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Abstract—This paper addresses the management of computa-
tional offloading in a three-tier hierarchical architecture com-
prising mobile devices, edge computing, and cloud computing.
Although edge and cloud devices have lower data processing
time than mobile devices, the simultaneous transmission of heavy
data streams may overload the local wireless network, resulting
in an overall larger delay. Herein, a game theoretic framework is
proposed for the distributed decision making in a scenario where
mobile users share the same network resource and do not have
a priori information in the wireless links. We evaluate at first
the rational gameplay of the nodes in a scenario with complete
knowledge, and we compare it with a scenario with incomplete
information modeled as a Bayesian game. In particular, we
consider network positions, and therefore channel gain and
distance-related parameters, to be uniformly distributed within
a given range, and the nodes only have this knowledge available
as a prior. The analysis demonstrates that rationality (implying
selfish behavior) of the mobile users does not necessarily lead to a
more efficient allocation and actually the scenario of incomplete
information leads to a socially better outcome, thereby suggesting
an interesting guideline for the design of computational offloading
strategies in realistic scenarios.

Index Terms—Mobile cloud computing; Mobile edge comput-
ing; Game theory; Bayesian games; Mobile devices.

I. INTRODUCTION

THE growing complexity of data analysis and processing
algorithms makes their deployment in resource con-

strained devices (e.g., sensors and mobile devices) increasingly
challenging. The recent fog and edge computing paradigms [1]
address this issue by placing compute-capable devices within
low-latency one-hop wireless topologies.

Offloading local computation tasks to the edge processors
can significantly speed-up their completion, but necessitates
to transport the data over local wireless networks. Especially
in modern architectures, where multiple technologies share the
same spectrum resource, interference from exogenous wireless
terminals, or from other mobile users offloading tasks, may
heavily affect the capacity of the wireless links, so that the
delivery of data to edge or cloud processors becomes a relevant
component of the overall delay to completion.

Herein, we analyze a three-tiered communication/processing
infrastructure, consisting of a local tier of mobile nodes, a
middle tier of nearby computing nodes (i.e., edge servers),
typically co-located with the wireless Base Stations (BS) and
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characterized by a limited amount of processing resources, and
a remote tier of cloud servers connected to the BS through
the core wired network. The mobile users can choose to
locally process the data, or offload computation to edge or
cloud resources. If the mobile devices decide to offload the
processing task either to the edge or cloud server, then the
associated data need to be transmitted over the local wireless
network. As the wireless links have finite capacity, this first
step introduces a delay, but also a coupling between the
users, as the decision to offload the processing task of one
user increases the network load and, thus, the delay to the
completion of the task of all the other users.

The main challenge is that in practical cases, mobile users
do not have a priori knowledge of the interference load and
computation power of edge and cloud processors. Additionally,
the decision of each mobile device influences the overall
network load. In fact, unlike in-device processing, if a mobile
user offloads a computational task to the edge or cloud
resources through the BS, it creates interference that reduces
the capacity of the wireless links of the other users.

To model and optimize this distributed decision making
process with partial information, we propose a game theoretic
framework. Specifically, due to the stochastic characterization
of some of the influential variable of the system, such as
exogenous interference load and channel gain, we adopt a
Bayesian Game (BG) formulation. Each user can decide if
locally execute the task on its mobile device, or offloading
the task computation towards either the remote cloud or an
edge server through the BS. The objective of each user is
to minimize its computation cost, evaluated both in terms of
computation time and energy needed to accomplish the task
execution.

Under this game-theoretic analysis, we characterize the
equilibrium for different parameter regions, as well as evaluate
the impact of selfish actions by the users. Our result indicate
that the uncertainty on network parameters of the other players
can actually be beneficial to the overall social welfare as it
deters users to aggressively cause interference to others, which
would result in a low-efficiency equilibrium. This suggests that
preventing the users from gaining information about the other
nodes in the network may actually be a good strategy to avoid
that the offloading option is abused by the terminals.

The rest of the paper is organized as follows. In Section
II prior work related to the present contribution is discussed.
Section III and Section IV describe the system model and
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provide a game theoretic analysis, respectively. Numerical
results and computation of the equilibria are presented in
Section V. Section VI concludes the paper.

II. RELATED WORK

Game Theory (GT) is a tool from applied mathematics that
has been widely used to study how rational players, whose
objective is usually seen as the maximization of a utility func-
tion, interact to determine an equilibrium point. In the context
of network communication, this can be seen as the problem to
obtain a distributed resource allocation procedure upon which
nodes, seen as individual agents, agree. Recently, there has
been soaring interest in this kind of applications to wireless
communication and networking scenarios [2]. For instance, in
[3] a game theoretic model for random access with carrier
sensing is investigated. Games for resource management,
network selection, and admission control in wireless systems
were studied in [4], [5]. In [6], the authors investigate op-
portunistic communications in hierarchical cognitive networks.
Finally, evolutionary coalition games for wireless networking
and communications were studied in [7]. A comprehensive
literature review of GT formulations for energy efficiency in
wireless sensor networks can be found in [8].

Closely related to this contribution, [9], [10] consider of-
floading problems and propose techniques to determine which
tasks should be offloaded to improve the overall system
performance. Most of the formulations presented in those
papers focus in a single node scenario, where an application
is represented as a weighted graph, whose nodes are tasks.

To the best of our knowledge, a relatively small number of
contributions addressed a multi-users scenario in the context
of edge and cloud computing. In [13], the authors propose
a cooperative centralized optimization problems aiming at
distributing the processing tasks of multiple users among the
computation resources available locally at the mobile devices
and globally at the cloud level. The objective is to minimize
the average application delay for all users. A Mixed Integer
Linear Programming formulation is used. In [14], the problem
of distributing computation resources among data streams is
studied. Multiple users share the wireless network as well
as the computation resources in the cloud. The goal is that
of maximizing the throughput of the data streams. Different
from the present contribution, a heuristic genetic algorithm
is used to solve the optimization problem, and a two-tier
architecture composed of mobile users and remote cloud
servers is considered.

Analogous to that adopted in this paper, [11], [12] considers
a three-tier architecture with multiple mobile users. The au-
thors assume that the cloud resources are constrained. The
optimization problem is solved using a greedy centralized
heuristic. In [15], a three-tier architecture with no centralized
control is studied, and GT is used to study a scenario where
multiple selfish users whether and where to offload their com-
putation tasks. Different from our study, a non-cooperative,
and non-Bayesian, formulation of the game is used, and there
is no consideration of the interactions between the users from
a wireless communications standpoint. In other words, all of
the previous papers applying game theory to this scenario

apparently do so from an idealized perspective where network
nodes not only avoid causing congestion to each other but
also are fully and instantaneously aware of all the network
parameters and can therefore make fully-informed rational
(that is, selfish) decision. This aspect is particularly relevant
for what concerns the contribution of the present paper, since,
as will be shown in the following, the Bayesian component of
the game, used to determine incomplete information available
to the users, actually lead to an improvement in the overall
resulting efficiency of the allocation, an aspect related to the
fact that selfish users only act for their own good.

III. SYSTEM MODEL

We consider a scenario where a set of M mobile devices
indicated as ni, i ∈ {1, 2, ..,M}, are connected to a BS s
providing access to the global network infrastructure. The BS
is attached via a high capacity link to an edge processor, which
provides low-latency computation services to the users. The
BS is also connected to a more powerful cloud computing
resource through the Internet.

We assume that each user has a computationally intense task
to be completed. A three-tier architecture is considered, where
user can decide to compute the task locally in-device or to
offload the task to the edge or cloud servers. We define a quasi-
static scenario, in which the set of mobile device users remains
unchanged for a period comparable to the completion of their
tasks. We leave to future studies the analysis of scenario case
where mobile users can depart and leave dynamically.

The mobile device users share the wireless channel to the
BS s. Cni = (bni , dni), i ∈ {1, 2, ..,M}, describes the
computation task of the node ni, where bni and dni are the
size of the input data and the total number of CPU cycles
necessary to complete the task Cni .

We denote the computation offloading decision of mobile
device user ni as ani . Specifically, ani = 0 if ni computes
the task locally, ani = 1 if ni offloads the computation
task to the remote cloud server, finally, ani = 2 if ni

offloads the computation task to the edge server. The vector
a = (an1 , an2 , .., anM ) is the decision profile of the mobile
device users.

Since the users share the wireless resource, we adopt an
interference model to capture the degradation of individual
user links when other transmissions are active. In particular,
we define the uplink data rate of ni, i.e., rni , as

rni = W log2

(
1 +

qnigni

ω0 + I

)
(1)

where I =
∑

nj∈M−{ni} qnjgnjI{ani , anj ∈ {1, 2}}, W is
the channel bandwidth, qni is ni’s transmission power, gni is
the channel gain between ni and s, ω0 is the background noise
power, and I{ani , anj ∈ {1, 2}}, with i, j ∈ {1, 2, ..,M}, is
the indicator function representing the interference from the
other user conditioned on its transmission decision.

We define fLC
ni

, fEC
ni

, and, fCC
ni

, as the computation ca-
pability measured in terms of CPU cycles per second of
the mobile devices, the computation capability assigned by
the edge server to ni, and the one assigned by the cloud,
respectively. We assume that fEC

ni
< fCC

ni
. If ni decides
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to locally compute Cni , the computation execution time is
tLC
ni

=
dni
fLC
ni

. On the other hand, if ni offloads the computation
task it would incur the extra overhead for transmitting the
input data either to the edge server or remote cloud through
the wireless access behind the time needed to execute Cni .

To assess the offloading decision, we define two cost metrics
corresponding to the time and energy consumption to complete
the task execution. In particular, the total time to complete the
task in the edge and cloud computing are

tEC
ni,off + tEC

ni,exe =
bni

rni

+
dni

fEC
ni

(2)

and
tCC
ni,off + tCC

ni,exe =
bni

rni

+Di +
dni

fCC
ni

, (3)

where Di is the delay caused by propagating the data through
the wired data transmission to the cloud server.

If the task is completed locally, the energy expense is equal
to eLC

ni
= αnidni , where αni the consumed energy per CPU

cycle. If the task is offloaded to the edge server, then the
energy consumption is eEC

ni,off
= qni

bni
rni

+ Lni , where Lni

denotes the tail of the transmission energy due to the fact that
the mobile device user will continue to occupy the channel
for a while even after the data transmission. Finally, for the
offloading towards the remote cloud we assume that eCC

ni,off
=

qni

(
bni
rni

+Di

)
+ Lni .

Consequently, we define the computation cost for each of
the three possible computing decisions as

KLC
ni

= λt
ni
tLC
ni

+ λe
ni
eLC
ni

,

KEC
ni

= λt
ni

(
tEC
ni,off + tEC

ni,exe

)
+ λe

ni
eEC
ni,off ,

KCC
ni

= λt
ni

(
tCC
ni,off + tCC

ni,exe

)
+ λe

ni
eCC
ni,off .

(4)

λt
ni
,λe

ni
are positive weights in the range [0, 1] associated

with the computational time and energy for ni. The weights
can be adapted to the state of the devices. For instance, if a
mobile user’s battery is close to depletion, λe

ni
can be set to 1

and λt
ni

to 0. Instead, when the tasks generated by a mobile
device are delay-sensitive, the delay can be set to λt

ni
= 1 and

λe
ni

= 0. We neglect the time needed to receive the outcome
of processing. This component is typically smaller compared
to the cost of transporting the data due to the smaller size of
feedback, but can be easily added to our metrics.

IV. BAYESIAN GAME THEORETIC APPROACH

In GT, individual agents, called players, perform actions
purely based on their individual interests, which may differ
from those of the other players [16]. Each player usually acts
towards the maximization of its own utility; however, this
is jointly determined by the actions played by all players.
Throughout this paper, for readability reasons, we will actually
consider an individual cost function that the players try to
minimize; therefore, the same reasoning of classical setups
apply but to consider a “utility function” or a “payoff” one
should take the opposite value to what we consider here. Thus,
we consider a static game of complete information as defined
by a triple G = (A, S , K), where A is the set of players, S is

the set of all strategies allowed to the players, and K is a set of
cost functions, one per each user, depending on the strategies
chosen by the players. Note that this reflects that a player’s
chosen strategy influences the cost paid by the other players;
at the same time, rational players are in turn able to anticipate
the effect of the strategies chosen by the other players. We
search for a Nash Equilibrium (NE) seen as a joint strategy
profile where all players locally minimize their paid cost.

However, we will also focus on a Bayesian game, i.e., a
game of incomplete information in which rational anticipation
of the game outcome made by the players is hindered by the
lack of precise knowledge of the cost function of the other
players. This is usually modeled by introducing a type for the
players, which in turn translates in a different cost function;
in our case the type will be given by a specific parameter
that affects the transmission costs, and specifically we will
consider the node distance from the BS as this parameter.
Players are clearly aware of their own type, but as for the
others they can only treat them as random variables; still, they
can exploit a prior distribution on the other players’ types,
that is common knowledge. Note that this description is more
accurate to describe mobile computing systems where many
parameters such as the channel gain, can only be estimated but
never known with certainty. Even though a mobile user can
reasonably well estimate its own channel gain, it is simplistic
to assume that it knows with perfect precision that parameter
for the other players; thus, a Bayesian setup is definitely more
realistic.

In our scenario, we consider two mobile devices correspond-
ing to the set of players, i.e., {n1, n2}. The set of actions
for each player is {Local, Cloud, Edge}, where Local, Cloud,
and Edge are associated with executing the task locally on
the device, offloading the computation task to the remote
cloud, and offloading the task execution to the edge server,
respectively. Each player acts towards the minimization of its
computation cost.

For the sake of simplicity, we consider a symmetric system,
where all the following parameters are the same for both
users (and thus we drop subscripts “n1” and “n2” for better
readability: q, b, α, fLC , fEC , fCC , λt, λe. Moreover, we
assume Ln1 and Ln2 to be negligible.

In the BG context, each player has a type defined by its
corresponding channel gain, whose value is not known to its
opponents. However, we assume that the prior distribution
of the types is known, for instance based on historical data
accumulated at the edge processor. Types of player 1 and 2
are channel gains gn1 and gn2 , respectively. In the literature,
multi-path propagation is usually considered and modeled,
e.g., as Rayleigh fading. For the sake of simplicity, we
evaluate the channel gain as determined by path loss only, i.e.,
gni = δ(ni, s)−γ , for i ∈ {1, 2}, where δ(ni, s) is the distance
between ni and s, and we choose exponent γ = 4 to describe
a sub-urban scenario. We assume that distance δ(ni, s) is
uniformly distributed in [δmin δmax]. This assumption is made
only to simplify the computations in what follows (especially
to determine the Bayesian NE) but the conclusion we draw
are actually valid as long as there is any kind of uncertainty
on the channel gain. In particular, note that none of our
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conclusions are limited to the choice of uniform distribution
for the positions and/or only considering the path loss in the
evaluation; those are choices that can easily be relaxed and
would just lead to more complex computations with analogous
conclusions. Also for notational brevity, put

A =
b

W log2

(
1 +

qgni
ω0+qgnj

) (5)

B =
b

W log2

(
1 +

qgni
ω0

) . (6)

Now, the cost paid by the two players depending on their
moves can be directly written. Specifically:

– if both players choose Local, they both incur a cost equal
to λt d

fLC + λeαd;
– if both players choose Cloud, their cost is also the same:

λt
[
A+D + d

fCC

]
+ λe [q (A+D)];

– if both players choose Edge, their identical cost is:
λt

[
A+ d

fEC

]
+ λeqA;

– if one player chooses Local and the other Cloud, then the
cost paid by the former is λt d

fLC +λeαd, instead for the latter

λt
[
B +D + d

fCC

]
+ λe [q (B +D)];

– if one player chooses Local and the other Edge, then the
cost paid by the former is λt d

fLC +λeαd, instead for the latter

λt
[
B + d

fEC

]
+ λeqB;

– if one player chooses Cloud and the other Edge,
then the cost paid by the former is λt

[
A+D + d

fCC

]
+

λe [q (A+D)], instead for the latter λt
[
A+ d

fEC

]
+ λeqA.

Importantly, the value of channel gain gni in the numerator
of (1) is known to player i. Conversely, the term gnj at the
denominator is not known to player i as it represents the type
of player j. In this Bayesian setup, we aim at the evaluation of
the expected costs computed weighing the costs defined above
with respect to the distribution of types. Before proceeding
with the Bayesian evaluations, some considerations arisen
from the complete knowledge case follow. In this case, we
assume that players have complete knowledge of the system,
meaning that each of them knows its opponent’s type.

For symmetry reasons, a NE in pure strategies must be to
one of the three outcomes (Local, Local), (Cloud, Cloud), and
(Edge, Edge). Moreover, a relationship between the value of
D and the two outcomes (Cloud, Cloud) and (Edge, Edge) has
been observed. If and only if D < Dthr, where

Dthr =
d(fCC − fEC)

fCCfEC(1 + Λq)
, (7)

then (Cloud, Cloud) has lower computation cost than (Edge,
Edge). Thus, we can compare possible outcome (Local, Local)
with the “non-local” outcome (N,N) where N can stand for
either “Cloud” or “Edge” depending on (7).

V. EQUILIBRIUM AND NUMERICAL RESULTS

We now consider a system with specific parameter choices
reported in Table I. According to the table, δ(ni, s) is uni-
formly distributed between δmin = 10 m and δmax = 100 m.
Moreover, we considered D in [4 13]ms.
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Fig. 1. Validity regions for NEs.

TABLE I
VALUES OF RELEVANT PARAMETERS

Parameters Values
b 40 kBytes
d 109 CPU cycles

fLC 0.5 GHz
fEC 102 GHz
fCC 104 GHz

q 0.01 W
ω0 5 µW
W 1 GHz
λt 0.5
λe 0.5
α 4
g 30−4

δ(ni, s) U([10 100] m)

First of all, we consider a baseline solution of the game
with complete information, against which we assess the per-
formance of our Bayesian setup. According to what discussed
previously, rational players in this setup end up in playing
a symmetric outcome. To determine whether in this scenario
the players will eventually both play the Local strategy or
strategy “N,” we remark that the game is isomorphic to a
Prisoner’s dilemma [16]; however, the choice of which one
of the symmetric allocations is the Nash equilibrium (and
whether this is also Pareto efficient) depends on the channel
gain, and in turn on the distances. Thus, we numerically
computed the resulting equilibrium for all the possible values
of δ(n1, s) and δ(n2, s). We recall that we are under the
assumption of full knowledge on both users of their mutual
positions, so both values are known to both players. The result
is shown in Fig. 1: the figure reports, for all pairs (δ(n1, s),
δ(n2, s)), what would be the NE of rational (i.e., selfish)
players, with the black region corresponding to the choice of
locally executing the computation task, and the white region
representing task offloading towards either the cloud or edge
server, according to D.

Aside from some border effects, we can infer that a thresh-
old behavior is present, meaning that the players will offload
their computation only if they are close enough to the base
station. Such a threshold δthr, which can be numerically
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computed (see later Fig. 2) to be around 65 meters, is also
plotted in the figure. The presence of this threshold is not
coincidental, as we will show next.

For the Bayesian case, it is possible to prove that a threshold
behavior is indeed present, according to the following rea-
soning. Player i does not know whether player j is actually
playing an offloading move; nevertheless, i may get a Bayesian
belief that j will be playing according to a threshold strategy
(meaning that j will offload only if close enough to the base
station). Actually, this is the kind of self-enforcing assumption
that automatically gets confirmed due to the symmetry of the
players, and it is also easy to see that this threshold strategy
would be the best response to itself. Hence, in Bayesian game
terms, this is a Bayesian NE. Note that a similar reasoning
has been formally proven in [17].

This remark can serve to compute the expected cost ob-
tained by the players in the Bayesian case. In particular, for
each player i, if δ(ni, s) > δthr, player i will decide for the
local computation of the task execution, choosing offloading
otherwise. The actual value of the threshold δthr can be found
by imposing symmetry between the two outcomes as NEs, and
therefore considering: δ(n1, s) = δ(n2, s) and also that the
cost of local computation is exactly equal to offloading. The
value of δthr can be precisely found in this way.

Consequently, for the computation of the Bayesian expected
cost we need to sum 4 different contributions denoted as K1 –
K4. Specifically, looking at Fig. 1 and considering for example
player 1, they are:

K1 =

∫ δthr

δmin

∫ δthr

δmin

(
λt

[
A+D+

d

fCC

]
+λe

[
q(A+D)

])
dxdy

if D < Dthr,

K1 =

∫ δthr

δmin

∫ δthr

δmin

(
λt

[
A+

d

fEC

]
+λeqA

)
dxdy

otherwise,

K2 =

∫ δthr

δmin

∫ δmax

δthr

(
λt d

fLC
+ λeαd

)
dxdy

K3 =

∫ δmax

δthr

∫ δmax

δthr

(
λt d

fLC
+ λeαd

)
dxdy

and

K4 =

∫ δmax

δthr

∫ δthr

δmin

(
λt

[
B+D+

d

fCC

]
+λe

[
q(B+D)

])
dxdy

if D < Dthr,

K4 =

∫ δmax

δthr

∫ δthr

δmin

(
λt
[
B+

d

fEC

]
+λeqB

)
dxdy

otherwise. Player 1 expected cost is given by K1+K2+K3+
K4. Player 2 expected cost can be evaluated in a similar way.

Fig. 2 shows how the distance threshold δthr varies con-
sidering several D’s values. Figs. 3 and 4 depict player 1’s
cost considering the complete knowledge case and player 1
expected cost, respectively, as a function of D. In general,
we can observe that as D increases, the computation cost
increases until it reaches a saturation value. When the value
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Fig. 2. δthr development varying D.
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Fig. 3. Player 1 cost in a complete knowledge scenario varying D.

of D is small enough (i.e., D < Dthr), the best action for the
mobile device is to offload the task execution to the remote
cloud instead of the edge server as the additional delay is
compensated for by the larger computation speed. When the
threshold Dthr is reached, the best action is to offload to the
edge server. However, it is relevant to notice that the Bayesian
case implies that the nodes incur a lower cost when they have
imperfect knowledge on the distance of the other player. The
reason for this apparently counterintuitive behavior is a conse-
quence of multi-agent multi-objective optimization performed
via game theory. Recalling that different users have a different
objective in the game (i.e., minimization of their individual
cost in a selfish way), the “ignorance is bliss” principle applies
[16]. Differently from single-person optimization, where more
knowledge always corresponds to a better outcome, in a game
theoretic setup having less information about the other players
may turn out, as in this case, to be advantageous, as players
will be less aggressive and do not tend to abuse offloading if
they are not sure that the other player is doing it too. Given
the symmetry of the setup, it turns out that the best course of
action for the players may be to abstain from unnecessary (or
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Fig. 4. Player 1 expected cost varying D.

4 5 6 7 8 9 10 11 12 13

Propagation delay D (ms) 10-3

1.3385

1.339

1.3395

1.34

1.3405

1.341

P
a

yo
ff

s 
ra

tio

Fig. 5. Ratio between player 1 optimal cost and player 1 expected cost
varying D.

harmful for the other player) offloading operations.

Fig. 5 evaluates this further by considering the ratio between
the ideal scenario with full knowledge and the expected cost
in the Bayesian setup. Again there is a dependance on D that
keeps increasing until a ceiling level is hit. In general, in the
complete knowledge case, each player i knowing the opponent
j distance δ(nj , s) decides to offload the computation task
only when this choice represents a NE, i.e., (Cloud, Cloud) or
(Edge, Edge). In the Bayesian case, player i does not know
δ(nj , s), as a consequence, it might happen that it decides to
offload the computation task even if the other player j choice
is to locally execute its own task. In this way, player i has a
lower computation cost. Indeed, the pairs of actions (Cloud,
Local), (Edge, Local), (Local, Cloud), and (Local, Edge) give
a lower computation cost with respect to (Local, Local) for the
player that is choosing the task offloading. These asymmetrical
pairs are not considered in the optimal case since they do not
represent NEs, however they might arise in the Bayesian case
due to the uncertainty on the players’ distances from the BS.

VI. CONCLUSIONS

We applied Bayesian game theory to a network scenario
where mobile users can offload computations task to edge or
cloud resources. Our objective is to make efficient offloading
in a scenario where the mobile devices are unaware of the
network load and mutual interference reduces the capacity
of the wireless links connecting to the local base station.
Numerical results illustrate regions where the strategy of the
devices converges to different points of equilibrium.

The remarkable finding of our analysis is that a Bayesian
scenario, i.e., with imperfect information, actually achieves
better welfare (or lower social cost) than one with full knowl-
edge by the users. This is due to the competitive nature of
the game, where selfish rational users would try offloading
computational task even when it is not efficient for the entire
network that they do so. Our results suggest an interesting
guideline in the design for offloading strategies, i.e., to make
network parameters less known to the users in order to improve
their cooperative participation to resource sharing.
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