons beyond the simple evaluation of its optimal move, it
can actually think of a more exploratory strategy to ascertain
whether the network is congested or not.

C. Convergence to the optimal action

Although the type estimation is not always perfect, con-
vergence to the optimal action is extremely fast: Figs. 8 and 9
show that, after 20 stages, the average utility for noise levels
up to σw = 0.1 matches the perfect one almost exactly.

The convergence to the optimal action is extremely fast,
as Fig. 10 shows; even with a non-negligible level of noise,
which makes it hard to estimate the correct type when the
reward function is flatter, the client takes the perfect action
every time taking only 3 or 4 turns to adjust. We also tested
the client in a very difficult situation, raising the noise level
to σw = 0.3; the results are displayed in Fig. 11. Such a noise
level makes it almost impossible to correctly estimate the type,
but the client manages to get close to the optimum in all cases,
and even achieve it in less than 10 stages when the network
type is 1.

D. Prior estimation

We try using repeated estimates in independent conditions
to get an estimate of the prior distribution. We use a low
noise level (σw = 0.01) and terminate the estimation process
after a finite number of stages (as opposed to the previously
defined three criteria), choosing the type with the highest



Fig. 12. Prior for µt = 0.25, σ2
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= 0.5

Fig. 13. Prior estimation for µt = 0.25, σ2
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= 1

estimated probability; in light of the previous results, we want
good estimates to avoid large errors in the sample mean and
variance.

The related results are reported in Figs. 12 and 13, for
a fixed value of µt = 0.25 and σ2

t = 0.5 or σ2
t = 1,

respectively. The estimates gave satisfactory results for a range
of distributions; the results are even closer to the actual prior
for smaller variances, and the larger error in estimating the
mean with high variance (Fig. 13) is compensated by the flatter
nature of the distribution.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a game theoretical investigation
of interaction between multimedia users and the network
management, especially focusing on the uncertainty of the
users about the network congestion status. We analyzed the
game from several standpoints, to understand the dynamic
evolution of the interaction and the estimation process itself.

The simulation results show that the convergence to the best
action is fast and efficient for reasonable noise levels; while
considerably more difficult, the prior estimation also proved
satisfactory.

The results showed a strict dependence between conver-
gence speed and the slope of the utility function; a nearly
flat reward function results in non-convergent type estimation,
as noise overwhelms the signaling (although the client still
converges to the optimal action). A possible future line of
study could be an analysis of the influence of utility functions
on convergence, changing the slopes and using linear functions
as a benchmark. Another interesting approach would be to
consider a more realistic evaluation of QoE from QoS metrics
[11] so as to use real video QoE metrics as the payoff function
of the client. We might also compare our prior estimation
technique with other, more refined, statistical techniques that
can be developed to reduce convergence times and errors in
the estimates.

Finally, a more ambitious improvement might consider
multiple users; a multitude of smart players contending for
network resources would be a challenging model, which could
show us if our network model is a good approximation of
reality, as well as providing new data.
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