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Abstract—In this paper, we analyze hybrid automatic repeat
request applied to the transmission of video content over the
wireless channel. Retransmission-based techniques are usually
applied to queueing systems assuming a homogeneous flow
of identical packets, which are all transmitted and possibly
retransmitted in the same way. However, multimedia packets
are encoded with incremental methods leveraging spatial and
temporal redundancy and as such, they have different roles and
should be treated differently by the retransmission mechanism.
Therefore, our work considers a selective retransmission scheme
with unequal error protection applied to a multimedia flow
subdivided into distinguishable packets. We assume a binary
channel with memory and non-zero round-trip time. We uti-
lize discrete-time Markov chains to model the channel and
the transmission/retransmission system. This enables a closed-
form derivation of performance metrics via Markov analysis.
Numerical results are discussed and possible implications on
multimedia communications are evaluated.

Index Terms—Automatic repeat request, Markov processes,
error analysis, queueing analysis, multimedia communications.

I. INTRODUCTION

A
CCORDING to several recent investigations, video traffic

is steadily growing. The annual Cisco report forecasts a

huge increase due to the massive use of tablets and similar

devices [1]. By 2019, nearly a million minutes of video content

will cross the network, accounting for 80% of global traffic.

In this scenario, transmission paradigms to avoid network

congestion and convey data correctly and efficiently become

essential. In our work, we are concerned with error control

techniques, which are exploited to attain the reliable data

delivery. Usually, forward error correction (FEC) is employed,

but some contributions argued that automatic repeat request

(ARQ) is better, or useful as well [2].

If the data flow is packet-switched, both FEC and ARQ

introduce redundancy in the individual packets, but for dif-

ferent purposes. FEC uses error correcting codes to recover

the original data without any further interaction with the

transmitter. ARQ uses instead codes for error detection; in

case the received packets are corrupted, the receiver asks for

their retransmission. This means that a bidirectional interaction

happens between the sender and the receiver, where the latter

replies to each packet, at least from a conceptual standpoint,

with positive or negative acknowledgments (denoted as ACKs

or NACKs, respectively), depending on the absence or pres-

ence of residual errors in the packet. We focus on a Selective

Repeat (SR) ARQ approach [3]. This means that, whenever

the transmitter receives a NACK, it selectively retransmits the

erroneous packet only, i.e., the one that caused the NACK.

A combined solution for error control is Hybrid ARQ

(HARQ), which fuses FEC and ARQ. Here, redundancy is

introduced in the packets with a twofold purpose. First, the

receiver checks data integrity and tries to recover corrupted

data, according to FEC scheme. In case the number of errors

is higher than the correction capability of the code (but not

of its detection capability), the receiver sends a retransmission

request to the transmitter as per the ARQ [4]. In our investiga-

tion we concentrate on this approach, which has been shown

to contain the delay introduced by a basic ARQ scheme.

Video contents usually impose strict constraints on trans-

mission time and may need a non-homogeneous error control,

due to the presence of packets with different relevance in

the video flow. Hybrid schemes are particularly suitable for

dealing with such requirements. In this paper, we focus on a

hybrid SR ARQ scheme. We consider a video flow made up

by packets of different kinds and we assume that the error

control mechanism distinguishes among them.

The different nature of video packets belonging to the same

flow originates from the procedure used to encode them [5].

We classify them having in mind the Moving Picture Experts

Group (MPEG) standard, or any similar technique. MPEG

leverages temporal redundancy between subsequent frames

by introducing three different types of frames: I (Intra), P

(Predicted), and B (Bidirectionally predicted) [6]. For each of

them, a distinct compression strategy is used. An I-type frame

is processed using Intra-frame techniques, i.e., by considering

the frame as a stand-alone unit and by simply removing the

spatial redundancy (similar to what done for a JPEG picture).

P-type and B-type frames are compressed through Inter-frame

techniques, i.e., by considering predictions with respect to

temporally preceding and/or subsequent frames. Both spatial

and temporal redundancy are removed. As a result, a video

sequence is divided into smaller subsets, each of which is

called a Groups of Pictures (GoP), where the three types of

frames alternate according to a specific pattern.

In this work, a multimedia flow is modeled as a sequence of

packets that are sent from a source to a destination. We distin-

guish between A-packets, that, similar to I-frames of MPEG

standard, are autonomous and are encoded independently from

the others, and B-packets, that, like P- and B-frames, are

encoded incrementally based on an A-packet. One independent

A-packet and several B-packets incrementally encoded from978-1-5090-2185-7/16/$31.00 c©2016



it are bundled together in a packet-group. This methodology,

as well as the terminology, are directly inspired by [7], [8],

even though the analysis of those papers is different. Similar

approaches have been used also by [2], [9]. Indeed, this

two-level approach (where also packet dependence is limited

within a packet-group) allows for a tractable analysis, while

still accounting for the system memory introduced by packet

interdependencies. However, the ARQ scheme introduce other

memory effects due to retransmissions. Moreover, since a

successful detection of an A-packet is needed to correctly

decode a B-packet, the hybrid SR ARQ scheme ought to keep

this difference into account.

In this context, our contribution can be summarized as

follows. We propose a mathematical model for the analysis

of a hybrid SR ARQ scheme applied to the transmission of

video content over the wireless channel. We model the channel

through a Markov chain, whose main parameters are the av-

erage error burst length and the steady-state error probability.

We describe a finite-state machine that tracks the transmission

state of packets for which the transmitter is still waiting

for the related ACK/NACK (i.e., the pending packets). Dif-

ferently from previous contributions, our finite-state machine

is analytically tractable even for systems with relatively large

memory (i.e., with long round-trip time and large size of the

packet-group), within the limits of a Markov analysis. Built

on that, we propose a macroscopic Markov chain to model

the whole video transmission system and we quantify some

indicative performance metrics, namely throughput, average

number of transmissions, and packet discarding probability,

via Markov analysis. We identify the effect of the channel

parameters on video quality and we extract some useful

considerations about the implementation of the HARQ scheme

in real scenarios. Our evaluation is orthogonal to the presence

of dynamic adaptations to channel and source conditions at the

physical layer; the model can be extended to also include rate

optimization and adaptive modulation and coding techniques,

which exploit the knowledge of the system state to further

enhance video transmission in a cross-layer context [10].

The rest of this paper is organized as follows. In Section

II we outline the related works. In Section III, we illustrate

the HARQ transmission model and we specify the considered

assumptions. Section IV presents the macroscopic HARQ

system description and its evaluation as a result of Markov

analysis. Section V discusses some numerical results; finally,

Section VI concludes the paper.

II. RELATED WORK

In the literature, several papers relate to the analysis of

error control techniques for wireless connections through

mathematical models of the whole transmission system; based

on these models, they evaluate some performance metrics,

such as throughput and delay.

The papers most directly related to our contribution are [2],

[7], and [11]; in all these papers we considered HARQ for

video transmission with selective retransmission and unequal

error protection, and we proved that retransmission-based

techniques can be jointly used with pure FEC to improve

the transmission. The proposed unequal error protection tech-

nique, that consists of retransmitting only the independently

encoded packets and discard the incremental ones, was first

introduced in [7], and it is the same considered here. How-

ever, the present paper is different from all these previous

contributions in that [7] does not consider any analytical

modeling of the Markov chain. Subsequently, [2] gives a full

Markov model but for complexity reasons the round-trip time

is limited to two packets. Finally, [11] extends this analysis to

longer packet-groups but internal limitations of the model still

limit the maximum number of retransmissions and/or packet

interdependencies. This work is the first to relax all these

constraints and give a general analysis where the only limit is

the computational complexity of the resulting Markov chain.

Other papers are relevant to our investigations, since they

also focus on an ARQ mechanism applied to video trans-

mission, which poses two challenges: (i) how to introduce

retransmission while at the same time still meeting the delay

constraints of a real time application such as video; (ii) how

to differentiate among packets, since multimedia packets have

different roles within the flow.

For example, in [12], the authors try to reduce the delay and

buffer size needed by the ARQ approach by using a Multi-

ARQ scheme and a rescheduling technique for transmitting

video streams over wireless channels. They subdivide a typical

video stream into three sensitivity classes and apply the

unequal error protection to them, using ARQ-schemes with

higher reliability for higher sensitive portions of video data.

In particular, SR ARQ is adopted for high sensitive video data,

while no ARQ scheme is applied to low sensitive video data.

Thus, a differentiation mechanism is applied to reduce delay,

but this refers to the flow as a whole.

Also in [13], a prioritized ARQ scheme to enhance the error

robustness of streaming video is defined. The proposed priority

based retransmission scheme is instead adopted with packet

importance information. The level of packet importance is

measured by estimating the error propagation effect caused by

the corresponding packet loss. Lost packets with higher impact

values can be retransmitted while regular packets of less

importance can be discarded to make room for retransmissions.

A two-state Markov model analogous to ours is employed

to generate the channel packet loss patterns. However, the

importance level is specified individually for each packet,

while we consider instead multiple levels depending on the

structure of the packet-group. A similar priority model for

the packets also appear in [14], where the highest priorities

are given to the packets whose loss has stronger effect in

the perceived video quality. An alternative model is proposed

by [15] where ARQ is better matched with delay constraints

typical of video content by setting a retransmission limit that

may force to drop some packet if it is expected that they

will not meet a pre-defined real-time deadline. This time, the

prioritization of packets is purely based on delay aspects, not

on their video characteristics.

Our proposal can also be regarded in the context of unequal

error protection for video. Along these lines, the authors of

[16] proposed a more detailed unequal error protection scheme

than ours. It is also worth noting that they considered the



impact of error propagation on the video quality, which is

a very important issue [9]. Our model, based on a two-

level abstraction, does not allow to explore this issue in

more depth. An analogous proposal, but also involving a

more comprehensive cross-layer optimization is suggested by

[17]. However, these proposals are limited to FEC, without

any discussion on whether this can be iteratively modified

through ARQ. Thus, we believe that our proposal can be seen

in addition to theirs as a complementing extension of their

unequal error protection schemes.
Other related papers suggest possible expansions in line

with our work at the network [18] and transport layer [19],

basically identifying a possible development of hybrid ARQ

in the application of network coding, and also envisioning

a streaming control mechanism where ARQ is actually se-

lectively applied but controlling, and possibly choking, the

stream if delay constraints risk not to be met. Our proposed

scheme can be superimposed to improve the performance of

these scenarios as well.

III. ASSUMPTIONS AND MODEL OF HARQ TRANSMISSION

The analyzed system consists of a transmitter and a receiver.

The transmitter sends a multimedia flow to the receiver

through the wireless channel, which is modeled as a noisy

and correlated channel with known statistics. The flow is

subdivided into packets, each of them representing an encoded

information unit. As it is generally the case in ARQ analysis,

we assume that the Heavy Traffic condition holds, i.e., the

transmitter’s queue is always backlogged and, thus, there are

always packets to transmit.
The system adopts a hybrid SR ARQ technique with un-

equal error protection. Therefore, the receiver checks packets

integrity upon reception. Whenever errors are detected, it tries

to reconstruct the original data by exploiting the redundancy of

channel coding in a FEC-like fashion. The transmitter is then

informed about correct or incorrect packet reception through

selective acknowledgments sent on a feedback channel. Posi-

tive and negative acknowledgments are denoted as ACKs and

NACKs, respectively. The feedback channel is assumed not

to be instantaneous and error-free, which is reasonable due to

the short length of ACK/NACK messages. In the literature,

there are examples of investigation about the consequences of

errors affecting feedback messages [20]. The main conclusion

is that the impact of errors roughly consists in a re-scaling of

the error probability on the forward channel.
We consider two different types of packets, denoted as A

and B. A-packets are independently encoded, meaning that

they are stand-alone data units that can be decoded without

requiring that any other packet is decoded first. Conversely,

a B-packet is incrementally encoded from a single A-packet;

thus, to be decoded, its correct reception is not sufficient, as

the generating A-packet must be correctly received as well.

Without loss of generality, it is assumed that A- and B-

packets have the same length1 and that, for each A-packet,

1The model actually does not consider the packet lengths. As long as the
channel quality is approximately constant throughout each packet transmis-
sion, considering different packet lengths just complicates the model without
adding any significant insight. See [2] for a detailed discussion on this point.

the number of B-packets incrementally encoded from it is ℓ,

ℓ ∈ N, ℓ ≥ 1. An (ℓ+1)-element set consisting of an A-packet

and its corresponding B-packets is referred to as a packet-

group. B-packets are transmitted after the corresponding A-

packet. As a consequence, A-packets and B-packets alternate

within the data flow according to a precise pattern, which con-

sists of an A-packet followed by ℓ B-packets. Apart from that,

there is no dependence between B-packets. These assumptions

are not restrictive, as the analysis could still be performed

considering more interdependences among packets, only with

more involuted math. Moreover, note that the packet-group

can be considered as the analogous of a GoP in MPEG.

We assume that time is slotted and a slot is equal to the time

needed to transmit a packet of either type. When a packet is

transmitted, the corresponding acknowledgment arrives after

a number m of slots equal to the round-trip time, which

coincides with the ARQ window. This implies that, at any

time instant, the number of pending packets does not exceed

m. Without loss of generality, we consider m = M(ℓ+1)+1,

with M ∈ N,M ≥ 1. If the round-trip time is not an integer

multiple of the time slot, M may still be chosen such that m

is the smallest integer higher than the round-trip time.

The unequal error protection requires that the A-packets

for which the transmitter receives a NACK are retransmitted;

erroneous B-packets are instead discarded. There are essen-

tially two motivations for differentiating between A- and B-

packets. First, A-packets are more important; indeed, to cor-

rectly decode B-packets it is necessary to successfully decode

their corresponding A-packet. Second, the retransmission of

all types of packets may lead to queue instability and long

delays. Provided that retransmissions can be triggered for A-

packets only, just a fraction of 1
ℓ+1 packets may undergo

retransmissions and a system in which no additional delay

increase occurs can be designed.

To avoid delay increases, we assume that retransmissions

of A-packets are prioritized, replacing transmissions of B-

packets in some following packet-group [7]. Moreover, A-

packets can be retransmitted at most r times. We assume

that the maximum number of transmissions r of a given A-

packet satisfies r ≤ ℓ + 1. A packet-group always starts with

a new A-packet, dubbed a “fresh” A-packet. If a fresh A-

packet α1 transmitted at slot k is followed by ℓ B-packets

and is in error, then the packet-group transmitted at time slot

k +M(ℓ + 1) through k + (M + 1)(ℓ + 1) − 1 will contain

two A-packets. A fresh A-packet, α2, in slot k + M(ℓ + 1),
i.e., in head position, and the second A-packet, α1 at its first

retransmission, in slot k + M(ℓ + 1) + 1, in place of the

first B-packet incrementally encoded from α2. If α1 results

in error again, its second retransmission replaces the second

B-packet in the packet-group transmitted at slot k+2M(ℓ+1)
through k + (2M + 1)(ℓ + 1) − 1, and so on. It follows

that an A-packet at its nth retransmission is transmitted in

place of the nth B-packet of a packet-group, exactly m

slots after the beginning of its last transmission. The number

of transmissions already performed by an A-packet can be

recognized as its position within a packet-group. In fact, a

fresh A-packet occupies the head position. If retransmitted, it

shifts one position to the right, moving to the second position.



Fig. 1. Markov representation of the channel (channel chain).

If retransmitted again, it shifts to the third, and so on. This

means that when a retransmitted A-packet reaches the end

position of a packet-group it can no longer be retransmitted

and is discarded if in error. B-packets fill the empty slots not

used for retransmissions. In particular, for each fresh A-packet,

at least ℓ− r + 1 B-packets are transmitted.

To determine the outcome of packet transmissions, we

model the channel state evolution through a discrete-time

Markov chain (DTMC). This DTMC, referred to as channel

chain, has two states: state 0, representing the error-free

channel, and state 1, representing an erroneous channel. The

channel DTMC is depicted in Fig. 1. This is a model similar to

the Gilbert Elliot model, however, in our model a transmission

performed when the channel is in state 0 or 1 is always

successful or always erroneous, respectively [21]. The channel

state is constant within each time slot, and makes transitions

from a slot to the next according to the one-step transition

probability matrix P, which completely characterizes the

channel chain. P = {pij}, i, j ∈ {0, 1}, where pij is the

probability of going from state i to state j in a single step,

P =

(

p00 p01
p10 p11

)

. (1)

Also note that transitions to K slots ahead are governed by

the K-step transition probability matrix P
K .

Matrix P can be used to infer information about the average

number of consecutive erroneous slots, which we refer to as

the burstiness B, and the packet error probability at steady-

state, which we denote as ε. The burstiness quantifies the

channel correlation and its value is B = 1
p10

. The steady-state

packet error probability is ε = p01

p10+p01

.

Even though the model seems simple, it allows to investigate

the impacts of both the average error rate ε and the channel

correlation, related to the burstiness B.

IV. MACROSCOPIC HARQ SYSTEM DESCRIPTION AND

PERFORMANCE METRICS

Since the considered HARQ scheme uses selective retrans-

missions based on packet type and the channel has a non-

zero round-trip time, our analysis requires to track previously

transmitted packets. Indeed, in order to determine which

packet should be transmitted at a generic slot k, it is necessary

to know which type of packets have been transmitted at slot

k−m (i.e., the slot in which the packet was transmitted, whose

acknowledgment is received at the beginning of slot k) through

slot k−1. The reception of an ACK or NACK at the beginning

of slot k then triggers the transmission of a new packet (A or

B) or the retransmission of an already transmitted A-packet.

Correspondingly, the model of the whole transmission system

needs to memorize the types of pending packets, i.e. those for

which the transmitter has not received the feedback message

yet, and the channel state during their transmission [3].

As a first step, we define a finite-state machine that models

the possible pending packets configurations, i.e. the possible

sequences of A-packets and B-packets that at a given time slot

k could be pending. Transitions occur at each time slot, leading

to a new pending packet configuration that depends on ACK

or NACK reception, with the ACK or NACK corresponding

to the oldest pending packet at time slot k (i.e., that sent in

slot k − m + 1). We refer to the machine states as machine

stages and we indicate the number of machine stages as L.

Each machine stage stands for a possible pending packets

configuration and is denoted by a vector σ = [σ0 σ1 . . . σm−1]
of length m, with σj ∈ {0, 1, . . . , r}, 0 ≤ j ≤ m− 1. Con-

sidering that at time slot k the finite-state machine is in

stage σ(k), we have that each σj(k), for 0 ≤ j ≤ m− 1,

identifies the type of packet transmitted at slot k−m+1+ j

and the number of transmissions that this packet has already

undergone. More precisely, σj(k) = 0 if the packet transmitted

in slot k−m+1+j is a B-packet; σj(k) = n, n ∈ {1, 2, . . . , r}
if the packet transmitted in slot k − m + 1 + j is an A-

packet at its nth transmission. Note that the last element,

σm−1(k), refers to the packet transmitted at slot k, while the

first element, σ0(k), refers to the packet transmitted at slot

k−m+1, for which the transmitter receives the corresponding

feedback at the end of slot k.

The number of machine stages, which influences the overall

system complexity, can be obtained by considering that for any

choice of the parameters ℓ, r, M , and thus m = M(ℓ+1)+1,

the finite-state machine would pass through ℓ + 1 different

machine stages only, provided that the channel was error-

free. To see it, consider a pending packets configuration that

contains fresh A-packets only and where the packet in head

position is of type A. We indicate such configuration as C.

Since no retransmitted A-packet is present, the number of

B-packets associated to each A-packet is ℓ. Therefore, the

vector representation of C contains M consecutive sequences

[1 0 . . . 0] with ℓ zeros, the last one followed by value 1.

Now, suppose that the channel is error-free. This implies

that no NACK is received and that the finite-state machine

indefinitely transits over the same cycle of ℓ + 1 stages. The

first one coincides with C. The following ones can be obtained

orderly by shifting one position to the left the values in the

vector representation of the preceding stage, removing the first

element and adding a 0 in last position. Since the number of

shifts to the left that can be applied to the vector representation

of C before returning to C itself is ℓ+1, this is also the number

of machine stages in the considered cycle, which we refer to

as ideal cycle, since the channel is assumed to be error-free.

From the ideal cycle, we can derive the total number

of stages of the finite-state machine for all pending packet

configurations. The idea is to sum the number of stages of the

idle cycle and the number of stages that the machine may pass

through when the channel resulted to be erroneous in at least

one pending packet transmission (and thus, the assumption of



Fig. 2. Graphical display of the finite-state machine of pending packets
configurations; ℓ = 3, r = 2, M = 1, m = M(ℓ+ 1) + 1 = 5, L = 10.

error-free channel is removed). The stages in this last set have

an associated vector representation where the 1s are the same

(same number and position) as those on one of the stages of

the idle cycle, while some 0 element is replaced by a value

x ∈ {2, . . . , r}, due to retransmissions of A-packets.

Consider for example the simplest case r = ℓ+1 e M = 1.

The number of machine stages with a vector representation

where 1s are placed as in C are 2ℓ, including C. The number

of machine stages with a vector representation where 1s are

placed as in the stages following C in the ideal cycle is 2ℓ+1

for each stage, including the stage of the ideal cycle. Thus, the

total number of machine stages in this simple case is given by

L = 2ℓ + ℓ(2ℓ+1).

The same rationale, i.e. the definition of the idle cycle and

the determination of stages affine to the stages of the idle

cycle, can be applied to compute the total number of stages

of a generic finite-state machine with arbitrary parameters.

The following expression holds L = [(r − 1)2r + (ℓ − r +
2)2r−1](2r−1)M−1 = (r + ℓ)2M(r−1).

Fig. 2 shows an example of finite-state machine considering

ℓ = 3, r = 2, M = 1, m = M(ℓ + 1) + 1 = 5, L =
10. In Fig. 2, green arrows identify the transitions that occur

when the transmitter receives an ACK for an A-packet; red

arrows describe the transitions that occur when the transmitter

receives a NACK for an A-packet that has not yet reached the

maximum number r of transmissions. Black arrows represent

transitions that occur when an ACK/NACK is received for a

B-packet or when an ACK/NACK is received for an A-packet

that has already been transmitted the maximum number of

times, i.e., 2 times in the considered example. These last ones

are forced transitions.

Given the channel DTMC and the finite-state machine of

pending packets configurations, we develop a macroscopic

DTMC that models that entire transmission system and which

we refer to as HARQ chain, analogously to [7] [11]. The

HARQ chain allows for the computation of the system steady-

state probabilities which, in turn, are employed to compute

three networking performance metrics, namely throughput,

average number of transmissions to correctly deliver an A-

packet, and A-packet dropping probability.

At each time slot k, the HARQ chain’s state is described

by a vector S(k) = [σ(k) b0(k) . . . bm−2(k) c(k)] subdivided

into three different parts, each of which carries a specific in-

formation. σ(k) is the finite-state machine stage, as discussed

previously. b(k) = [b0(k) . . . bm−2(k)] describes the channel

states from slot k − m + 1 through k − 1. In particular,

bj(k) = 0 if the channel at slot k − m + 1 + j was error-

free, and thus the packet transmitted at that slot was correctly

received; bj(k) = 1 if the channel at slot k − m + 1 + j

was erroneous, and thus the packet transmitted at that slot

was erroneously received. c ∈ {0, 1} indicates the channel

state at slot k. The number of HARQ chain’s states, N ,

can be obtained as N = L · 2m−1 · 2, where L is the

number of machine stages of the finite-state machine. The

value of N also reflects in the computational complexity of our

model. As we will show later, we require the computation of

steady-state probabilities, obtained by solving a linear system

associated with a N × N matrix. This matrix is sparse and,

as a consequence, we can compute the solution efficiently by

using procedures whose (both space and time) complexity is

O(N). Moreover, N depends exponentially on m; however, it

is possible to approximate this exponential dependence with a

linear one, thereby decreasing the computational complexity,

following the approach of [22].

At time slot k, σ(k + 1) is univocally determined by σ(k)
and the value of b0(k), which indicates whether the oldest

pending packet at time slot k has been correctly received

or, instead, needs to be retransmitted. Indeed, when σ(k)
represents a set of pending packets with an A-packet in its

head position and b0(k) = 1, the A-packet retransmission is

scheduled at time slot k + 1, provided that this A-packet has

not reached the maximum number r of allowed transmissions.

The elements bj(k+1), 0 ≤ j ≤ m− 3, depend on the values

of elements bj(k), 1 ≤ j ≤ m− 2, and on the value of c(k).
Finally, the value of c(k + 1) depends on the value of c(k),
according to the channel transition probability matrix P.

The transition matrix T of the HARQ chain can be defined

by observing that, given state S(k) = [σ b0 . . . bm−2 c] (where

we omit the dependance on k in the right-hand side of the

equality for notation simplicity), the only admitted transitions

towards a future state S(k + 1) include

• S(k + 1) = [σc b1 . . . bm−2 c 0] with probability pc0
• S(k + 1) = [σc b1 . . . bm−2 c 1] with probability pc1
• S(k + 1) = [σe b1 . . . bm−2 c 0] with probability pc0
• S(k + 1) = [σe b1 . . . bm−2 c 1] with probability pc1

where σc and σe represent the pending packets configurations

at time slot k + 1 when the received feedback at the end of

slot k is an ACK or NACK, respectively. Equivalently, they

represent the pending packets configurations at time slot k+1
when b0(k) = 0 and b0(k) = 1, respectively. Table I shows

σc and σe for each possible σ, considering ℓ = 4, r = 3,

M = 1, m = M(ℓ+ 1) + 1 = 6, L = 28.

The HARQ chain is irreducible (there is a connection

between each state) and each state is recurring (the probability

that the system comes back to a state is 1 for each state). As

a consequence, we can evaluate the steady-state probabilities

π = [π0 π1 . . . πN−1]
T , i.e. the probabilities that the system is

in a certain state at time slot k, for large k. We solve the system

Tπ = π, under the constraint that elements in π sum to 1.

We use π to determine the performance metrics, as explained

in the following.



TABLE I
TABLE OF THE σ-TRANSITIONS FOR ℓ = 4, r = 3, M = 1,

m = M(ℓ+ 1) + 1 = 6, L = 28.

σ Configuration σc σe

0 100001 1 5

1 000010 2 2

2 000100 3 3

3 001000 4 4

4 010000 0 0

5 000012 6 6

6 000120 7 7

7 001200 8 8

8 012000 9 9

9 120001 10 11

10 200010 2 12

11 200012 6 15

12 000103 13 13

13 001030 14 14

14 010300 18 18

15 000123 16 16

16 001230 17 17

17 012300 19 19

18 103001 22 23

19 123001 20 25

20 230010 21 26

21 300100 3 3

22 030010 21 21

23 030012 24 24

24 300120 7 7

25 230012 24 27

26 300103 13 13

27 300123 16 16

With respect to throughput, i.e., the amount of data correctly

delivered in unit time, positive contributions are given by

correct transmissions of A-packets and B-packets for which

the corresponding A-packet has been correctly delivered. To

quantify such contributions, we need to inspect the HARQ

chain’s states. If σ0 ∈ {1, 2, . . . , r} and b0 = 0, then the

HARQ chain’s state corresponds to a successful reception

of an A-packet. Therefore, the throughput includes the sum

of the steady-state probabilities associated to the HARQ

chain’s states in which σ0 ∈ {1, 2, . . . , r} and b0 = 0. If

σ0 ∈ {1, 2, . . . , r} and b0 = 1, then the HARQ chain’s state

corresponds to a failed reception of an A-packet. In this case,

if σ0 = r, then the contribution to the throughput is zero;

if σ0 ∈ {1, 2, . . . , r − 1}, then further considerations need

to be made, as it will be explained in the next paragraph. If

σ0 = 0 and b0 = 1, then the HARQ chain’s state corresponds

to a failed reception of a B-packet and the throughput remains

unchanged. If σ0 = 0 and b0 = 0, then the HARQ chain’s

state corresponds to a correct reception of a B-packet, which

contributes to throughput on condition that the corresponding

A-packet has successfully reached the destination.

In the following, we consider a system with parameters

ℓ = 4, r = 3, M = 1, m = M(ℓ+1)+1 = 6 and we illustrate

some examples of computations for throughput contributions.

Consider σ = 000010. The first packet of this configuration is

of type B. The HARQ’s chain states with such σ and b0 = 1
do not contribute to throughput.

If σ = 000010 and b0 = 0, then we need to consider

the transmission outcome of the A packet from which the B

packet has been incrementally encoded. By observing σ, we

can deduce that an ACK has been sent for that A-packet. If this

was not the case, the pending packets configuration would have

been σ = 000012. Therefore, the steady-state probabilities of

the HARQ chain’s states with σ = 000010 and b0 = 0 are

added to the throughput.

Consider now σ = 000012. The A-packet from which the B-

packet in head position has been incrementally encoded is at its

second transmission. If b0 = 0 and c = 0 (i.e., the transmission

of the A-packet is successful), then these states give a positive

contribution to throughput. If c = 1, further reasonings are

needed; the A-packet is transmitted for the third (and last,

since we are assuming r = 3) time after 6 time slots starting

from the current time slot, k. Therefore, if c(k+6) = 1, there

is no throughput contribution. Otherwise, if c(k + 6) = 0,

there is a positive contribution that can be obtained, for every

state with σ = 000012, b0 = 0, and c = 1, by multiplying

the steady-state probability of such states by P
6(1, 0) (i.e., the

entry at row 1 and column 0 in P
6).

Finally, consider σ = 000120. Similar observations hold.

However, in this case the transmission outcome of the A-packet

is described by b4. Therefore, if b0 = 0 and b4 = 0, the

contribution is positive, independently of c. Whereas, if b0 = 0
and b4 = 1, the contribution is positive if and only if the

transmission of the A-packet after 5 time-slots from the current

one is successful. In this case, the contribution is computed

by summing the stationary probabilities associated to the states

with b0 = 0, b4 = 1, and c = 1 multiplied by P
5(1, 0) and

those associated to the states with b0 = 0, b4 = 1, and c = 0
multiplied by P

5(0, 0).
Another relevant metric is the average number of trans-

missions, which is however interesting only for A-packets,

because B-packets are always transmitted just once. We define

the conditional probabilities π(n|A), n = 1, . . . , r, as the

probabilities that the system is observed when an A-packet

is at its nth transmission. Such probabilities are evaluated as

the ratio between the sum of the steady-state probabilities of

the HARQ chain’s states with σ such that σ0 = n and the

sum of the steady-state probabilities of the HARQ chain’s

states with σ such that σ0 ∈ {1, . . . , r}. For the following

numerical choices of the parameters ℓ = 4, r = 3, M = 1,

m = M(ℓ + 1) + 1 = 6, for example, the conditional

probabilities can be expressed as, see [11]:

π(1|A) =
p1 + p2 + p3

p1 + 2p2 + 3p3

π(2|A) =
p2 + p3

p1 + 2p2 + 3p3
(2)

π(3|A) =
p3

p1 + 2p2 + 3p3

where p1, p2, and p3 are the probabilities that an A-packet

is transmitted exactly one, two, three times, respectively. By

solving the above system of equations (2), the average number



of transmissions of A-packets can be derived as p1 + 2p2 +
3p3. Analogous computations can be done for a system with

different parameters.

Finally, when an A-packet reaches its rth transmission and

is still in error, it is dropped. The probability of dropping

an A-packet, denoted as Pdrop,A, is computed as the sum of

the steady-state probabilities of the HARQ chain states with

a pending packets configuration corresponding to an A-packet

at its last transmission and with the channel state equal to 1
during this transmission. Thus,

Pdrop,A =

N−1
∑

i=0

χ(σi,0 = r & bi,0 = 1)πi (3)

with χ(·) being an indicator function valued 1 if the inner

condition is true and 0 otherwise; σi,0 and bi,0 are the head

entries of σ and b, respectively, in the ith HARQ chain’s state.

V. NUMERICAL RESULTS

We consider a system with exemplifying parameters. Our

aim is to evaluate a setup sufficiently complex to give a

detailed description of the HARQ operations and performance,

but, at the same time, tractable enough to be solved easily,

without involving high computational power. This setup can

be modified to different cases of interest. In particular, it can

be tuned to mimic real traffic traces; as illustrated in [2],

using real traffic traces for the evaluations only involves a

careful choice of the parameters’ values. In light of this, we

analyze a system where the number of B-packets incrementally

encoded from an A-packet is ℓ = 4, the maximum number

of transmissions for A-packets is r = 3, the packet group

length is ℓ + 1 = 5 packets, the round-trip time is equal to

m = M(ℓ + 1) + 1 = 6 time slots, and M = 1. It follows

that the number of pending packets configurations is L = 28,

as illustrated in Fig. I, and that the number of HARQ chain

states is N = 28 · 25 · 2 = 1792.

As a first set of results, we show how metrics vary depend-

ing on the steady-state error probability ε for different values

of the burstiness B; then, similarly, we show how metrics vary

depending on B for many values of ε.

We consider ε varying from 0.01 to 0.4. As for the bursti-

ness B, i.e., the average number of consecutive erroneous time

slots, we consider the values 5, 10, 30, and also we consider

the special case where B = 1
1−ε

, which is referred to as

the i.i.d. case, since in this case the channel is just a binary

memoryless symmetric channel with identical error probability

ε regardless of the state of the system. The aim is to highlight

the differences between performance in case of error bursts

with length comparable with the length of a packet group

(B = 5, 10), in case of error bursts significantly longer than

packet groups (B = 30), and in the i.i.d. case, i.e., the case

of independent and identically distributed errors.

In Fig. 3, each curve represents the throughput for variable

ε and fixed B. We can notice that the throughput decreases as

ε increases. Indeed, the increase in packet error probability

causes the reduction of packets correctly delivered to the

receiver and, correspondingly, a throughput decrease. It is

worth observing, temporarily neglecting the i.i.d. case, that
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Fig. 3. Throughput vs. ε for various values of B.
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Fig. 4. Throughput compared to the i.i.d. case vs. ε for various values of B.

for fixed ε, the throughput increases as B increases. In fact,

the channel correlation causes the temporal axis to be roughly

subdivided into blocks, each of which can be considered

correct or incorrect. Erroneous blocks, i.e., the ones where the

channel is bad, do not bring any contribution to the throughput;

correct blocks, i.e., the ones where the channel is good,

determine the successful deliver of a sequence of packets,

giving a relevant contribution. In the i.i.d. case, it results that

the throughput is higher than that obtained with a correlated

channel for small values of ε. If ε increases, the performance

over correlated channels becomes better than for the i.i.d.

channel. In Fig. 4, we underline these last considerations

by reporting the ratio between the actual throughput and the

value 1− ε, which is the throughput in the i.i.d. case without

distinction between A- and B-packets and without limits on

transmissions. We conclude that the channel correlation does

not necessarily imply a degradation of the system performance.

Conversely, the throughput is higher than the i.i.d. case if the

channel error probability at steady-state is not too small.
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Fig. 5. Average no. of A-packet transmissions vs. ε for various values of B.
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Fig. 6. Probability of dropping an A-packet vs. ε for various values of B.

In Fig. 5 we show the average number of transmissions of an

A-packet for varying ε and fixed B. According to the fact that

a higher error probability implies a higher number of failures

in A-packet transmissions, we observe that the average number

of transmissions increases as ε increases, following a coarsely

linear trend. Moreover, for fixed ε, the average number of

transmissions is higher for higher burstiness. Indeed, if the

channel is correlated and an A-packet is erroneously received,

the greater the correlation, the higher the probability that the

following transmissions are erroneous.

In Fig. 6 we illustrate the probability of dropping an A-

packet. It can be observed that this probability increases as

ε increases, for each value of B. Indeed, the increase in ε

implies an increase in the average number of transmissions

and in the probability that an A-packet is erroneously received

at its last transmission. Furthermore, for values of B nearly

equal to the packet-group length (i.i.d. errors, or B = 5,

or B = 10) the dropping probability increases slowly as ε

increases for small values of ε, whereas it increases faster for
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Fig. 7. Throughput compared to the i.i.d. case vs. B for various values of ε.
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Fig. 8. Average no. of A-packet transmissions vs.B for various values of ε.

higher values of ε. For values of B higher than the packet-

group length (B = 30), the dropping probability increases

roughly linearly as ε increases. Finally, we can observe that

the dropping probability is very small in any case. This fact

agrees with the previous results. Indeed, the average number

of transmissions is less than 1.8 (see Fig. 5) and the maximum

number of transmissions is 3. Thus, the third transmission of

an A-packet and its failure are unlikely events.

We now discuss the numerical results obtained by varying

B in the range [ 1
1−ε

, 30] for a fixed ε value chosen within

set {0.1, 0.2, 0.3}. In Fig. 7 we report the ratio of the actual

throughput and that obtained in the i.i.d. case without distinc-

tion between A- and B-packets and without limits on trans-

missions. The variability interval of the throughput increases

as ε increases. In fact, the curve for ε = 0.1 remains nearly

constant. More precisely, the throughput initially decreases, it

assumes its minimum values for B values comparable with

the packet-group length, and then it increases very slowly.

The curves for higher values of ε show that in these cases
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Fig. 9. Probability of dropping an A-packet vs. B for various values of ε.

the throughput assumes its smallest values for B roughly

corresponding to the i.i.d. case and that it then increases as B

increases. This increase is faster for B values lower than, say,

20, and is lighter for higher values. In any case, the throughput

seems to tend to an asymptotic value.

Finally, in Fig. 8 and Fig. 9 we report the average number

of transmissions and the dropping probability of an A-packet.

These figures confirm the previous results. Moreover, it can

be observed that the range of values assumed by either

performance metric is larger for higher ε. From Fig. 8 we can

also deduce that the average number of transmissions becomes

almost constant for high values of B (say, higher than 10, twice

the length of a packet group). The dropping probability of an

A-packet in Fig. 9 is roughly constant for values of B around

the i.i.d. case; it quickly increases until B reaches value 10
and it increases more slowly for higher values of B.

VI. CONCLUSIONS

We presented a performance evaluation of a hybrid SR

ARQ scheme with unequal error protection applied to the

transmission of multimedia contents over the wireless channel.

We considered a video flow subdivided into independent and

incrementally encoded packets. We assumed that the HARQ

scheme privileges the transmission of independent packets, due

to their more relevant role. Thus, independent packets are the

only ones to be selectively retransmitted, if in error.

To avoid delay increases, we assumed that retransmissions

replace transmissions of incrementally encoded packets and

the number of retransmissions is limited. We modeled the

entire system through a macroscopic Markov chain, including

the representation of the channel and a finite-state machine

identifying the possible pending packets configurations.

As performance metrics, we evaluated throughput, average

number of transmissions, and dropping probability of inde-

pendent packets. We reported and commented the results for a

system with fixed parameters. We showed that channel correla-

tion may be beneficial to increase throughput. We verified, by

contrast, that correlation has a worsening effect on the average

number of transmissions and the dropping probability, since

these quantities increase with a higher channel burstiness. In a

video transmission context, retransmissions lead to undesirable

delays and dropped independent packets cause an irreversible

loss of information, which, in turn, compromises the video

quality. Thus, a tradeoff emerges between transmission speed

and reproduction quality. These results can be exploited as

practical guidelines; the adopted approach can be extended to

better describe the performance of more specific video trans-

mission protocols operating on possibly correlated channels.
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