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Abstract—in mobile social networks, legitimate transmitting
nodes can be contrasted by malicious attackers acting on the
purpose of disrupting communication. Our aim is to use game
theory to identify malicious nodes. With respect to previous
similar formulations, we consider a wider array of action options
for the players, notably we include a choice about whether
to engage or not in packet exchanging, and also malicious
activity and its prevention. This leads to a structured analysis
of the resulting game, resulting in different equilibria. We use
a Bayesian Game where the critical parameter is the likelihood
that the unknown agent is malicious. Investigating on the Nash
equilibria in pure/mixed strategies found, we can see how in some
cases the malicious behavior of the nodes can be tolerated since
a trade-off between their presence and the effect of damages that
they caused can be reached.

Index Terms—Mobile social networks; Game theory; Network
security; Bayesian games; Repeated games.

I. INTRODUCTION

SOCIAL mobile networking is rapidly expanding, as most
of the users connected to social networks also enjoy

wireless connectivity and the seamless integration brought by
next generation networking [1]. However, this poses unprece-
dented challenges in terms of network security. Connecting
to unprotected wireless hot-spots and/or interacting with other
mobile nodes in a machine-to-machine communication may
imply the risk of having sensible information stolen and/or
services disrupted by malicious adversaries [2], [3].

Mobile nodes are usually unaware of the intentions of
the terminals they are interacting with. From a theoretical
perspective, the network layer of a social mobile network op-
erates assuming full cooperation and commonality of intents.
However, not all the involved nodes may be benign: some
can be adversaries pretending to collaborate, while instead
pursuing some different purposes than the network wellbeing.
In general, there exist multiple kinds of malicious clients with
different purposes and abilities. These clients could act as
hacker, cracker, cybercriminals, cyber terrorist, and malicious
insiders [4]. As a consequence, we deal with several security
problems in which the identity of a client is unknown to a
legitimate node searching for collaboration. Thereafter, we
refer to this scenario as a server-client interaction, even though
this is done only to follow the common choices in the literature
and by no means limited to this kind of interaction. Hence, in
what follows “server” denotes a legitimate node of the network
that interacts with a “client” of unknown intentions [5].

If this server trusts the clients to be benign and does
not implement a surveillance procedure, attackers would be

able to disrupt network operation by simply pretending to be
legitimate clients. On the other hand, it the server considers
each client as a potential malicious agent, it will implement
some costly surveillance procedure that decreases the quality
of service provided, not only for the server itself, but also
for all the legitimate benign clients. Therefore, the most
compelling network security problem is to correctly define a
proper operation where both types of clients are considered
and efficient defense strategies are designed with the purpose
of preventing malicious activities and providing good quality
of services to benign nodes [6].

Game theory has been widely used to tackle security prob-
lems in communication networks [7]. This approach enables
low-cost distributed management of the network, as well
as defining some theoretical performance bounds. However,
most security issues are generally modeled as the interaction
between a defender and a node that is certain to be a malicious
attacker. In reality, the correct identification of a malicious
client is challenging, especially if the attacker adopts a strate-
gic behavior that tries to keep its true intent hidden from the
network [9]. For this reason, it is not always possible to infer
the identity of a malicious agent known to the other nodes of
the network, but rather, only an estimate about the character
of the client can be made; thus, the specific instrument to use
in this scenario is that of Bayesian games [8].

Our purpose is to analyze a server/client game where the
client can be either benign or malicious with a known prior
probability. The nodes have an available set of possible actions
that they can perform in the network. We remark that the
existing literature usually considers just two actions available
to each player, which enables a simple approach to the problem
but on the other hand makes it easy to identify the client type
(depending on whether he plays its collaborative action or not).
We aim at expanding this scenario by including additional
moves that enable a malicious client to get undetected, which
in our opinion is a more realistic option.

A sample scenario could be a packet forwarding situation
that is often used in the context of security. In this case,
sensor nodes would have the option to transmit a packet,
and supporting clients acting as relays can choose among
forwarding it without damaging it, ignoring it, or adding
some intentional errors to its transmission. This wider set of
available options makes the analysis more realistic. Still, we
are able to analyze the game in closed-form, and show some
examples of analysis with given numerical values. Specifically,
we consider a Bayesian game framework to capture the



uncertainty about the client’s nature, and identify the Bayesian
Nash equilibria (BNEs) of this game, and discuss how they are
affected by the numerical parameters. We also suggest some
implications on the security strategies of the network.

The rest of this paper is organized as follows. In Section II
we discuss some related works. In Section III, we describe the
system model and the game theory application; we compute
the BNEs in Section IV. Section V presents some numerical
results. Finally, Section VI draws the conclusions.

II. RELATED WORKS

In [5] and [8], authors survey and classify existing game
theoretic approaches to network security issues. They state
that game theory can address network security and identify
some promising research directions. In [9], a new Bayesian
hybrid detection approach is suggested for a network defender.
A lightweight monitoring system is used to estimate the
opponent’s actions, and a heavyweight monitoring system acts
as a last resort of defense. The results show that the dynamic
game produces energy-efficient monitoring strategies for the
defender, while improving the overall hybrid detection power.

Similar studies are [10] and [11]. In particular, a new exact
method, called DOBSS, for finding the optimal strategy for the
leader in a Bayesian Stackelberg game is presented in [10].
In these kinds of games, one agent, called the leader, must
commit to a possibly mixed strategy that can be observed by
other agents, called the followers, before they choose their
own strategies. The leader is uncertain about the types of
adversary it may face, therefore such games are extremely
valuable in modeling domains involving security, including
patrolling, setting up checkpoints, network routing, transporta-
tion systems and others. Solution techniques such as DOBSS

are also relevant for efficiently solving such games. In [11],
using a game-theoretic approach, authors propose a selective
and dynamic mechanism for counter-fingerprinting. They first
model and analyze the interaction between a fingerprinter
and a target as a signaling game. Then, they derive the
Nash equilibrium strategy profiles based on the information
gain analysis and they design a mechanism to prevent or to
significantly slow down fingerprinting attacks. Their game-
theoretic approach appropriately distinguishes a fingerprinter
from a benign client and mystifies packets to confuse the fin-
gerprinter, while minimizing the effects on legitimate clients.
This mechanism can reduce the probability of success of
the fingerprinter significantly, without deteriorating the overall
performance of other clients.

Paper [12] presents an application of the Bayesian game the-
ory to model node behaviors in trajectory privacy preservation
activities in mobile wireless sensor networks. The character-
istics of autonomous nodes, including selfish, malicious, and
cooperative, are formulated in a game, and the trustworthiness
of the unknown type node has been evaluated. Then, authors
derive the equilibrium strategies of the game in both theoretical
and simulation results.

In [13], the authors study two-player security games which
can be viewed as sequences of non-zero-sum matrix games
played by an attacker and a defender. It is assumed that, at

each stage of the game iterations, the players make imperfect
observations of each other’s previous actions. The underlying
decision process can be seen as a fictitious play (FP) game,
but in their analysis the communication channels that carry
action information from one player to the other, or the sensor
systems, are error prone. Two possible scenarios are addressed:
if the error probabilities associated with the sensor systems are
known to the players, then the analysis provides guidelines
for each player to reach a Nash equilibrium related to the
underlying static game; if the error probabilities are not known
to the players, then they evaluate the effect of observation
errors on the convergence to the Nash equilibrium and the
final outcome of the game. Moreover, both the classical FP
and the stochastic FP are discussed, where for the latter
the payoff function of each player includes an entropy term
randomizing its own strategy, which can be interpreted as a
way of concealing its true strategy.

Finally, in many formalizations, service providers are as-
sumed to be unaware of the type of their clients that can either
be malicious (and attack at any time during their connections)
or legitimate agents. In [7], a general framework is provided
for modeling security problems subject to different types of
clients connected to service providers. The authors develop
an incomplete-information two-player game to capture the
interaction between the service provider and an unknown
client. They consider two types of clients, i.e. attacker and
benign clients, and they analyze the game using perfect BNEs
with different conditions. As a result, they design an algorithm
using the computed BNE strategy profiles to find the best
defense strategy that the server should use.

III. SYSTEM MODEL

We consider a Bayesian Game, in which players can be
of different types, and each type implies a different utility
function. This is a way to capture different behaviors that
the players may have. Each player is aware of its own type
only. About the other players’ types, each player only knows
the prior probability distribution over types, which is common
knowledge among the players. Possible assumptions about an
opponent types are integrated in the beliefs [14]. A strategy of
a node is identified as a complete plan of actions that covers
every contingency of the game, also including types.

For the sake of presentation, we consider the interaction
between two nodes. This can be further extended to a larger
number of nodes by repeating the pairwise interaction. In a
mobile social network, each node can be either malicious
or benign, depending on how they interact with the rest of
the network. Malicious nodes damage communications in the
network so as to disrupt its operation; we only focus on
this kind of malicious attacks, that are aimed at denying
service [6]. Also, we consider the typical interaction of multi-
hop networks, where nodes exchange packets and require
mutual collaboration in the form of relaying data to the end
destination. In this setting, a server can decide to transmit a
packet to another node, monitor the network in order to detect
malicious nodes without transmitting any packet, or do nothing
and remain inactive. Furthermore, considering that some nodes



Player 2
Forward Ignore Damage

Player 1
Nothing 0,−1 0, 0 −1,−∞

Packet 1, 1 −1, 0 −2,−∞
Surveillance −3,−2 −3, 0 2,−∞

TABLE I
NORMAL-FORM (MATRIX) OF THE GAME WITH A BENIGN PLAYER 2

may have malicious purposes, when a node is asked to forward
a packet, it can really do so, or ignore the packet, or even
forward a corrupted version of it, to cause harm.

We assume that one of the nodes, denoted as node 1, is
a benign node (i both nodes are malicious, it is pointless
to consider the defense from an adversary). The other node
instead, denoted as player 2, may be either a legitimate node
or a malicious attacker. We define p as the prior probability
of being malicious for node 2. Note that the type of player 2
is private information, which means that 2 is aware of being
either malicious or not, while 1 does not know (but it can
estimate it via the probability p). Node 1 acts as a server

that can transmit packets to a client or protect the network
against malicious agents through surveillance. Node 2 acts
as a client and it can forward a received packet without any
damage, ignore a received packet, or forward a received packet
corrupting it depending on its behavior. We can model this
scenario using a two-player static Bayesian game in which
the server and the client are the players. The set of actions
that can be taken is {Nothing, Packet, Surveillance} for
player 1 and {Forward, Ignore, Damage} for player 2.
These actions reflect the three types of possible interactions.
Every pair of actions yields an arbitrary quantification of the
goodness coming from its resulting outcome. Because of the
Bayesian context, it is assumed that each player has a type θi,
with values in {0, 1}, that describes its being malicious. If a
generic player i is malicious, its type is θi = 1, otherwise it
is θi = 0. In this paper, we assume that only player 2 has a
type. As a consequence, θ1 = 0 and θ2 ∈ {0, 1}; finally, we
formally state that p = Prob[θ2 = 1].

Before analyzing the Bayesian game, we separately describe
separately the cases in which player 2 is benign or malicious,
as two different static games without any Bayesian element.
We set arbitrary numbers for the utility of each outcome, that
satisfy an ordinal criterion (most preferred situations have a
higher utility). The actual numbers are chosen just for the sake
of easy computations; the same analysis is still valid for other
choices of values.

First, consider the scenario in which player 2 is not mali-
cious. Table I shows the normal-form matrix describing this
game. Player 2 will reach a payoff equal to −∞ if it chooses
to damage the transmission. Therefore, it will never choose
that action that can be considered as a strictly dominated

strategy. For this reason, we can neglect this strategy in our
analysis. Once we neglect the Damage action of player 2,
a similar observation iteratively holds for the Surveillance
strategy of player 1. In particular, this strategy is now strictly
dominated by Nothing that allows to the player to earn a
higher payoff regardless of what opponent may do. This is

Player 2
Forward Ignore Damage

Player 1
Nothing 0,−1 0, 0 −1, 1

Packet 1,−1 −1, 0 −2, 3
Surveillance −3,−2 −3, 0 2,−3

TABLE II
NORMAL-FORM (MATRIX) OF THE GAME WITH MALICIOUS PLAYER 2

quite intuitive because, since player 2 is not malicious, it
does not have any incentive to damage network, therefore,
it is not necessary for player 1 to monitor and control the
network against malicious agents. After these considerations,
the 3× 3 matrix can be simplified in a 2 × 2 matrix keeping
the rows denoted by Nothing and Packet, and the columns
Forward and Ignore from the original normal-form matrix.
At this point, we can easily observe that two Nash Equilibria
(NEs) in pure strategies can be found. In more details, these
NEs are: (Nothing, Ignore) and (Packet, Forward). In
addition, we investigate on the existence of NEs in mixed
strategies. Defining α as the probability that player 1 chooses
Nothing and β the probability that player 2 plays Forward,
this game has a single mixed NE (12 ,

1
2 ). This means that

player 1 will plays Nothing with probability 1
2 and Packet

with probability 1
2 . In more details, we find that player 1 will

play Nothing if β < 1
2 , it will play Packet if β > 1

2 , finally
it will be indifferent between playing Nothing of Packet if
β = 1

2 . Similar observations hold for player 2; it will choose
Forward if α > 1

2 , it will choose Ignore if α < 1
2 , and it

will be indifferent if α = 1
2 . Eqs. (1) and (2) describe the best

response strategy of player 1 and player 2, respectively.

BR1 =

{

Nothing, if β ≤ 1
2

Packet, if β ≥ 1
2

, (1)

BR2 =

{

Forward, if α ≥ 1
2

Ignore, if α ≤ 1
2

. (2)

Table II shows the normal-form matrix describing the simple
game in which player 2 acts as a malicious player. With
respect to Table I, few meaningful changes have been made.
In particular, acting to Damage the network is now possible.
Also, the mutual benefit of cooperation that was previously
described by the outcome for (Packet, Forward) has been al-
tered for the malicious player. Focusing on player 2’s payoffs,
Forward is strictly dominated by Ignore. Then, for player 1
it holds that Packet is strictly dominated by Nothing. This
is intuitive because, since player 2 is malicious, it does has
incentive to damage nodes communication in order to gain a
higher payoff; therefore, it is better for player 1 to monitor and
control the network against malicious agents or to do nothing
instead of transmitting a packet which will be corrupted. After
these considerations, also in this case the 3× 3 matrix can be
simplified in a 2 × 2 matrix keeping the rows denoted by
Nothing and Surveillance, and the columns Ignore and
Damage from the original normal-form matrix. At this point,
we can observe that there are no BNE in pure strategies.
Concerning the existence of BNEs in mixed strategies and
defining α as the probability that player 1 chooses Nothing



Player 2
IF II DF DI

Player 1
N 0, p-1 0, 0 -p, 2p-1 -p,p
P 1-2p, 1-p -1, 0 1-3p, 2p+1 -p-1, 3p
S -3, -2+2p -3, 0 5p-3, -p-2 5p-3, -3p

TABLE III
NORMAL-FORM (MATRIX) OF THE BAYESIAN GAME

and β the probability that player 2 plays Ignore, this game
has a single mixed BNE denoted as (34 ,

1
2 ), i.e., player 1 will

plays Nothing with probability 3
4 and Surveillance with

probability 1
4 and player 2 will choose Ignore or Damage

with equal probability. The best response of players 1 and 2
is shown in (3) and (4), respectively.

BR1 =

{

Nothing, if β ≥ 1
2

Surveillance, if β ≤ 1
2

, (3)

BR2 =

{

Ignore, if α ≤ 3
4

Damage, if α ≥ 3
4

. (4)

IV. BNE ANALYSIS

Now we consider an incomplete information game in which
player 1 is not aware of the type of its opponent, i.e., benign
or malicious. Either of the two games previously described
is actually played with probability 1 − p or p respectively,
with the parameter p (but not the actual type) being known
in advance by player 1. That is, p is the prior probability of
player 2 being of malicious type. Table III shows the payoff
of each player according to the different strategies that it can
take. For the sake of exposition, we shorten the action names
by writing N , P , S, F , I , D, instead of “Nothing,” “Packet,”
“Surveillance,” “Forward,” “Ignore,” and “Damage,” re-
spectively. As previously stated for the two simple games,
when player 2 is not malicious it actually plays only Forward
or Ignore, instead when it is malicious it can play Ignore
or Damage. Furthermore, under a Bayesian framework we
represent strategies by defining an action for each player’s
type. Thus, while player 1’s possible strategies are the same as
the previous two games (i.e., they coincide with actions N , P ,
S), the strategies of player 2 are instead pairs of actions, since
we need to specify what player 2 does depending on its type.
This means that player 2 has four possible strategies in the
Bayesian game, namely its strategy set is {IF, II, DF, DI}.
We denote each strategy as a pair of actions to be played
when the client is either malicious or benign, respectively. For
example, strategy IF means that player 2 will play Ignore
if malicious, Forward otherwise. Note that, for the sake of
brevity, we already discarded player 2’s strictly dominated
strategies, depending on its type. To compute the payoffs
earned by the players, we take expectations over beliefs for
types. For example, for actions (N,IF): player 1 earns 0 if
player 2 is not malicious, that is, with probability p, and 0 if
player 2 is malicious, therefore the payoff is still 0; player 2
earns −1 if it is not malicious, that is, with probability p, and
0 otherwise, therefore its payoff is 0 · p− 1 · (1− p) = p− 1.
To compute the BNEs, we consider different cases depending
on whether p < 1

2 or p > 1
2 .

Player 2
DF DI

Player 1
N -p, 2p-1 -p, p
P 1-3p, 2p+1 -p-1, 3p

TABLE IV
SIMPLIFIED NORMAL-FORM (MATRIX) OF THE BAYESIAN GAME

A. Likely benign client (p < 1
2 )

From Table III, we notice that S is a strategy strictly
dominated by N for player 1. As a consequence, we can
neglect S as a possible action of player 1. Moreover, we can
also state that II and IF are strictly dominated strategies
for player 2; the former is strictly dominated by DI , the
latter is strictly dominated by DF . Table IV summarized the
game considering these observations. There exist two BNEs
in pure strategies: (N, DI) and (P, DF ). Defining α as the
probability that player 1 plays N and β as the probability that

player 2 chooses DF , we also find a mixed BNE:
(

1
2 ,

1
2(1−p)

)

.

In more detail, the best strategy for player 1 is to choose N
if β < 1

2(1−p) , P if β > 1
2(1−p) , and to be indifferent if

β = 1
2(1−p) . At the same time, the best strategy for player 2

is to play DF if α < 1
2 , DI if α > 1

2 , and to be indifferent
if α = 1

2 . The best response strategies of the two players are:

BR1(θ2) =

{

N, if β ≤ 1
2(1−p)

P, if β ≥ 1
2(1−p)

, (5)

BR2(θ1) =

{

DF, if α ≤ 1
2

DI, if α ≥ 1
2

. (6)

B. Likely malicious client (p > 1
2 )

In Table III, P is now a strategy dominated by N for player
1. As a consequence, we can neglect P as a possible action of
player 1. We can also state that, focusing on player 2 payoff,
IF is dominated by II . Moreover, it can be observed that
there exists a linear combination of the payoffs that player
2 can reach playing DI and II that gives a higher payoff
with respect to playing DF . In other terms, there exists µ
such as µ · u2(DI) + (1 − µ) · u2(II) > u2(DF ), where
ui is the payoff of player i. Eq. (7) below shows that, since
p > 1

2 , 2p−1
p

< p+2
3p , there exists an interval for µ in which

the condition on the payoffs is satisfied:

2p− 1

p
< µ <

p+ 2

3p
. (7)

Thus, we can neglect DF as a dominated strategy for player 2.
Table V summarized the game considering these observations.
In this case, the game has no BNEs in pure strategies.
However, defining α as the probability that player 1 plays N
and β as the probability that player 2 chooses II , there exists

a mixed BNE:
(

3
4 ,

2p−1
2p

)

. In more details, the best strategy

for player 1 is to choose N if β > 2p−1
2p , S if β < 2p−1

2p ,

and to be indifferent if β = 2p−1
2p . At the same time, the best



Player 2
IF DI

Player 1
N 0, 0 -p, p
S -3, 0 5p-3, -3p

TABLE V
SIMPLIFIED NORMAL-FORM (MATRIX) OF THE BAYESIAN GAME

strategy for player 2 is to play II if α < 3
4 , DI if α > 3

4 ,
and to be indifferent if α = 3

4 . The best responses are:

BR1(θ2) =

{

N, if β ≥ 2p−1
2p

S, if β ≤ 2p−1
2p

, (8)

BR2(θ1) =

{

II, if α ≤ 3
4

DI, if α ≥ 3
4

. (9)

C. Uniform prior probability (p = 1
2 )

The final case is when the server considers both types of the
client to be equally likely, which may also mean that the server
cannot make any assumption about the client’s character. If we
consider this situation of maximum uncertainty about player
2, we obtain the payoffs shown in Table VI. As it can be noted
from the table, in this case there are no dominated strategies.
Therefore, the analysis for the computation of the equilibria
is much harder with respect to previous cases. However, a
mixed equilibrium is bound to exist, and also continuity of
the expected utility in the Bayesian case can be exploited (so
that we can find the Nash equilibrium via the left and right
limits that fall within the two previous cases).

V. NUMERICAL RESULTS

In this section, we discuss some numerical results, obtained
by both analysis and simulation. We consider that each player
plays a mixed equilibrium strategy. We limit our results to
the repetition of a static Bayesian game, meaning that at each
stage we do not consider the update of the belief that player
1 has on the type of its opponent. However, we can model
this scenario through the repetition of a dynamic Bayesian
game in which the game evolution is taken into account and
the defender can dynamically update its beliefs based on new
observations of actions chosen by its opponent and the game
history in order to adjust its monitoring strategy accordingly.
We will consider this aspect as a future work.

Figs. 1 and 2 show the payoff reached by player 1 and
player 2, respectively, versus the value of p, i.e., the prior
probability that player 2 is malicious. In these figures, we
compare the payoff obtained through the theoretical analysis

Player 2
IF II DF DI

Player 1
N 0, −1/2 0, 0 −1/2, 0 −1/2, 1/2
P 0, 1/2 -1, 0 -1/2, 2 -3/2, 3/2
S -3, -1 -3, 0 -1/2, -5/2 -1/2, -3/2

TABLE VI
NORMAL-FORM (MATRIX) OF THE BAYESIAN GAME FOR p = 1/2
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Fig. 1. Comparison of player 1 payoff obtained via the theoretical analysis
and simulations considering mixed BNE.
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Fig. 2. Comparison of player 2 payoff obtained via the theoretical analysis
and simulations considering mixed BNE.

discussed in previous sections represented by the blue-dotted
line with respect to the payoff obtained via simulations de-
scribed by the blue-star line. As it can be observed by the
figures, the simulations results follow very well the theoretical
development. In particular, looking at Fig. 1 we can see that,
for p < 1

2 , the lower the value of p, the higher the value
of player 1 payoff. This is reasonable because the lower
p, the less likely that player 2 is malicious, then it is not
necessary to apply surveillance against a possible attacker in
the network. As a consequence, player 1 can reach a higher
payoff by transmitting packets. On the other hand, for p > 1

2
the value of player 1’s payoff is constantly equal to −0.5
(also confirmed by simulations). This is because players play
the mixed BNE, then for player 1 is more likely to play N
and, as a consequence, it is more likely that player 2 will play
DI . Focusing on Fig. 2, we can notice that, for p < 0.5, the
lower p, the lower player 2’s payoff. Indeed, the higher p,
the lower the value of (2(1 − p))−1; therefore, player 2 will
reach a higher payoff damaging the network. For p > 1

2 , the



0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Prob. that the client is malicious p

Pa
yo

ff 
of

 th
e 

se
rv

er
 (p

la
ye

r 1
)

 

 
Simulations using mixed NE
(N, DI) pure NE
(P, DF) pure NE
Theoretical value

Fig. 3. Comparison of player 1 payoff obtained via the theoretical analysis,
simulations considering mixed BNE, and considering pure BNEs for p < 1

2
.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

Prob. that the client is malicious p

Pa
yo

ff 
of

 th
e 

cl
ie

nt
 (p

la
ye

r 2
)

 

 
Simulations using mixed NE
(N, DI) pure NE
(P, DF) pure NE
Theoretical value

Fig. 4. Comparison of player 2 payoff obtained via the theoretical analysis,
simulations considering mixed BNE, and considering pure BNEs for p < 1
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higher is p, the lower is the probability that player 2 will play
strategy DI . Since player 1 is more likely to play N at the
equilibrium, player 2’s payoff will be 0.

In Figs. 1 and 2 we also show the simulated payoff value
plus or minus its standard deviation (obtained by simulation)
with the red/black-triangle lines. Looking at Fig. 1 we can
observe that for too low and high values of p there is a greater
dispersion of the individual observations around the average
value. This aspect is less pronounced in Fig. 2.

Finally, Fig. 3 and Fig. 4 show the development of the
players payoff considering theoretical analysis results with
the red-square line, simulations results described by the blue-
dotted line, and the results obtained considering that players
play the two pure BNEs shown by magenta-star line and black-
triangle line. In these figures, we consider p varying in the
interval [0.1 0.5]; indeed, only in this interval there exists the
pure BNEs. As we can notice, one of the two pure BNEs, that
is (P, DF ), outperforms the other cases. In particular, this is
more evident for player 2’s payoff shown in Fig. 4.

VI. CONCLUSIONS

We employed game theory to characterize interactions in
social online networking, and we considered a Bayesian game
where a server is operating with incomplete information,
i.e., only a prior estimate, on the client actual type (ma-
licious/benign). The analysis confirms practical aspects of
network surveillance. In particular, malicious clients are hard
to defeat without a proper surveillance mechanism that may
be very costly. The best strategy for the server would not be
to always identify malicious clients, but rather to force them
to strategically play some less harmful strategies. This would
lead to a more effective implicit surveillance.

Our numerical findings confirm that it may be more advan-
tageous even for a malicious client not to harm the network
in fear of retaliation. As a development of our analysis, we
can consider a strategic client that does not apply just a
myopic optimization of its own payoff, but rather tries to avoid
being identified. The best way to do so would actually be to
occasionally cooperate with the network, which would lead
to a transparent surveillance in which the client itself has the
right incentive to behave correctly.
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