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Abstract—We consider sensing for cognitive network users, in
particular focusing on a scenario where a primary user (PU) and
a secondary user (SU) operate on the same frequency band. The
SU is interested in identifying transmission opportunities when
the PU is silent. We investigate how this sensing performed by
the SU can be improved through modeling the PU transmission
pattern with increasing accuracy. In particular, we are interested
in evaluating the impact of correlation in PU’s transmissions.
Therefore, we assume that the real behavior of the PU follows
a Markov chain, used to model correlation in its activity, and
we discuss how the maximum likelihood estimation of the SU
can be subsequently improved by adding more information
about this underlying process. In this way, the estimate can
evolve into a maximum a-posteriori criterion, and furthermore
knowledge about the whole Markov chain can be exploited. Also,
we investigate the practical setup of training periods of variable
length used to estimate the PU’s parameters.

Index Terms—Cognitive networks; Markov process analysis;
maximum likelihood estimator; performance evaluation.

I. INTRODUCTION

Cognitive radio is a paradigm that refers to the applica-
tion of techniques mimicking rationality and intelligence to
configure wireless transmission parameters [1]. In particular,
a common scenario of application involves the activity of a
licensed primary user (PU) on a given frequency band and the
concurrent operation over the same band of a secondary user
(SU). The SU should estimate the ongoing PU activities, to
be able to opportunistically exploit the instants where the PU
is inactive [2].

This kind of investigation has recently become very ap-
pealing to solve problems of access coordination, network
overhead, and high density of wireless devices in the same
area. More in general, advanced designs of cognitive engines
are able to increase network capacity and coverage for cellular
systems, thus resulting in a better resource utilization for the
operator as well as an improved quality-of-service (QoS) for
the end user, ultimately leading to higher revenues for the
former and better satisfaction for the latter.

If the activity patterns of the PU are accurately monitored,
the SU can exploit idle channel resources that are temporarily
unoccupied, while allowing interference-free communication
for the PU [3]. However, the goodness of the instantaneous
decision to make is related to the accuracy in the overall
representation made by the SU about the PU. A precise

modeling of when and how the PU is active leads to more
effective spectrum usage by the SU [10].

The basic sensing procedure for spectrum sensing is to
employ the Neyman-Pearson criterion that translates into a
maximum likelihood comparison between the two hypotheses
“PU is transmitting” and “PU is silent,” both of which can be
tested against a channel observation at the receiver’s side [4].
In the former case, the receiver can hear the PU signal and an
additional noise term, while in the latter only noise is present.

The approach of comparing the likelihoods of the two
hypotheses can be derived under several conditions [5]. In the
simplest case, the statistics of the noise and the transmission
parameters are fully known. It can be proven via a Bayesian
approach that it would be equivalent, only more cumbersome,
to extract these values from actual transmissions and initial
estimates that become more and more refined.

For the sake of simplicity, we start by considering that
all physical parameters have been properly estimated, so that
the only unknown at the physical layer is whether the PU is
actually active or not. We will further relax this assumption
by considering an iterative parameter estimation. However,
our main focus is not on physical layer parameters, but
rather we consider an upper layer characterization of the
PU, and in particular we discuss how a richer description
of its access/traffic characteristics can improve the sensing
by the SU. However, this evaluation is challenging because
there are several descriptors that can be taken into account to
characterize the primary activity.

A first step in this sense is to include the transmission
probability of the PU in the analysis and make it available to
the SU. This corresponds to translating a maximum-likelihood
criterion into a maximum a-posteriori probability one. Indeed,
if the SU perfectly knows a prior for the instantaneous PU
activity, it can properly weigh the likelihood of the two
hypotheses.

In addition, in this paper we are also interested in evaluating
the impact of correlation within the PU’s activity, and therefore
we further introduce a 2-state Markov chain to represent the
PU activity [6], which keeps into account the memory in the
transmission process. Markov models are well established in
the literature as a simple but elegant way to characterize these
situations.

For this reason, we focus on the application of cognitive



engines to a two-state Markov scenario, where we are able
to describe the average transmission rate and correlation,
and discuss whether this richer description can be beneficial.
Specifically, we compare three cases. First, a basic ML estima-
tion, with full characterization of the channel parameters and
the PU’s transmitting power, but no information at all (and
therefore the assumption of equally distributed prior) on its
actual transmitting probability. Second, a Maximum Posterior
criterion where, in addition to all aspects mentioned before,
also the PU’s transmission probability is known, through a
first-order description. Finally, we also include transmission
correlation in a “Markovian” estimation, which means that
the real underlying Markov process statistics is fully known
by the SU and exploited to make the best possible decision.

Thus, we quantify the benefit brought by the improved
description of the PU’s activity pattern. Not only do we show
that including PU’s transmission correlation in the cognitive
criterion is helpful to achieve a better estimate (and therefore
an enhanced access operation) by the SU, but we also precisely
state how much is the added value, and how critical is the
parameter evaluation for this procedure.

The rest of the paper is organized as follows. We review
related work in Section II. In Section III, the system model and
the proposed inference engines are described. We show per-
formance evaluations for the three approaches in Section IV.
Finally, in Section V we draw the conclusions.

II. RELATED WORK

The key feature of a cognitive radio is its ability to measure,
sense, learn, and be aware of the radio channel characteri-
zation, also including the overall radio environment as well
as the instantaneous spectrum availability, possibly including
infrastructure and regulatory aspects as well [4].

Cognitive procedures can be employed towards different
goals, including channel identification and estimation, interfer-
ence detection, synchronization, user localization, and so on
[7]. In this paper, we focus on a primary-secondary scenario,
and assume that most of these evaluations, which involve a
long-term estimation procedure, have already been performed,
whereas the activity pattern of the PU and its impact on SU’s
transmissions are unknown.

Most of the contributions in the literature deal with charac-
terizations of such patterns and interrelationships. For exam-
ple, [8] investigates the correlation between PU’s and SU’s
activity from an information-theoretic perspective, and [9]
pushes this analysis into considering the interaction among
multiple secondary users due to mutual interference. Further-
more, [10] argues that the PU’s activity is in practice not
smooth and burst-free, and introduces a metric to account for
correlation statistics.

Further models of PU’s transmission are discussed in [6].
Actually, there are indeed several similar models to represent
the PU activity that all loosely translate into a 2-state Markov
chain, or an equivalent formulation, where the PU is idling
or transmitting depending on its activity in the previous time
unit.

On the other hand, the direct estimation of the PU’s ac-
tivity is based on energy detection mechanisms [11], which
translates in a decision based on likelihood (or log-likelihood)
values, so as to exploit the Neyman-Pearson criterion. Most
of the times, collaborative improvements of this decision are
suggested by letting other independent nodes participate in the
energy detection [12].

In reality, our investigation in the present paper is comple-
mentary to all of these contributions, since we are not inter-
ested in determining how the PU’s Markov chain is obtained,
but rather our goal is to determine how the knowledge of this
underlying correlation can be exploited to improve the energy
detection mechanism. We also do not aim at refining the signal
acquisition or the energy detection per se, but we are interested
in giving a quantitative assessment of the achievable gain by
including correlation in the likelihood terms.

III. SYSTEM MODEL

Consider a network scenario in which two transmitter-
receiver pairs, {T1, R1} and {T2, R2}, operate on the same
wireless channel. In each pair, the receiver’s role is just
passive, while what really matters is the transmitter activity.
Thus, we can consider a “user” to be either the whole pair,
or just the transmitter, and we regard the pair {T1, R1} as a
PU, while {T2, R2} is seen as a SU aiming at transmitting
opportunistically exploiting the PU’s inactivity periods. The
time axis is slotted and every time slot is considered either
busy if T1 transmits a data packet, or idle when T1 remains
silent.

A. Wireless Channel Model

We consider the wireless medium as an additive white
Gaussian noise (AWGN) channel with constant and known
power attenuation.1 For the sake of analytical tractability in
the derivations of the proposed estimation methods, we assume
that the instantaneous noise power N is distributed according
to a chi-squared distribution, i.e., N ∼ χ2(0, PN), where PN

is the noise power variance. It is worth remarking that this
choice, although only an approximation of the real channel
conditions, is made here to gain insights on the design of the
proposed estimation method.2

The instantaneous value of the useful signal power S is,
instead, deterministic, since it depends only on the transmit
power and the modulation scheme used by T1. In the follow-
ing, for the sake of simplicity, we assume that its power value
is constant and equal to PS. Note that a similar analysis could
be performed in the presence of different power levels for the
signal, and an iterative decision mechanism could be applied
to jointly interpret the power level of the primary (which is
however not strictly required for the cognition process we are
interested in) and the noise. Thus, we focused on a constant
PS to get a simpler analysis that provides the same insight.

1Further channel models, e.g., fading channels, will be considered as future
work.

2We will validate this heuristic by means of numerical simulations showing
the benefits of this model.
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Fig. 1: Graphical model of the Markov chain which describes
the transmission process of the primary link {T1, R1}.

Therefore, in our scenario, the signal-to-noise ratio (SNR)
Γ is defined as

Γ =
PS

PN
. (1)

According to these assumptions, the total input power at
the receiver Prx is distributed according to a chi-squared
distribution, as well. In particular, Prx has zero mean and
variance PN in case only noise is transmitted; on the other
hand, it has mean PS and variance PN when useful data are
sent over the channel.

B. Primary Transmission Model

We assume that the PU traffic pattern is bursty, i.e., T1
typically remains silent for some periods of time and then
transmits sequences of data packets (bursts of data). The
behavior of the PU can be modeled using the two-state Markov
chain depicted in Fig. 1, in which state 0 corresponds to the
idle channel state and state 1 to the busy channel state.

The transition matrix of the Markov chain is

P =

[
p00 p01
p10 p11

]
. (2)

The steady-state probabilities of the primary chain π0 and π1
are defined as

π0 =
p01

p01 + p10
, π1 = 1− π0 . (3)

Since we are interested in modeling a bursty primary
transmitter, we consider the average burst length B as

B =
1

p01
. (4)

We remark that the primary Markov chain is fully described
by choosing the values of parameters B and π1.

C. Secondary Transmission Model

In every time slot, T2 senses the channel and decides
whether it carries just noise N (denote this event with N ) or
the sum of useful signal power S and noise power N (denote
this event with S). Three techniques to estimate the state of
the primary chain are considered in the following, according
to different levels of knowledge of the PU’s behavior.

a) Maximum Likelihood (ML) estimation: With just
knowledge of the average noise power value PN and the useful
signal power PS, T2 uses a threshold-based detection. Let us
define threshold λ as follows [5]:

λ =
(PN + PS) + PN

2
= PN +

PS

2
. (5)

If the received power r is greater than λ then the slot is
considered to be busy, otherwise it is assumed to be idle.
Denoting with R(ML)

j the decision region of event j ∈ {N ,S}
and with t̂ and t the estimated and the actual primary chain
state, respectively, the detection success probability can be
computed as follows:

P (ML)
succ = P[t̂ = t]

=
∑

j∈{N ,S}

P[r ∈ R(ML)
j |tx = j] · pj

=
∑

j∈{N ,S}

∫
R(ML)

j

fr|tx(x|j) · pj dx

=
∑

j∈{N ,S}

pj ·
∫
R(ML)

j

fr|tx(x|j) dx

= pN ·
∫ λ

0

fr|tx(x|N ) dx

+ pS ·
∫ +∞

λ

fr|tx(x|S) dx ,

(6)

where pN = π0 and pS = π1.
b) Maximum Posterior Estimation (MPE): Assuming

that T2 knows also the steady-state probabilities of the primary
chain, i.e., π0 and π1, T2 can choose the threshold λ in such
a way that it maximizes (6), i.e.,

λ? = arg max
λ

P (ML)
succ (λ) . (7)

Therefore, it is P (MPE)
succ = P

(ML)
succ (λ?).

c) Markovian Estimation (ME): If the complete transi-
tion matrix P is known to T2, then the decision regions can
be designed maximizing the following success probability:

P (ME)
succ =

∑
j∈{N ,S}

∑
k∈{N ,S}

P[r ∈ R(ME)
n |tx = k] · pjk · πj

=
∑

j,k∈{N ,S}

∫
R(ME)

jk

fr|tx(x|n) · pjk · πj dx

=
∑

j,k∈{N ,S}

pjk · πj ·
∫
R(ME)

jk

fr|tx(x|n) dx .

(8)
In this case two distinct thresholds, λ0 and λ1, must be set
for the cases in which the chain describing the PU’s activity
was previously in state 0 or 1, respectively.

D. Inference Engine Design

Consider a real transmission chain where T1 transmits
packets of length L = 1024 bit using a 64-PSK digital
modulation. T2 overhears a window of Nslots time slots and
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Fig. 2: Error probability vs. SNR for MPE and ME with
different learning window sizes. π1 = 0.5, B = 10.

for every slot decides whether it is busy (event S) or idle
(event N ), using the MLE threshold λ defined in (5). Then,
T2 is able to estimate the parameters of the primary chain, i.e.,
π̂0, π̂1, and P̂ , using a frequentist approach.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
cognitive radio procedures.

A. Simulation Setup

We considered a transmission of a PU, whose activity
pattern follows Fig. 1 and uses a 64-PSK modulation over a
radio channel. We consider an SNR spanning from −20 to
10 dB, which would roughly correspond to a received power
value considered within a range from −142 to −122 dBm
for a setup where the noise power spectral density is that of
the thermal noise and the bandwidth of the common channel
shared by PU and SU is 160 kHz. Simulations have been
carried out over Monte Carlo iterations using the parameters
listed in Table I. We remark that different estimation lengths
in terms of number of slots are considered for the simulations.

B. Simulation Results

In Fig. 2 we can observe how the knowledge of the Markov
chain improves the overall performance according to the size
of the learning window. We report two different approaches for
computing the error probability, i.e., MPE and ME. For each

Parameter Value
π1 {0.5, 0.9}
B {2, 10, 50}

Nslots {250, 500, 1000}
Modulation 64-PSK

Lpkt 1024
Niters 100

TABLE I: System parameters.
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Fig. 3: Error probability vs. SNR for MPE and ME with
different learning window sizes. π1 = 0.5, B = 50.

method there are four different curves: three are associated
to three values of the learning window size while the solid
unmarked one represents the perfect knowledge performance
bound. Simulation data demonstrate that we can reduce the
error probability (Perr) up to 5 times for low SNR values by
applying the proposed Markov-based approach.

This, however, comes at the price of a higher sensitivity to
the window size for the ME criterion in comparison with the
MPE method. Even with a large learning window, i.e., 1000
slots, for low SNR values, the Markov approach does not reach
the perfect knowledge bound. Moreover, also for higher SNRs
and with small window lengths, the MPE approach achieves
better performance.

Considering both Figs. 2 and 3 at the same time, the impact
of the burst length (B) is worth noticing. With increasing
values of B, ME shows its advantages with respect to MPE,
but also its sensitivity to the learning process. In Fig. 3, the
error probability for the Markov approach gets even lower,
reaching, more or less, values ten times smaller.

In Figs. 4 and 5 we report the same metrics as before, but
with a higher π1. In this case, the difference between MPE
and ME is not so evident and the curves are close to each
other. In particular, the full-knowledge criteria are perfectly
overlapping in Fig. 4. This interesting situation turns out when
π1 = 0.9 and B = 10, i.e., when in the primary chain
p11 = p01. The one-step probabilities to reach state 1 are
independent of the outgoing state, thus making the knowledge
of the starting state worthless. When this condition is satisfied,
the MPE criterion coincides exactly with the ME. However,
incrementing B from 10 to 50, see Fig. 5, we force the system
to be biased, altering the transition probabilities of the Markov
chain. The ME approach takes advantage of this imbalance and
this appears evident when looking at the gap between the two
curves.

As a final remark, it is worth noticing that in all the plots
the ML theoretic curve exhibits two different behaviors for
high SNRs. This can be explained considering the definition
of P (ML)

succ in Eq. (6). The ML success probability increases
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as the values of the two integrals
∫ λ
0
fPrx|tx(x|N ) dx and∫ +∞

λ
fPrx|tx(x|S) dx grow. However, the higher the SNR,

the smaller the noise power and, therefore, the smaller the
value of the ML threshold λ (see Eq. (5)). In particular, when
λ is such that λ ≤ PS , then

∫ +∞
λ

fPrx|tx(x|S) dx = 1,
and remains costant for all the values of λ smaller than
PS . Thus, the variation of P (ML)

succ is given only by the term
pN ·

∫ λ
0
fPrx|tx(x|N ) dx, which still varies according to the

value of λ. The SNR threshold value such that λ = PS and
the behavior of the curve changes can be obtained imposing

λ̂ = PS , P̂N +
PS
2

= PS , P̂N =
PS
2
, (9)

yielding an SNR threshold

Γ̂ =
PS

P̂N
= 2 ' 3 dB . (10)

Note that, because the total curve is a combination of two
contributions, the breakpoint in the graphs appears at the SNR
value Γ = 5 dB.

V. CONCLUSIONS

We studied the impact of including awareness about corre-
lation patterns of the primary activity in the sensing decision
made by the secondary. The investigation was performed
by assuming an underlying 2-state Markov process for the
primary activity, and we compared three different decision
criteria. In particular, our goal was to see, and quantitatively
assess, the improvement brought by including correlation (i.e.,
average transmission burst length in the Markov process).

The results show that, when the primary activity is frequent,
the benefit of including correlation is less evident. Actually,
all three criteria perform almost identically if π1 is high and
correlation is mild. It is intuitive, indeed, that in these cases
transmission opportunities for the secondary user are rare,
and therefore the main decision criterion is simply related
to physical parameters such as the power perceived on the
channel. However, correlation is better kept into account
when the primary user is active 50% of the time or less,
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Fig. 5: Error probability vs. SNR for MPE and ME with
different learning window sizes. π1 = 0.9, B = 50.

and also when correlation is strong (i.e., when a high burst
length significantly affects the transmission probability over
subsequent slots).

The precise quantification of this last aspect is an interesting
topic for future research, that can lead to adaptive cognitive
criteria with increased realism and better performance. Thus,
we believe this can be subject for future research.

REFERENCES

[1] J. Mitola III and G. Q. Maguire Jr., “Cognitive radio: making software
radios more personal,” IEEE Personal Communications, vol. 6, no. 4, pp.
13–18, Aug. 1999.

[2] S. Haykin, “Cognitive radio: Brain-empowered wireless communica-
tions,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201-220,
Feb. 2005.

[3] G. Yuan, R. C. Grammenos, Y. Yang, and W. Wang, “Performance
analysis of selective opportunistic spectrum access with traffic prediction,”
IEEE Trans. Veh. Tech., vol. 59, no. 4, pp. 1949–1959, May 2010.
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