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Abstract—The definition of “energy topologies” based on ener-
getic cooperation (exploitation and exchange) between intercon-
nected objects is an important feature that can be implemented
in Smart Cities. Based on the presence of energy harvesting
devices, it is aimed at providing system-wide sustainability by
allowing exchange of stored and supplied energy in a similar
fashion to communication of data. In this paper, we investigate
the possibility of integrating energy cooperation within the design
of the energy topology, or, in other words, by establishing energy
links between objects, in particular wireless smart nodes powered
by harvesting renewable energy sources. To do so, we construct
an optimization model, where it is guaranteed that wireless
nodes during operation will not be depleted and the optimal
energy transfer does not exceed the energy demands of other
communication nodes. We analyze how the system conditions
can affect the energy topology, in particular, energy harvesting
capabilities, energy levels, and energy thresholds. We also identify
some theoretical limits for the system to guarantee complete
sustainability, that is, nodes do not go out of charge. Also we
demonstrated the effectiveness of the model comparing it with
the system operation without applied optimization.

Index Terms—Wireless networks; energy harvesting; energy
cooperation; energy consumption; Smart Cities.

I. INTRODUCTION

INTERCONNECTED objects such household or office
equipments [1], vehicles [2], human wearable sensors [3],

and any other devices belonging to the Internet of things
(IoT), in a Smart City can be powered by external energy
sources, i.e., either the power grid or renewable sources;
energy consumption represents a dynamic process that requires
real-time energy management. At the same time, paradigm
for network intelligence dictates that smart management also
involves optimal cooperation schemes among nodes [4], [5].
While this has been mostly applied to data communications,
the emergence of converging network schemes likely suggest
that information and communication technologies (iCTs) will
interlink independent systems at many levels. As a result,
”system-to-system” topology creates the possibilities for new
Smart Cities’ scenarios. Cooperation capabilities in these con-
texts will help building new business models, as linking smart
cities objects in an optimal way will result in the increase of
individual and collective profit as well as sustainability.

IoT technologies enable network optimization by introduc-
ing a holistic perspective where the network is considered as
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a multi-agent cooperative system. As a consequence, we can
seek to optimize the energy flows between smart city objects
or, generally speaking, energy management in a smart city,
which can be considered as including both wireless connected
nodes and the power grid as an integral part of it, all included
in a common distribution space of information and energy. The
outlined distributed system can be considered as a system-
of-system topology in which both information and energy
flows exist, and they mutually aid each other, so that the
power connections supports data communication links, and
conversely data communication also carries out the task of
optimizing the energy topology.

However, energy management in large complex networks
such as a smart city requires high computational capabilities
for real-time optimization of energy flows, storage, distri-
bution, and consumption [6]. To manage energy flows and
cooperation between IoT nodes, an algorithm defining the
optimal nodes to cooperate is needed. Usually, this is handled
by considering energy-aware clustering algorithms that try
optimizing the energy topology or decrease the number of
links in the network [7]. This is because one of the issues
limiting the overall network performance is the power limita-
tion of a communication node. To avoid a node failure, energy
efficient clustering algorithms were expansively studied in the
literature, mainly focusing on the energy awareness rather
than energy cooperation. As an initial step for designing a
clustering algorithm with energy cooperation capabilities or
with embedded energy topology, the study of a scenario with
a single cluster (one sink node) is needed.

In this paper, we adopt a global optimization perspective.
More specifically, we consider a smart city scenario where
the IoT network is represented by a set of wireless nodes,
with some information sinks collecting data from the other
nodes. These sink nodes are supposed to handle all incom-
ing information [8]. We do not only aim at balancing the
energy consumption of different nodes, but rather we try
performing a global joint optimization of communication and
energy management. Another key factor which is exploited
in this sense, aimed to provide the overall sustainability of
the system, is energy harvesting capabilities of smart city
objects. Renewable sources are too fickle to guarantee reliable
functioning. For example, objects powered by solar energy are
dependent from daytime and the position of the solar panel.
Therefore, it is important to take into account the differences in
energy arrivals of the nodes. Energy cooperation is one of the
techniques that will help to handle the differences in energy



Fig. 1 – Topology scheme

arrivals of different nodes. In this case, objects that are not
advantageously located will have possibility to be powered by
a node with higher energy arrival capabilities.

The rest of this paper is organized as follows. In Section
II we discuss models proposed in the literature for energy
cooperation features among communication nodes. In Section
III we outline our proposed optimization model for a WSN
scenario with a single sink node. The numerical results are
discussed in Section IV that shows the effectiveness of the
proposed model and the behavior dependency from different
parameters . Finally, we draw the conclusions in Section V.

II. BACKGROUND

Our representation of a smart city involves a network of
nodes in which each element is capable of energy transmission
to another node in need, meaning that each node has a
possibility to manage the energy flows.

Designing the energy topology of connected IoT devices
means establishment of energy links (edges) in an optimal way
on top of the communication topology (Figure 1). The system
represents a biplex network, in which the two layer are the
communication and energy networks. The number of optimal
connected neighboring nodes defines the energy topology of
the system. The advantages of multiplex systems in Smart
City, that includes the energy cooperation between objects was
shown in [9]. Authors claim that considering a single type of
static links is an oversimplification which can lead to inability
to solve certain problems.

The power imbalance could be reduced when the effective
interaction between the power supply and the demand is
established. This was argued, for example, in [10], where an
energy demand management solution was proposed to mitigate
the imbalances between buildings. Authors proposed a scheme
to analyze the energy potential of buildings and possibilities
for cooperation, taking into account charging/discharging rate
of buildings.

Lots of researches have been performed in investigating the
energy cooperation capabilities in Smart Grids, in particular
including: optimal scheduling among smart objects, optimizing
both power expenditure and operation time [11]; optimal se-
lection and sizing of a smart building system [12]; scheduling
for optimal energy consumption to balance the load among
residential subscribers [13]; analysis of the optimal power flow

for distributed systems, in particular for the electrical network
[14]; cooperative architecture for optimal voltage regulation
[15]; optimal control of power exchange in a network of
microgrid based on the energy consumption information [16].

These papers are aimed to study the Smart Grid without
considering the communication topology and energy con-
sumption of a system. Conversely, we consider the power
consumption of a communication node to be also dependent
on communication parameters, such as the distance from a
sink node and the size of the transmitted data packets.

The efficient energy cooperation schemes that include both
communication and energy cooperation usually are considered
in wireless power transfer scenarios. In particular, in [17]
authors introduced three techniques for multi-hop wireless
energy transfer: store and forward, direct flow and hybrid
technique. In [18], the authors consider a non-cooperative
scheme, where information/energy are transported via direct
links, then an optimization problem is formulated to minimize
the transmitted power under outage probability and harvesting
constraints.

In contrast with these outlined techniques, we focus on the
energy links designing, which can be established not only
with the near located nodes, but with any node of a network.
It caused by possibilities to have cooperation between any
IoT device that can belongs to different smart city objects.
Moreover, while in wireless power transfer scenarios the
communication links and energy links are simultaneous, in our
analysis, the energy and communication links are separated
and not simultaneous.

III. MODEL

We consider a system consisting of N communication nodes
and a sink node, whose energy levels are denoted as ei, i ∈
{1...N}. V:=1,..,N is a vertex set of a complete graph G =
(V,A), where A is a set of edges (i, j) that represent the
bidirectional energy link between communication nodes i and
j. Node i can receive energy from other nodes as well as
forward energy.

To provide a mathematical model to the problem, for each
arc a ∈ A we introduce a boolean variable:

la :=

⎧

⎪

⎨

⎪

⎩

1 if and only if the energy link between nodes

i and j is established,

0 otherwise
(1)

The total number of possible bidirectional energy links
varies in the following limits:

0 ! L !
(N − 1)N

2
(2)

where L =
∑N

i,j=1 lij is total number of links, lij = {0, 1} is
a link between nodes i and j, equals to 1 if the link is set.

Here is considered and applied the energy consumption of
a communication node caused by communication exchanges
between nodes. As done by [19], [20], we take into account
that energy consumption of a connection between a transmitter
and receiver depends on the distance between them. Increasing



the distance from a sink node will cause a higher energy
consumption E for communication, according to the following
relationship:

E = a · k + b · k · dn (3)

where k is the information unit size (packet) expressed in bits,
and d is the distance between sink node and communication
node. Parameters a and b are energy consumption parame-
ters of the transmitter electronics and transmitter amplifier,
respectively. In [21], the following parameters are suggested:
a = 50, b = 0.1 and n = 2. We do not consider the
energy consumption of a sink node, as the aim of this work
to investigate the energy cooperation between communication
nodes only.

The aim is to calculate the amount of energy links needed
to provide sustainability taking into account the energy con-
sumption, energy arrival profile and a current energy level of
each object. In relevance with it, the optimization problem can
be formulated as follows:

N
∑

i=1

N
∑

j=1

wij lij → min (4)

such that

lii = 0 for i = 1, .., N (5)

lij = lij for i, j = 1, .., N (6)

ei − (a · k + b · k · dni ) + fi +
N
∑

j=1

lij · e
ij
tr > 0

for i, j = 1, .., N

(7)

ei − (a · k + b · k · d)i + fi +
N
∑

j=1

lij · e
ij
tr ! c

for i, j = 1, .., N

(8)

N
∑

i=1

li,j ! α ! N − 1 for j = 1, .., N (9)

N
∑

j=1

li,j ! α ! N − 1 for i = 1, .., N (10)

where wij is a weight of an energy link. A larger distance
between energy arrival profiles and the communication con-
sumptions results in a larger value wij . Value of wij is
normalized:

wij =

∣

∣

∣

∣

∣

eijn + f ij
n − (a · k + b · k · dnij)

(eijn + f ij
n − (a · k + b · k · dnij))max

∣

∣

∣

∣

∣

(11)

where f ij
n and dijn are differences in energy arrival profiles

and distances to the sink node between communication nodes
i and j:

eijn = ei − ej (12)

f ij
n = fi − fj (13)

dijn = di − dj (14)

Constraints (5) and (6) are imposed to respect the require-
ments of the absence of energy links of a node with itself and
symmetry of energy links: if energy can flow from object i to
j, then automatically the energy can flow in opposite direction
from j to i and the bidirectional link is established.

Constraints (7) and (8) provide the sustainability of a system
after optimization, in particular, desirable energy levels range
for each node. The first three terms represent the initial energy
level of a node corrected by transmitting energy consumption
and energy arrived to a node (fi - energy arrival profile). The
last term represents the energy transferred to the node i from
all nodes j. The energy level has to be larger than 0 and do
not exceed the battery capacity c, by this we guarantee that
battery will not be out of charge and the transferring energy
will not exceed demand of the node.

The transferred energy from node j to node i depend to
conditions:

• the node j has enough energy to transmit;
• the node j has to have more energy than node i:
• the energy level of node j has to be higher than a

threshold.

{

etr = eth − ei if ej > ei and eth < ej
etr = 0 otherwise

(15)

Objective function enforces to create energy links between
nodes that have bigger energy potential differences. If nodes
have similar energy arrival profile and consumption, then the
cost of established energy link will not be justified as not much
energy cooperation will be performed.

Another possible constraint arise if a node has to have a
limited amount of energy links. In this case, the number of
links are limited by constraints (9) and (10), where α is a
maximum amount of allowed links, should not exceed N − 1.
Nevertheless, in this paper we do not investigate the situation
in which a communication object has such a limitation.

IV. NUMERICAL RESULTS

Numerical results were conducted with the aim to inves-
tigate the behavior of an optimization model solution for
different types of systems: different distance distribution, non-
homogeneity in energy arrivals and in energy levels. As
the second part of results we show the effectiveness of the
optimization in comparison if no optimization is applied to
the system.

Optimization is performed using the CPLEX solver ver.
12.6.1. We assume that all communication nodes have similar
battery capacities.

As the first step, the matrices are defined: (di) ∈ R1xn,
(fi) ∈ R1xn, (dijn ) ∈ Rnxn, (f ij

n ) ∈ R1xn , (wij) ∈ Rnxn,

(eijtr) ∈ Rnxn, (ei) ∈ R1xn, eth = conts, c = conts and
k = conts.



TABLE I – Parameters

Parameters Values
Number of communication nodes (N ) 50
Number of transmitted bits (k) 1
Communication parameter a 50
Communication parameter b 0.1
Communication parameter n 2
Battery capacity (c) 200
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Fig. 2 – Distance distribution vs. optimal amount energy links

Matrices (di), (fi) and (ei) are random in ranges (0, 15),
(0, 20) and (0, 200) respectively, unless we vary their mean-
ings in order to investigate these properties.

Optimization parameters are presented in Table I. Parame-
ters a, b and n are chosen similarly with [21]. We consider
the simple case transmission of 1 bit (k = 1).

In the first optimization setup, we check the dependence of
optimal amount energy links and distance distribution (Figure
2). First, we set up an uniform distribution in the range from
(0, 5) till (0, 20). In this case, the distance range increasing
leads to increase of the energy consumption, therefore, a larger
number of energy links is needed to provide sustainability of
the system.

In the second experiment, we shifted the distance distri-
bution from (2, 5) to (10, 20). By this, we guarantee that
all communication nodes have a higher energy consumption,
therefore the optimal amount of energy links is higher than
in the first case. The optimal solution will not be obtained
in case of distance increasing to dij > 20. Even with
strengthen of the energy topology some communication nodes
will be depleted. In particular, for range [0, 21] the solution is
13 links obtained by feasible relaxed sum of infeasibilities.

Furthermore, we examined the dependency of the energy
levels of the communication nodes and the optimal energy
topology design (Figure 3). The energy level is varied in
range from (0, 70) till (0, 200), where the highest value is
the maximum capacity of the battery. The increase in the
energy levels of the communication nodes tends to decrease
the demand of energy links. If the energy level range is less
than an energy threshold, then no optimization is performed
as no energy transmission is done, according to (15).

Then the energy distribution was shifted from (35, 70) to
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Fig. 3 – Optimal amount energy links vs. energy level distribution
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Fig. 4 – Optimal amount energy links vs. energy arrival profile

(100, 200). This provides on average a higher initial charge of
the system and higher energy independence of communication
nodes. Due to it, in comparison with the first case, the optimal
amount of required energy links is halved; for ei > 120 no
energy topology is required.

Energy harvesting capabilities of communication nodes in
the model are defined by an energy arrival profile. It is an
important feature of a communication node that defines the
sustainability of a node. To examine this feature, we varied the
energy profile of each node in range from (0, 5) till (0, 70), as
is shown in Figure 4. Notably, increasing the average energy
harvesting capability of a system will decrease the need for
providing additional energy topology links. In case fi " 70,
a near-optimal solution is obtained, in which the transmitted
energy from one communication node to another is higher than
a real demand of a node, i.e., the capacity constraints (8) are
violated.

Shifted distribution from (2, 5) till (35, 70) provides a
higher energy capabilities of a system in general and lower
optimal amount of energy links. In both cases, for fi = 70 the
solution is near-optimal in the plot.

Finally, the dependency of optimal energy topology and
energy threshold was studied. Here, a simple case is con-
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Fig. 5 – Optimal amount energy links vs. energy threshold
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Fig. 6 – Optimal amount energy links vs. amount of communication nodes in WSN

sidered in which all batteries have similar capacity and,
therefore, similar energy threshold, defined as a ratio from the
battery capacity. For threshold in range from eth = c/10 till
eth = c/5, the increase of ratio leads in decreasing the optimal
amount of energy links. However, the solution is always near
optimal, low values of energy threshold are accompanied by
violation of outage constraints (7).

The same tendency is observed for eth > c/10, but in this
case the optimal solution is obtained and after optimization no
communication nodes is completely depleted.

The optimization model was tested on systems of different
size, i.e., the number of communication nodes was changed
(N ! 1000). From Figure 6 we can see that the optimal
amount of energy links and the system size has a linear
behavior. In case of big size systems with high value of N ,
a clustering algorithm would need to be applied, to obtain a
nearly-optimizal solution restricted to a cluster with tractable
size.

Simulations were conducted without any optimization on
top as comparison terms, in order to analyze the effectiveness
of proposed model. For each amount of communication nodes
we simulated 100 instances, in which distances are in range
(0, 15), initial energy level is in range (0, 200) and energy

Fig. 7 – Amount of depleted communication nodes with/without optimization

arrival profile is in range (0, 20). The distribution of depleted
communication nodes are shown in Fig. 7. With increase of
system size the amount of depleted objects and variance is
increasing. For N = 100 the amount of depleted nodes is
around 10− 30% of total object’s amount.

The optimization model was applied to the same simulated
instances. In this case, the number of depleted nodes did not
increase of more than 1 node per instance. In particular, for
N = 20, 30, 40, 100 only in one instance out of 100 one
node was depleted. For N = 60, 70, 90 in two instances one
communication node was depleted. For N = 80 in three
instances one communication node was out of charge; here,
due to the absence of an optimal solution, the near-optimal
one was proposed. Applying optimization framework to the
system significantly increase the sustainability of the system.

V. CONCLUSIONS AND FUTURE WORK

We proposed the energy cooperation scheme in a smart
cities, in which the energy flows from nodes with higher
energy level, less energy consumption and with more energy
harvesting capabilities to the nodes that have lower energy
arrival profile, more distant from a sink node and more
exploited. For this purpose, an energy topology is designed,
in which energy links are established among communication
nodes. The priority is given to nodes with higher energy
potential differences. As every link establishment is associated
with costs, the energy topology has to be optimized such that
no communication node is depleted, and energy transmission
does not exceed the demand of the interacting node.

Based on the proposed optimization model, we analyzed
the dependency of optimal energy topology of a system from
such factors as distance distribution of communication nodes,
energy harvesting capabilities of the nodes, and distribution of
energy arrival profiles of each node, selected energy threshold
and energy level distributions. All these factors define the
optimal amount of energy links. We demonstrated that in
the generated scenarios, the system will have up to 30% of



depleted nodes and embedded optimization scenario helps to
decrease the amount to almost 0.

To extend the present results to more general cases, we
remark that we focused on a single cluster case, with just
one cluster head/sink. As future work, clustering schemes
could be considered with embedded energy cooperation ca-
pabilities of energy harvesting multi-hop wireless networks.
The assumption about homogeneity of a system has to be
relaxed, therefore in the clustering scheme batteries capacities
and energy thresholds have to be individual for each node.

Also, the energy arrival profile was formed for each com-
munication node randomly, with independent and identical
distribution for all the nodes. The realistic energy arrival
profiles have to be integrated based on the chosen source
of renewable energy, possibly including some correlation.
Another possibility is to consider alternative energy exchange
models, based not only on the energy thresholds but on more
diverse parameters of each communication nodes. In relevance
with energy consumption model, more diverse data size has
to be considered and other energy consumption models should
be applied and compared.
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