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Abstract—Since fairness deals with the quality of distributing 
the jobs and creates an ambience that is free from any 
discrimination, any distribution management problem must 
take fairness issue into consideration. Again, since the Vehicle 
Routing Problem (VRP) is also a distribution management 
problem, any VRP solving algorithm must consider the fairness 
when solutions are explored. However, most of the proposed 
VRP solving algorithms do not take this issue into 
consideration. In this paper, we raise this issue with sufficient 
evidences. In this course of action, following contributions are 
made in this paper: i) fairness issue is raised analytically, and 
to support this, an extensive simulation campaign is performed, 
ii) the VRP is discussed through a practical application, namely 
Garbage Collection Problem (GCP), and later it is 
mathematically formulated, iii) a Genetic Algorithm (GA) is 
employed to explore feasible solutions for the given application 
(i.e., GCP), and iv) some future research directives are noted, 
which will help the researchers to extend this work.  

Keywords-vehicle routing problem, capacitated vehicle 
routing problem, garbage collection problem, fairness, genetic 
algorithm. 

I.  INTRODUCTION 
The Vehicle Routing Problem (VRP) is a distribution 

management problem, which envisions to explore the 
optimum collection or delivery routes of a fleet of vehicles 
that commences from a depot and returns back to the origin 
after visiting a set of intermediate cities or nodes. The route 
optimizations in the VRP are subject to several parameters, 
namely travel time, mileage, capital cost, personnel cost, and 
several side constraints. Although, this problem has been 
studied over a century; however, researchers still pay 
immense attention to it due to changing constraints over time 
or due to emerging new practical applications. Some notable 
practical applications of this problem are: print press 
scheduling, crew scheduling, school bus routing, interview 
scheduling, mission planning, hot rolling scheduling, design 
of global navigation satellite system surveying networks, 
garbage collection, and so forth [1], [2].  

In the 1800s, the mathematical formulation of a similar 
kind of problem was addressed by the Irish mathematician W. 
R. Hamilton and by the British mathematician Thomas 
Kirkman, called Traveling Salesman Problem (TSP) [3]. The 
TSP is a special case of the VRP, where a single vehicle has 
to visit all the cities and has to return back to the origin 
following the shortest possible path. Over time, the TSP 
evolves and arises in several different forms due to the 

variety of constraints encountered in practice. In contrast to 
the TSP, the VRP takes into account of a fleet of vehicles. 
Again, the VRP that takes capacity into consideration is 
called Capacitated Vehicle Routing Problem (CVRP), which 
is more in-line with the practical applications. Note that, the 
terms, VRP and CVRP, city and node, and collection and 
delivery are used interchangeably in this paper. 

At present, several Exact Solution Algorithms (ESAs) are 
proposed that can resolve the TSP for thousands and more 
number of nodes [4]. Similarly, some ESAs are also proposed 
for the VRP that are based on mathematical programming 
formulations in several literatures [2], [5]-[9]. However, 
these ESAs are only compatible for a small number of nodes; 
whereas, there is no ESA proposed that can explore optimum 
solutions for a large number of nodes (e.g., hundreds or 
more). Consequently, this problem falls under the NP-hard 
problem class. For this class of problems, the MetaHeuristic 
(MH) based solutions are deemed efficient due to their 
competency to explore optimum or near-optimum solutions 
within considerable time duration. Hence, several MH based 
algorithms are proposed in the last decade. For instance, in 
[10] and [11], the authors propose tabu search-based 
algorithms, where the basic principle is to use a local or 
neighborhood search procedure to iteratively move from one 
potential solution s to an improved solution s' in the 
neighborhood of s, until some stopping criterion has been 
satisfied. Again, since Genetic Algorithms (GA) are the most 
applied modern MH based approach, several algorithms are 
also proposed based on the GA, such as in [12] and [13]. In 
this paper, a GA based algorithm is employed to explore 
feasible solutions, which is discussed in Subsection III-C in 
details. 

Although, there exist a considerable number of 
algorithms that explores optimum solutions for the VRP; 
however, to the best of our knowledge, no one yet raises the 
fairness issue of these algorithms. Conversely, any unfair 
distribution of jobs may lead to dissatisfaction among the 
employees. The solutions offered by the most of the existing 
algorithms are seldom fair. This paper raises this issue 
evidently through analytically (in Section II}) and using 
simulation campaign (in Section V). 

The rest of the paper is organized as follows. The fairness 
issue of the VRP is raised analytically and discussed in 
details in Section II. Section III presents the system model of 
an application where the VRP subsists, and the problem is 
mathematically formalized in Subsection III-B. The 
simulation scenarios that are taken into account to support 
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the claim described in Section IV; whereas the results are 
presented and analyzed in Section V. In Section VI, the 
future directions of the research are detailed, and the paper 
ends with the concluding remarks in Section VII.  

II. PROBLEM DEFINITION 
For any distribution management problem, fairness 

remains an important issue, since it deals with the quality of 
distributing the jobs and created an ambience that is free 
from any discrimination. Again, discrimination may generate 
dissatisfaction, and due to the later cause, an organization 
may not be able to extract the best out from an employee. In 
addition, it may work as a negative force to the growth of an 
organization. This proposition is also applicable to most of 
the VRP based applications. Unfortunately, most of the VRP 
solving algorithms never take this issue into consideration 
while they are exploring solutions. The primary objective of 
these algorithms is to provide optimum solutions based on 
certain given conditions. However, we would like to argue 
that the optimum solutions that are calculated based on 
certain given conditions may not be viable solutions in terms 
of fairness. In our following discussions, this issue is detailed 
evidently. 

Let us assume that in a VRP, there is a set of nodes, N = 
{N1, N2, …, Nn}, and |N| = n is fixed. A VRP solving 
algorithm explores m optimum routes for a fleet size of m 
vehicles, i.e., S = {S1, S2, S3, …, Sm}, where Si ⊂ N, and Si = 
{N1, N2, …, Nk}. If k = n and |N| = |Si|, this is a TSP; 
otherwise this is a VRP. Again, all the solutions are 
computed sequentially, i.e., Si ∈ S is computed before Sj ∈ S 
since i < j and i ≠ j, by following the common constraints of 
the VRP that are mentioned in [6]. In this circumstance, 
following propositions can be derived. 

Proposition 1: In a solution set S, there could be only one 
global optimum solution, Sφ, if no two distances are identical. 

Proof: Let us assume that there are two global optimum 
solutions present in S, namely Si = Sφ and Sj = Sφ, Si is 
computed before Sj or vice versa, and i ≠ j. Again, for our 
further discussions, assume that Si is computed prior to Sj. 
Since a node can be visited only once, all the nodes in Si will 
be absent in Sj , i.e., Sj ⊂ N \ Si, and hence, Sj ≠ Sφ. Therefore, 
there could be only one Sφ in S.                     

Proposition 2: For the analogous scenario in Proposition 
1, except Sφ, all other solutions in S, i.e., S \ Sφ, are local 
optimum solutions. 

Proof: As in Proposition 1, it has been proved that there 
could be only one S' in S; hence, the other solutions, i.e., S \ 
Sφ, are local optimum solutions. 

Proposition 3: If all the nodes are placed at equal 
distance from the depot, and all the concerned constraints are 
identical, then ∀Si ∈ S, Si = Sφ. 

Proof: If ∀Si ∈ S, Si = Sφ is not true, then let us assume 
that there is at least one Sj ∈ S such that Sj ≠ Sφ. Again, since 
all the nodes are placed at equal distance from the depot, and 
all the concerned constraints are identical, Sj is an optimum 
solution, i.e., Sj = Sφ, which admits the true sense of the 
proposition.  

However, in reality, the nodes are placed at arbitrary 
locations, and the probability of having identical distances 

for all the nodes is insignificant. Hence, Proposition 3 is 
impractical; whereas, Proposition 1 and Proposition 2 
represent practical scenarios. As mentioned in those 
propositions, if there is only one Sφ and the rest are local 
optimum solutions, there must be some deviations exist in 
the solutions. The fairness of these solutions becomes an 
issue when the deviations are substantially high. One may 
argue that it is possible to ensure fairness by taking a single 
parameter into consideration. For instance, if the duration of 
the travel time is set fixed or if the distance is set fixed, it is 
possible to ensure fairness. In counter argument, it can be 
mentioned that since in the VRP, the capacity of the vehicles 
also plays an important role; and fixing those parameters 
may reduce the utilization of the vehicles. Hence, the 
management cost increases that is against the objective of the 
VRP. Therefore, fairness remains an important issue for the 
existing VRP solving algorithms. 

 
 

Figure 1. An architecture of the GCP, which is a practical implementation of 
the VRP. 

 

III. SYSTEM MODEL 
This section is divided into three subsections. In 

Subsection III-A, an application is discussed in details where 
the VRP subsists, called the Garbage Collection Problem 
(GCP) [2]. This problem is then mathematically formalized 
in Subsection III-B. Finally, this section ends with discussing 
a GA based approach in Subsection III-C, which is utilized to 
explore feasible solutions from the given application 
scenario. 

A. VRP over GCP 
Waste collection is an immensely vital public service that 

is conducted by the municipal corporation. In the past, this 
service was carried out without analyzing the demand and 
calculating the feasible routes; whereas, the latter was left 
over to the drivers. However, with the expansion of 
urbanization, the importance of an effective collection 
system appeared more evidently to all concerns. Especially 
for large towns and cities, the operation cost rises 
substantially. Subsequently, people start thinking about an 
efficient garbage collection system that involves operational, 
tactical, and strategic decisions to provide better service with 
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minimum operating cost. It is also getting considerable 
attention from the researchers due to its impact on the society 
and on the environment. One of the primary concerns of the 
researchers is to reduce the operating cost of the GCP
through: i) minimizing the vehicle fleet, ii) maximizing the 
vehicle utilization, and iii) minimizing the travel time. 

The GCP is a practical application of the VRP, where a 
fleet of Garbage Containers (GCs) with identical capacity 
involved in unloading Garbage Bins (GBs) of a particular 
area at a minimum management cost. Generally, a GC starts
from a single depot, then it unloads multiple GBs before it 
unloads itself at a disposal area and return back to the depot. 
Generally, the GBs are placed arbitrarily beside the roads to 
ease the garbage collection process, and the position is 
known. Again, the capacity of the GCs are also pre-known. 
Hence, a competent algorithm must utilize these known 
factors to explore feasible solutions, which demand a 
considerable amount of computational activities. A Control 
Center (CC) can be installed inside the depot to support these 
computational activities. The primary task of the CC is to 
compute feasible solutions periodically with respect to one or 
more pre-selected parameters. At a later time, it will deliver 
these solutions to the GCs so that the garbage collection can 
be performed in the most efficient manner. These optimum 
solutions reduce operation and management cost by 
minimizing the requirements of the GCs, or by minimizing 
the traveling distance by offering shortest path that in turns 
reduce fuel consumptions, or by minimizing the requirement 
of employees, or so forth. 

B. Mathematical Formulation 
The GCP can be represented in a graph, G = {N, E},

where N is the set of GBs, |N| = n, and E is the set of edges, 
i.e., roads. Let C = Cij is a non-negative distance matrix for 
the edge between i ∈ N and j ∈ N, and i ≠ j. Based on the 
context, Cij can be interpreted as a travel cost or as a travel 
time matrix. Again, when Cij = Cji and ∀(i, j) ∈ E, the 
matrix C is said to be symmetric, and otherwise asymmetric. 
Let us assume that the depot is the node 0, i.e., N0, and N 
number of GBs to be unloaded by m number of GCs. Let us 
also assume a decision variable, , such that: 

             
The GCP can be formulated using following objective 

functions and constraints as in [14]: 

    
Subject to: 

In this formulation, constraints 3 and 4 ensure that each 
GB is unloaded exactly once. Constraint 5 shows that the 
total demand of any route must not exceed the capacity, λm,
of the mth GC, where 0 ≤ m ≤ M. Constraints 6 and 7 ensure 
that each GC is utilized no more than once in a session. 

C. GA Based GCP Solving Approach 
Similar to its predecessor (i.e., VRP), the GCP is also an 

NP-hard problem. For this type of problem, it is argued that 
it is impossible to find an exact solution in polynomial time 
when the number of nodes are large. In other words, exact 
algorithms or linear programming based approaches are 
incapable of exploring solutions within feasible time 
duration for a large number of nodes. Conversely, 
metaheuristics based approaches are competent for these 
scenarios, and can explore optimum or near optimum 
solutions within a substantial time duration. Consequently, 
several metaheuristics based approaches are proposed in the 
last decade. Among them, GA is the most utilized 
metaheuristics based approach. Hence, several GA based 
algorithms are also proposed for solving the VRP, such as 
[13], [15]. Likewise, in this paper, a GA based approach is 
employed to find out the viable solutions, as because a large 
number of nodes are set in some scenarios in the simulation 
campaign. 

The basis of the GA is to imitate the mechanisms of 
evolution of natural genetics, and take into consideration of 
the survival of the fittest among individuals over consecutive 
generation for solving a problem. Generally, the GA utilizes 
a set of populations, and creates several generations to solve 
a particular problem. Again, a population consists of a set of 
solutions, a.k.a, chromosomes; whereas a chromosome
contains the solution in the form of genes. For reproduction 
of the new generation, two prime operations are performed 
on populations, namely crossover and mutation. At first, a 
crossover operation is performed for the reproduction of new 
chromosomes, and then a mutation operation is performed on 
the new chromosomes through making random changes in 
them. Afterward, a selection procedure selects only fittest 
solutions as a parent, which is then utilized by the crossover 
operation to create other fit solutions, also called offsprings. 
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At the end of each iteration, a new generation is produced 
from the combination of the old generation and the new 
offsprings. However, since the size of the new generation is
larger than the previous one, it is reduced by placing only the 
fittest nodes in the population. On the other hand, the fittest 
node is selected based on a function, called Fitness Function 
(FF). To achieve the objective function given in Equation 2, 
the following FF in Equation 8 is applied in this paper. 

where F(i) is the fitness of a solution i, which has ϱ number 
of genes, 0 is the identification number of the depot, and j is 
the index of a GB in a chromosome. In this scenario, since 
the volume of GBs is random against a fixed capacity 
container, the size of the chromosomes or solutions may vary, 
and that makes this implementation more challenging. 

IV. SIMULATION SCENARIO

In the simulation campaign, the GA based algorithm 
discussed in III-C is representing all those algorithms that do 
not take fairness into consideration. To investigating the 
fairness, a Euclidean 2D-area of variable size is considered, 
which may vary within the range of 500 m × 500 m to 5000 
m × 5000 m. In favor of selecting this simple scenario, we 
would like to argue that if a GCP solving algorithm cannot 
ensure fairness in this scenario, it will also fail to do so in 
practical scenarios. The GBs are deployed in arbitrary 
location within the given area following a uniform 
probability distribution. A variable number of GBs are taken 
for the investigation that ranges from 10 to 80. Every GB has 
a unique identification number, and in this process, 0 is 
consider as the identification number of the deport. A 
random volume of waste is assigned to every GB, which is 
not higher than the bin capacity, βc, and every container can 
contain waste volume ≤ ζc, where ζc is the container capacity. 
To stress the simulation, all the GBs are considered having 
waste volume, υj , where j = 0, 1, 2, …, N, higher than the 
half of  βc, which is calculated as follows: 

where ρ is a random number, and 0 ≤ ρ ≤ 1. The distance 
between two nodes, dij, where i, j ∈ N, are calculated using 
Euclidean distance formula. In the simulation, traffic 
congestion is considered negligible; and hence, we assume 
that the GC that travels the shortest distance has performed 
the task in minimum time. 
Among various variants of the GA, 1-opt crossover and 1-opt 
mutation is utilized in our simulation campaign. In addition, 
several other parameters are also taken into consideration 
throughout the simulation campaign, such as ζc = 1000, βc =
200, generation = 50, sizeof(population) = 2 × N, mutation 
rate = 0.1, and crossover rate = 0.25. The length of the 
chromosomes may vary from to . Both 

the simulation scenario and the GA based searching approach 
have been implemented using C++, and all the acquired 
results are saved in a plain text file. Every scenario has been 
run with twenty five (25) different seed values, and then they 
are averaged before plotting on the graph. 

Figure 2. Travel distance for Sl, Sa, and Sh, with respect to various number of 
nodes and various coverage areas 

Figure 3. Standard deviations with respect to various number of nodes and 
various coverage areas 

V. RESULT ANALYSIS

After every simulation, the GA based algorithm produces 
S solutions, where |S| = m, for a fleet size of m vehicles. 
Since S contains m different solutions, the acquired results 
are further analyzed to discover the lowest, Sl ∈ S, average 
(i.e., mean of all the solutions), Sa ∈ S, and the highest, Sh ∈
S, distances in S. Then, these results are plotted in Fig. 2. 
From this figure, it could be observed that when the coverage 
area is considerably small, ∀Si ∈ S offer distances with 
minimum deviations with respect to any number of nodes. 
However, the differences become prominent, i.e., Sl ≤ Sa ≤ Sh,
with increasing coverage areas, and it is the highest for the 
coverage area of 5000 m × 5000 m. The reasons of 
increasing the differences are: i) as discussed in Section II is 
that S could have only one Sφ, and the rest, S \ Sφ, are local 
optimum solutions with respect to the given scenario, and ii)
when the area to be covered is higher, the GBs are also 
deployed with higher inter-distance between themselves. 
Again, it also could be observed from the figure is that when 
the nodes are uniformly sparsely distributed, the differences 
are lower; whereas, the differences appear more significantly 
when the nodes are uniformly densely distributed. In former 
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case, since all the GBs are sparsely distributed within a given 
area, all the GCs have to travel a considerably long distance 
to cover the area; whereas, in latter case, since the nodes are 
densely distributed, an algorithm can explore some solutions 
with shorter distances and some solutions may experience 
longer distances. Consequently, the highest difference could 
be observed between Sl and Sh, when N = 80 and the 
coverage area is 5000 m × 5000 m, and that is around 9.3 km. 
This distance will become prominent in the practical scenario 
where the area to be covered is substantially high, sometimes 
even several hundreds of kms. 

In Fig. 3, standard deviations of various solutions are 
illustrated. Alike Fig. 2, the deviation increases with 
increasing coverage areas and increasing number of nodes. 
The minimum deviation could be found when the number of 
nodes are lower, and the GBs are deployed sparsely within 
the given area. In dense scenario, there could be several 
solutions that have minimum distances, and some solutions 
experience longer distances. This is because of the similar 
reasons that are discussed previously. Again, similar to Fig. 2, 
the highest deviation could be observed, when N = 80 and 
the coverage area is 5000 m × 5000 m, and that is around 2.5 
kms. It would be substantially more in the practical scenario 
where a city could span more than several hundreds of kms.

Fig. 1 and 2 provide evidence of the discrimination 
among the solutions. By observing these figures, one can 
easily identify that fairness is not ensured by this algorithm. 
When the coverage area is larger and number of nodes are 
higher, the solutions are substantially deviated from each 
other, and may create dissatisfaction. Although, we employ a 
GA based algorithm in this paper; however, this observation 
is also correct for other algorithms that do not take fairness 
into consideration. A practical implementation of these 
algorithms in any organization may introduce dissatisfaction 
among the employees in it. Therefore, to extract the best out 
of the employees, it is necessary to distribute the jobs in such 
a manner that it is free from any discrimination. Hence, a 
VRP solving algorithm must take fairness issues into 
consideration whenever the solutions are computed. 

VI. FUTURE WORKS

This paper apprise the fairness issue of the algorithms 
that are proposed for the VRP. It open up the possibilities of 
several other researches, e.g., i) investigate the fairness of 
other existing algorithms, ii) enhance the existing algorithms 
through incorporating fairness issues, iii) propose a new 
algorithm that take fairness into consideration, iv)
incorporating Nash-equilibrium or Game Theory with an 
existing algorithm to ensure substantial fairness, and so on.  

VII. CONCLUSIONS

In this paper, the fairness of the existing VRP solving 
algorithms is raised evidently through analytically and using 
an extensive simulation campaign. Although, the fairness is 
an important issue for any distribution management problem; 
to the best of our knowledge, there is no VRP solving 
algorithm that considers this issue as a parameter when they 
explore the optimum solutions. In this course action, we 
employ the VRP in the GCP, which is a practical application 
of it. Then, the GCP is mathematically formulated, and a GA

based GCP solving algorithm is proposed, which represents 
the class of algorithms that does not take fairness into 
consideration. Afterwards, an extensive simulation campaign 
is conducted to investigate the fairness of the explored 
solutions by the proposed algorithm, and then the acquired 
results are scrutinized. From the investigation, it is confirmed 
that the fairness need to be taken into account while 
exploring viable solutions.  
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