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Abstract—Due to their distributed management, smart grids
can be vulnerable to malicious attacks that undermine their
cyber security. An adversary can take control of few nodes in
the network and spread digital attacks like an infection, whose
diffusion is facilitated by the lack of centralized supervision
within the smart grid. In this paper, we propose to investigate
these phenomena by means of epidemic models applied to cellular
automata. We show that the common key parameters of epidemic
models, such as the basic reproductive ratio, are also useful in
this context to understand the extent of the grid portion that
can be compromised. At the same time, the lack of mobility of
individuals limits the spreading of the infection. In particular,
we evaluate the role of the grid connectivity degree in both
containing the epidemics and avoiding its spreading on the entire
network, and also increasing the number of nodes that do not
get any contact with the cyber attacks.

Index Terms—Smart grid; cyber security; graph theory; cel-
lular automata; epidemic models; Internet of Everything.

I. INTRODUCTION

THE KEY to the success of smart grids, i.e., their ability

of distributed and autonomous control, is also a big

vulnerability in terms of cyber security [1]. Smart metering,

wireless connectivity, and integration with other infrastructures

for communication and control offer an unprecedented level

of flexibility and easy management for the power grid. Since

electricity provisioning represents a key requirement of con-

temporary life, changing it from an isolated subsystem to a

networked service is certainly welcome [2]. At the same time,

it also opens the door to several cyber security threats. Among

the many reasons why cyber security of smart grids should be

a sensitive issue, we mention two serious problems that may

occur when these systems are attacked by an adversary.

First, smart grids are a critical infrastructure for our society

and an appealing target for terrorism or any similar attack

that has the intent of creating havoc [3], [4]. Increasing their

automation and cyber inclusion makes them also easier to

hack and control remotely, thus reducing the effort and cost

for malicious operations, in the same way as it happens for

legitimate network management.

Second, the integration of smart grids with the overarching

Internet of Everything [5] may be the backdoor to the diffusion

of attacks from the smart grid to the entire Internet, and

vice versa. Every security weakness of the smart grid may

be exploited in this sense; especially, any cyber intrusion of

Trojan-horse kind for the Internet can find its gate of Troy in

the smart grid.

These problems are exacerbated by smart grid access points

being generally low-cost devices, such as sensors or me-

ters with power-line or wireless connectivity [6], which are

relatively easier to hack and take control of. There have

been proposals to increase their inherent security based on

distributed approach, e.g., by utilizing network coding [7],

but still a fundamental problem remains, that is, due to

their decentralized nature and high penetration rate, even in

buildings with low level of access security, smart grids are

inherently vulnerable to malicious tampering.

In this paper, we propose a contribution that may help

understanding and designing countermeasures against cyber

attacks to smart grids. Generally speaking, the dissemination

of a digital threat over a network can be compared, as proposed

by certain contributions, to an epidemic spread [8]. Also,

note that this is not limited to malicious content: the “viral”

diffusion of useful information can be modeled in this way,

too [9].

Epidemiologists have developed some widely applied mod-

els to characterize these phenomena [10]. Often, compartmen-

tal models are employed, where the individuals are divided

into different groups. For example, the famous “Susceptible,

Infectious, Recovered” (SIR) model, developed by Kermack

and McKendrick in 1927 [11], assigns each member of the

population to one of these three groups and determines the

evolution of the disease through the transitions of the individ-

uals through the three states. Depending on the kind of disease

that the model aims at capturing, further states can be added

and the transitions can be made more complex. This kind of

studies is deemed to be very valuable to study the evolution

of epidemics as well as preliminarily assess the effectiveness

of countermeasures such as quarantines or vaccines.

However, most of the times compartmental models are

applied over simplified assumptions, especially considering

a closed population in an extreme small-world context, that

is, every node is in direct contact with (and therefore can

spread the contagion to) every other node in the network. To

overcome this point, compartmental models can be superim-

posed to an underlying network structure as done in [12].

These models often refer to scale-free networks and similar

structures, which many authors [13] argued to be suitable

models for smart grid topologies. However, cellular automata

[14] can be employed to this purpose too, and we claim that

the description offered can be even more powerful.

The advantages of exploiting epidemic models over cellular

automata to characterize the spread of security threats in a978-1-5090-2185-7/16/$31.00 c©2016



smart grid relate to the direct mapping of the locality principle

that is very strong in this kind of systems [15]. Indeed, electric

networks have special topological characteristics, with a small-

world topology yet strongly localized with many connections

among physically neighboring nodes [16]. Moreover, the struc-

ture is often regular; therefore, we can assume that cellular

automata fit the network pattern better than other structures.

Up to our knowledge, this paper is the first to propose such

a connection, and even more so for the specific case study of

security threats in smart grids. More specifically, the present

paper makes the following contributions. First of all, we

review compartmental epidemic models, both from a general

standpoint and more specifically applied to smart grids. For

this latter point, we propose the application of these epidemic

models to cellular automata, since we envision their suitability

to represent the topological characteristics of smart grids.

Moreover, we present several numerical evaluations related to

the key parameters of our model. We show how the epidemic

strength, modeled via the basic reproductive ratio R0, is a

key parameter. At the same time, the degree of the topology

is also relevant in influencing the infection spreading. Finally,

we propose to evaluate a subclass of the susceptible set, which

we call the Untouched nodes, which are those nodes that are

neither infected nor have any infected neighbor through the

entire duration of the epidemic process. This class has an

important physical meaning associated with the awareness of

the cyber attack and the potential counteractions against it. We

show that the trend related to this class is even more strongly

dependent on the aforementioned topological and epidemic

parameters.

The rest of this paper is organized as follows. In Section II

we outline the background about epidemic models and cellular

automata, and we discuss their applicability to represent a

cyber attack to a smart grid. Section III presents the adapted

model to the smart grid scenario. We discuss some numerical

results in Section IV and finally we conclude in Section V.

II. EPIDEMIC MODELS AND CELLULAR AUTOMATA

Standard epidemic models, such as the SIR model pro-

posed first by [11], assume that the population subject to the

epidemic outbreak can be subdivided into three groups: the

susceptible (S) individuals, that are healthy but can contract

the infection, the ones that are already infected (I) and can

further transmit the disease, and the recovered (R) individuals

that have ended the infection cycle, and therefore have gained

immunity (this can include the case where they died from the

disease).

Such a model can be transferred to information technology

contexts [9] by seeing the infected individuals as those who

actively participate in the dissemination process of the viral

content (regardless of its intent being malicious or not) over

a network. The nodes belonging to the S class are therefore

those that have not been contacted yet, but still can become

active carriers of the content in the future, while recovered

individuals are those that are outside the spreading process.

For example, if we track the diffusion of a worm [8] capable of

destroying smart grid operational capabilities, recovered nodes

can either be those smart meters that have been compromised

and no longer work, or conversely grid nodes that have been

replaced or where countermeasures have been taken by their

owners to eliminate the threat.

Thus, the SIR model considers three classes, whose car-

dinalities are denoted as S(t), I(t), and R(t), as they are

actually functions of the time index t. If the population consists

of N individuals, then S(t) + I(t) + R(t) = N at any time.

Moreover, the following equations are introduced to determine

the temporal evolution of the states [10]:

dS(t)

dt
= −β I(t)S(t) (1)

dI(t)

dt
= β I(t)S(t)− γI(t)

dR(t)

dt
= γ I(t)

where β and γ are parameters whose setup is discussed in the

following.

The model describes a general transition of the individuals

contracting the disease from state S going through state I and

eventually entering state R. Thus, β is the contagion rate,

which in a homogenous population can be seen as depending

on the probability of contact among the individuals and the

conditional probability of contagion in case of contact. The

model includes a term giving a marginal increase of I (and

correspondingly, a marginal decrease of S) proportional to

both S and I , since the higher the number of infected, the more

likely for a susceptible individual to become infected, and,

conversely, the higher S, the more likely for an infected indi-

vidual to spread the disease. On the other hand, I marginally

decreases proportionally to its value (and R increases of the

same amount) with a recovery rate γ, which represents the

reciprocal of the average infection duration.

As a side note, the entire model, and the system of equations

(1), can be rewritten in a normalized version by dividing

all variables by N . Also, since the goal is to describe an

epidemics starting from a limited number of infections and

spreading across the population, the initial condition for a

normalized problem is often taken as S(0) = 1−I0, I(0) = I0,

and R(0) = 0, i.e., by setting an initial fraction of infected

individuals I0 that is generally small. Thus, the key parameters

are β, γ, and I0, as well as N to evaluate the normalization.

Furthermore, it is usual to introduce the basic reproductive

ratio R0 as β/γ. Its physical meaning is the expected number

of infections caused by an individual belonging to the initial

share of the infected population (that is, I0). This parameter

is descriptively powerful: it is easy to prove that the infection

propagates if and only if R0 > 1, and the higher R0, the

stronger the ability to spread [10].

Remarkably, this elementary model is based on many under-

lying assumptions. First, the infection process is memoryless,

since transitions only depend on the state at time t and the

resulting differential equations only involve first-order deriva-

tives. Moreover, there is no preferred direction of contagion

within the population. Any infected individual can pass the

disease to any susceptible one. In other words, the model

brings to the extreme the assumption of small world [12].



For what concerns the population dynamics and the absence

of memory, several extensions have been proposed in the

literature [10], [17]. For example, it is possible to insert

additional transient states in the epidemic evolution, such as

the exposed state, which represents an incubation period before

the infection proper. At the same time, births and deaths (from

other causes than the disease) can be included as well. This is

generally done for epidemics that can have a long timespan,

so that the population dynamics becomes relevant. For our

smart grid analysis, this is likely not needed; however, nothing

forbids to include these extensions in our model as well.

Instead, our main contribution in the present paper is

relaxing the modeling assumption that dictates all the nodes to

be virtually capable of contacting each other. In reality, smart

grids are strongly localized [15] and most communications in-

volve neighboring nodes. Moreover, the topology is generally

regular. Therefore, we propose the application of epidemic

model for cellular automata [14] to this specific scenario.

Cellular automata [18] are discrete dynamical systems made

of a lattice of identical elements, which can have a state chosen

from a finite set of values. A common formulation is that of

a grid where each element (cell) can be occupied by a living

being. The evolutive behavior of the automaton is determined

by local interactions of its cells. Cellular automata exhibit self-

organizing behavior: very often they deterministically evolve

toward an attracting state.

The application of the SIR model (or any other com-

partmental epidemic model) to cellular automata was first

proposed by [14] and can be outlined as follows. Nodes are

located in a fixed position of the automaton lattice and have

known relationships of neighborhood with others. Instead of

considering a single variable describing the state of the node

related to the disease, the cellular automaton epidemic model

takes into account the states of all the neighbors and defines

an evolution through the steps of the disease that depends on

local contagion and individual recovery rates.

We remark that such an extension was proposed by [14]

with an entirely different purpose than what done here for the

specific case of smart grid cyber security. Indeed, the goal of

that paper was mostly to recreate the classic model evolution

without resorting to differential equations; thus, the different

approach is due to complexity reasons. Our claim is instead

that cellular automata are more suitable to represent the spatial

distribution of infected nodes throughout the network, as well

as account for the localized nature of cyber attacks.

III. EPIDEMIC MODELS APPLIED TO CELLULAR

AUTOMATA FOR SMART GRID CYBER SECURITY

We first outline the changes that we applied to the basic

SIR model in order to make it better suitable for computer

simulation and the application of the cellular automaton ra-

tionale. First, the SIR model is inherently deterministic. Its

differential equations express the exact value of individuals

changing state, not just average values. Instead, we took a

randomized approach, in which contagion and recovery rates

are just probabilities. Thus, our analysis returns the same

results of the SIR model with a first order approximation. At

the same time, we consider a discretized time, as discussed

by [17]. This way, first-order derivatives can be rewritten as

incremental ratios and the time increment can be set to ∆t = 1.

Another relevant parameter is the topological degree that we

denote as d. This is the number of neighbors that each node

has got in the automaton lattice. As the cellular automata is

homogeneous, the probability to transmit the disease over a

specific link is set to β/d, in order to have a contagion rate

equal to β. Hence, the SIR model can be empirically replaced

by the algorithm whose pseudo-code is reported in Fig. 1.

while(t < Tmax)

for i ∈set of infected users

for n ∈neighbors(i)
if status(n) 6=susceptible, continue

if rand()< β/d, status(n)=infected
endfor

if rand()< γ, status(i)=recovered
endfor

t++; endwhile

Fig. 1. Pseudo-code of the SIR model implementation.

One can see that this implementation preserves the correct-

ness of the equations of (1), only with a discretized time, as

discussed previously. An example of realization for a network

with 900 nodes disposed over a 30×30 grid in two dimensions,

with topological degree d = 4 (i.e., the neighbors are those

in the four orthogonal adjacent cells, also called the von

Neumann neighborhood [19]) is shown in Fig. 2. Initially,

5% of the nodes are infected, with their individual positions

randomly chosen in the lattice with uniform distribution. We

show the network evolution during the infection propagation

and subsequent recovery. The “temperature” values in the plots

represent the recovered nodes with 2, the infected individuals

with 1, and the susceptible nodes with 0 (or less, see later).

From the figure, it appears that an important separation
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Fig. 2. An example of network with degree d = 4, with 5% initial infected
nodes in a distributed attack scenario.
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Fig. 3. Infected individuals over time, degree d = 3.
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Fig. 4. Infected individuals over time, degree d = 8.

can be made within the class S. Indeed, there are susceptible

nodes that are fully surrounded by non-infected neighbors and

therefore cannot contract the epidemics in the next round.

Such nodes are not even aware that there is an ongoing

infection spreading throughout the network. Thus, we split

class S into two subclasses, denoted as S0 and S1. The former

consists of all the “untouched” nodes, namely, those that have

no infected neighbors, while the latter contains nodes with

at least one infected neighbor. Fig. 2 represents untouched

nodes with negative values. Cardinality-wise, it must hold that

S0(t)+S1(t) = S(t). In the following, we will discuss the role

of these users in the network and their quantitative evaluation.

IV. RESULTS

We considered a smart grid network represented as a cellular

automata with 30 × 30 elements on a 2-dimensional plane.

We simulated four different connectivity scenarios, namely,

d ∈ {3, 4, 6, 8}. Values 4 and 8 were obtained by considering a

square lattice, while degrees 3 and 6 were obtained translating

the grid into a hexagonal lattice. The results are averaged over

150 simulation runs.

To simulate attacks of different strengths, we considered

several values of R0. Actually, the value of γ has been kept

fixed to 0.005 (indeed, we tried other values and the results

were found to be still consistent). Therefore, R0 was simply

tuned by setting a different value of β. Also, in all the results
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Fig. 5. Infected individuals over time, for different degrees, R0 = 2.0.

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

Time

N
o.

no
de

s 
[%

]

 

 

R
0
 = 1.2

R
0
 = 2.0

R
0
 = 3.0

R
0
 = 5.0

Fig. 6. Recovered individuals over time, degree d = 3.

shown, the initial fraction of compromised nodes I0 was set to

2%. Other values have been investigated but are not reported

here due to space constraints. Nevertheless, their results are

in full agreement with the ones shown. Finally, we considered

two different configurations for the positions of the infected

nodes at time 0. In most of the plots, we investigated a

distributed attack scenario where these positions are randomly

selected with uniform distribution over the lattice. However,

we also considered a compact attack case, where the infected

nodes at the beginning are all grouped at the center of the

grid.

Figs. 3 and 4 report the evolution over time of the fraction

of infected individuals, for two different degree, d = 3 and

d = 8, respectively. Infections of different strengths have been

considered. The trend is both quantitatively and qualitatively

similar for both figures: the higher the basic reproductive ratio

R0, the higher the strength of the infection. The shape of the

function is aligned with the result of a classic SIR model [9],

[10], [17]. However, comparing the two figures, it is visible

that the peak is slightly higher and narrower for the case with

lower degree.

To better understand this trend and its implications, one can

consider Fig. 5 where the evolution of the number of infected

nodes over time is shown for different values of the topological

degree, with R0 = 2.0. Also, Fig. 6 considers the number of

recovered individuals for the case of a topology with degree
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Fig. 7. Recovered individuals over time, for different degrees, R0 = 2.0.
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Fig. 8. Untouched individuals over time, degree d = 3.

d = 3 and various values of R0. Since the equations start from

R(0) = 0 and the model guarantees recovery of all nodes after

a sufficiently long time, the asymptotic trend of the recovered

individuals is also a measure of the nodes that were infected

at any time of the simulation. From this figure, it is further

emphasized that R0 highly influences the number of nodes

influenced by the attack: the case with R0 = 1.2 leads to the

contagion of very few nodes, while R0 = 5.0 causes more

than half the network to be directly compromised.

Similar to the previous discussion, the influence of the

degree on R(t) is shown in Fig. 7, focusing again on the

specific case R0 = 2.0. From this figure, as well as Fig. 5,

it can be argued that a lower degree allow the attack to

concentrate its diffusion towards fewer neighbors. In this way,

the infection is slightly more effective. This may lead to

considering the classic SIR model, and similar compartmental

schemes, as not fully suitable for environments such as a

smart grid. Indeed, classic models can be compared to a mesh

topology with very high degree. Thus, this leads to slightly

underestimate the extent of the attack.

Figs. 8 and 9 show instead the untouched individuals over

time, for d = 3 and variable R0, and R0 = 2.0 and

variable d, respectively. Our proposal in Section III was to

split the susceptible class into subclasses S0 (the untouched)

and S1. While the number of susceptible nodes can be simply

derived by complementing the previous plots of I(t) and
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Fig. 9. Untouched individuals over time, for different degrees, R0 = 2.0.

R(t), the behavior of S0(t) is more interesting. Indeed, these

nodes have no contact whatsoever with the infection. This

evaluation is therefore important to understand how many

nodes actually use the protection against a security threat, so

as to possibly assess an evaluation of costs versus benefits. It

is possible that if the contagion model applied to the cellular

automaton predicts that many individuals will not have an

infected neighbor for the entire outbreak of the epidemics,

there will be little interest for the owners of the network

nodes to apply some local security protections. This kind of

interactions can be better modeled via game theory [20], also

involving multiple choices for the strategy of the attackers;

indeed, this can enable the exploitation of the common roots

of cellular automata and game theory. This kind of approach

may be worth investigating as a future work.

It is again shown by Fig. 8 that the stronger the infectivity,

the lower the number of untouched nodes. However, Fig. 9

shows an interesting behavior in that the number of untouched

nodes is slightly increasing with the degree. Clearly this is

due in part to the definition of untouched node, since a higher

number of neighbors leads to a lower probability that none

of them is infected. Still, this result suggests that controlling

the network topology might have contrasting results, since a

lower degree increases the number of infected nodes, but also

raises the number of nodes that do not perceive any attack.

Finally, Figs. 10 and 11 consider the case of compact attack.

In all the previous results, a distributed attack was considered,

while here we investigate a case with fixed R0 = 2.0 and

different degrees, and we plot the trend over time of I(t)
and S1(t), respectively. In this case, the extent of the attack

is generally more limited. Fig. 10 shows that the trend of

I(t) is always monotonically decreasing; compare with Fig.

5, where a higher peak was reached in the case o a distributed

attack. Fig. 11 shows that, for a compact attack, an increased

number of nodes remain untouched, as they do not ever have

any infected neighbor: while Fig. 9 showed an untouched

rate between 70% and 80%, for a compact attack this value

becomes around 90%. To sum up, since the network attacks

start in a concentrated area, they are less effective. The

differences in d are also less relevant, that is, all the values

of the topological degree lead to similar curves. These results
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Fig. 10. Infected individuals over time for a compact attack, R0 = 2.0.

prove that, in order to better exploit the decentralized nature of

the smart grid, the adversary should disperse the injection of

attacks. Conversely, a massive yet strongly localized attack to

the smart grid would be less effective. Incidentally, this kind

of conclusion is another point supporting the better descriptive

effectiveness of cellular automata.

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

We presented an original quantitative approach to analyze

security in smart grids based on epidemic models and cellular

automata. As far as nodes in a smart grid can be looked

at as individuals in a population susceptible to an epidemic

infection, compartmental models can be exploited to predict

the outbreak of a malicious attack and/or take effective coun-

termeasures. To our knowledge, this represents an original

contribution for future developments of security solutions for

smart grids, which is an important yet overlooked aspect.

To support our approach, we presented results from simula-

tions of different smart grid topologies. Three critical param-

eters were taken into account: the degree of the network, the

infectious impact of the attack, and the locations of infected

nodes in the network, that is, their proximity or distance from

the source of contamination.

We have shown interesting trade-offs between connectivity

and cyber infection diffusion. If the same infection strength is

applied to different topologies, the networks with lower degree

show an earlier and higher peak of the infection. The number

of nodes involved in the attack is also larger. This implies that

traditional compartmental models, where all nodes are in direct

contact with each other (albeit with a smaller probability) can

underestimate the extent of a cyber attack.

Moreover, we have also found that some nodes can remain

untouched from the infection, thanks to their strategic location

in the network. Importantly, the influencing parameters are

the same as before (degree and infection strength) but the

degree has the opposite behavior. This aspect can be further

investigated in the future, when distribution of key elements

of the smart grids, that can be access points or electricity

sources, have to be carefully designed in order to lower down

the probability of a cyber attack.

0 500 1000 1500 2000 2500

90

95

100

Time

N
o.

no
de

s 
[%

]

 

 
d = 3
d = 4
d = 6
d = 8

Fig. 11. Untouched individuals over time, for a compact attack, R0 = 2.0.
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