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Abstract—In this paper, we propose a new method for
jointly compressing EEG and EMG biosignals based on
the so-called cortico-muscular coherence, a function that
takes into account the simultaneous frequency changes of
the brain and the muscles activity, and can be used, e.g., to
classify different kinds of movement. It is shown that this
method increases the achievable compression rate compared
to transmitting EEG and EMG samples separately, while
trading-off with the accuracy of the classification. This can
be exploited in several kinds of life and health applications
e.g., motor rehabilitation and drivers attention monitoring; it
could be especially useful for low-power wireless technologies,
such as Bluetooth Low Energy or IEEE 802.15.6, whose
transmission resources are limited.

Index Terms—IoT, EEG, EMG, cortico-muscular coher-
ence, haptics, wireless body sensor networks.

I. INTRODUCTION

Wireless body area sensor networks (WBASN) [1] and
IoT-health platforms [2] are increasingly exploited to per-
vasively monitoring e.g., at-risk elderly patients, athletes,
and car drivers.

For these kinds of applications, heterogeneous sensors
are often included to acquire vitals, i.e., biosignals that
describe the individual’s health condition, environmental
measurements, e.g., temperature and humidity, and event
information, e.g., emergency alarms and person fall detec-
tions.

The collection of such data should be performed through
cost-effective and light-weight wireless technologies that
are typically limited in terms of transmission capacities,
range, and energy efficiency. For example, a typical system
provided with 10 electroencephalografic (EEG) channels
and 8 bipolar electromyographic (EMG) channels (to
simultaneously monitor the brain and 4 muscles) generates
a constant bitrate of 800 kbit/s [3] [4]. This data flow,
combined with that generated by other sensors, may easily
exceed the transmission capabilities of low-power wireless
technologies, such as Bluetooth Low Energy [5], IEEE
802.15.6 [6] or LoRa [7], or anyway dramatically shorten
the battery lifetime.

In this paper, we challenge this problem by investigating
novel techniques to jointly reduce the dimensionality of
EEG and EMG signals, while preserving the features that
may be significant for the recognition of specific problems
or situations.

Several successful algorithms have been already pro-
posed for signals compression of EEG and EMG (sep-
arately). For example, commonly used compression al-
gorithms like Set Partitioning In Hierarchical Trees

(SPIHT) [8] and Joint Photographic Experts Group J2K
standard (JPEG2000) [9] have been adapted to EEG, ECG,
and other biosignals achieving good performance [10]. A
scalable and energy efficient EEG compression scheme
based on discrete wavelet transform (DWT) has been
proposed by [11]; finally, compressive sensing techniques
have also been tested with EEG [12] [13]. However, the
joint compression of heterogenous signals, particularly
EEG and EMG, is still missing a deep investigation. To
our knowledge, only one recent contribution implemented
a deep learning algorithm for jointly compressing EEG and
EMG signals in the context of emotions recognition [14].

In this paper, we propose a new algorithm for jointly
compressing EEG and EMG data. The rationale is based
on the well-known concept of cortico-muscular coherence
(CMC). Specifically, CMC is defined as the coherence
function between the EEG and EMG signals that has
been well-characterized in neurophysiology by several
studies [15], in both healthy subjects as well as patients
affected by different kinds of motor-related diseases. The
CMC function accounts for the amount of synchroniza-
tion between the brain and muscular activity at each
frequency, and strongly depends on the particular motor
task performed by the individual, e.g., precision grips (fine
hand movements), stable (isometric) contractions, or rapid
muscle contractions [16] [17] [18]. Therefore, the joint
processing of EEG and EMG signals can provide useful
information to quantitatively describe motor activities. The
aim of this work is to show that transmitting the CMC
samples over a network, rather than the EEG and EMG
signals separately, can significantly reduce the required
transmission resources, while keeping a good level of
accuracy in the classification of motion activities.

The paper is organized as follows. Section II explains
the computation of the CMC and describes the newly
proposed algorithm for joint EEG-EMG compression. Sec-
tion III presents a possible use case and the performance
metrics used to evaluate the proposed method. Section IV
shows some relevant results and, finally, Section V con-
cludes the paper with a discussion about this contribution
and its future developments.

II. METHODS

A. CMC computation

In our approach, a simple and widely-used processing
pipeline for EEG and EMG signals is considered: each sig-
nal is segmented into trials of the same duration (typically
few seconds), a pass-band filter is applied to each of them
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Fig. 1: Example of average power spectra from artefact-free segments of EEG and EMG. (a) Sx(f), (b) Sy(f) and (c)
|CMC(f)|2. Solid line represents the mean spectrum, dashed line the sum (at each frequency) of the mean spectrum
with the standard deviation spectrum.

to remove frequency content outside the range of interest
(3-80 Hz) and, finally, artefacts rejection over all segments
is performed. Signal processing is fully implemented in
Matlab using our own code. Every EMG trial is further
(full-wave) rectified and its envelope is extracted [4].

Then, the computation of CMC is performed, segment
by segment, following well-established techniques [19]
[20].

Suppose to have N segments available for the CMC
estimation, the power spectrum of each of them is firstly
computed by means of the Fast Fourier Transform (FFT)
algorithm (typically with a frequency resolution of 1 Hz
or below). We call S(i)

x (f) and S(i)
y (f) the power spectra

of the i-th trial extracted from the EEG and EMG signals,
respectively.

Then, Sx(f) and Sy(f) represent the average power
spectra taken among all segments of EEG and EMG,
respectively.

On the other hand, the cross-correlation function be-
tween corresponding EEG and EMG segments is com-
puted and FFT-transformed to get the cross-power spec-
trum of that trial, S(i)

xy (f).
Then, the magnitude square of the CMC of each trial

is computed as

|CMC(i)(f)|2 =
|S(i)

xy (f)|2

S
(i)
x (f)Sy(f)

. (1)

As per the Cauchy-Schwarz inequality, it holds

0 ≤ |S(i)
xy (f)|2 ≤ S(i)

x (f)S(i)
y (f), (2)

then every |CMC(i)(f)|2 can be seen as the normalized
cross power spectrum between EEG and EMG.

Finally, the |CMC(i)(f)|2, with i = 1, 2, ..., N , are av-
eraged to obtain the (magnitude square) CMC estimation,
|CMC(f)|2.
|CMC(f)|2 assumes values between 0 and 1, with

1 indicating perfect linear dependence between the two
signals.

An example of typical Sx(f), Sy(f) and |CMC(f)|2
spectra is reported in Fig. 1.

As in the case of EEG, CMC spectrum can be also
divided into (sub-)bands of interest; we used the following
eight (standard) frequency bands [21]: low-α (6-8 Hz), α
(8-12 Hz), low-β (13-20 Hz), high-β (20-30 Hz), β (13-
30 Hz), low-γ (30-60 Hz), high-γ (60-80 Hz) and γ (30-
80 Hz).

B. Compression

The joint information between EEG and EMG, i.e., the
CMC spectrum, |CMC(f)|2, is computed as a first step
in the compression pipeline.

Then, (uniform) quantization of the CMC spectrum
is applied. The number of levels (L) is varied in the
set {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024} using a binary
coding of each level, so that 1 to 10 bits are used to define
each level. The range of the quantizer is set to [0, 1].

A compression ratio (CR) is defined at this step by the
ratio between the number of bits of the original signal
segment (typical bit resolution is b = 12) and the number
of bits of the compressed segment.

Huffman coding [23] or another kind of source coding
can be later applied on the output of the quantizer in order
to further optimize the bitrate to transmit.

III. CLASSIFICATION AND PERFORMANCE
MEASUREMENT

In order to prove the efficiency of the newly proposed
joint EEG-EMG compression method, an application sce-
nario has been selected: the classification of different kinds
of objects during thumb-index holding (i.e., precision grip)
of the object itself at a certain height (i.e., without support
for the wrist).

We employed the publicy-available dataset WAY-EEG-
GAL provided within the framework of the European WAY
(Wearable interfaces for hand function recovery grasp-and-
lift) project [24]. The dataset consists in a set of simul-
taneous EEG and EMG measurements during a grasp-
and-lift task. At each repetition (trial), the participant was
asked to grasp an object with their thumb and index finger
(precision grip), to lift it until a predetermined position, to
hold it at that point for at least 2 s (see Fig. 2) and then
release the object.

The object was unexpectedly modified in its weight
(light = 165 g, medium = 330 g, heavy = 660 g), surface
friction (sandpaper, suede, silk) or both, according to a
random pattern. In particular, the dataset used in this work
counts 84 trials for the light condition, 57 for the heavy
condition, 51 for the sandpaper condition and 221 for the
silk condition.

During the acquisition, 32 EEG channels were used,
with the electrodes located at standard locations (following
the International 10-20 EEG System) on the participant



Fig. 2: Phases of the experimental paradigm: rest position, grasping, lifting and holding
and releasing (modified from [24]).

scalp. Simultaneous bipolar EMG recording of five dif-
ferent muscles (respectively labelled as AD, BR, FD,
CED, FDI) was also performed. Both EEG and EMG
signals were downsampled to 500 Hz sampling frequency
and the effective bit resolution is 12 bit.

Only data from subject 7 are used in this paper, since
experimental records (available online) ensured that the
full experimental session was correctly completed.

EEG and EMG segments are extracted from the central
period of the sustained contraction to hold the object.
Every EEG segment is filtered in the frequency band (3-
80 Hz) by means of a Chebyshev type I filter [22] and
every EMG segment in the frequency band (3-250 Hz)
by means of another Chebyshev type I filter. We consider
four different durations for the segmentation: 1, 2, 4 or
6 s. Then, every EMG trial is further (full-wave) rectified.

All EEG and EMG segments (of any duration) that are
assessed to be artefact-free (by expert visual inspection)
are included in the next compression and classification
analysis.

In particular, we denoted as heavy trials those where
the object weight was 660 g and as light trials those with
weight of 165 g, irrespective of the surface friction type.
Similarly, the sandpaper class is constituted by all trials
where the object surface was made by sandpaper, and
the silk class where the object surface was made of silk.
Clearly, the heavy and light classes are disjoint, so as the
sandpaper and silk classes, while some tasks can be cross-
shared by classes of different kinds (e.g., heavy and silk).

Then, a binary linear supervised classifier (a support
vector machine with linear kernel) is employed to distin-
guish among (i) light/heavy objects or (ii) sandpaper/silk
surface frictions.

As features for the classification, the set of mean values
obtained from |CMC(f)|2 in each frequency band of the
range of interest (see Section II-A) is used.

As a comparison, all samples from S
(i)
x (f) and S(i)

y (f)
are used to classify the same task, taking advantage of the
use of all available samples.

The performance of the classification are assessed in
terms of accuracy.

IV. RESULTS

First, we confirm that the CMC has the expected
frequency distribution, i.e., the largest power values at
the lowest frequencies, ensuring the reliability of the
preprocessing step and the computation of the CMC [17].

Then, the CMC is uniformly quantized with a number
of quantization levels that is increased from 4 up to
1024 in order to provide different CRs and to evaluate
the relationship between the compression ratio and the
classification accuracy.

Fig. 3 shows the achievable accuracy with different
number of bits, i.e., quantization levels, using the CMC-
based features and, as a comparison, the accuracy in case
that all EEG and EMG samples are used. The relationship
is reported for both the classification of light/healthy trials
(Fig. 3 a) and sandpaper/silk trials (Fig. 3 b). In both cases,
a duration of 4 s was considered and the C3 electrode (as
EEG signal) and the BR muscle (as EMG signal) were
selected to compute the CMC.

As expected, the classification accuracy given by the
CMC-based features is most often lower or equal than that
achievable through the use of all available EEG and EMG
samples. However, with a sufficiently large number of bits,
i.e., typically greater than 6, the accuracy is remarkably
high as compared to a classification using all EEG and
EMG samples. Moreover, the results provided by Fig. 3
have to be complemented with the information about the
CRs (available in Fig. 5 and described next).

A similar accuracy-quantization behaviour is found also
in the cases where another muscle (e.g., FD), another
EEG electrode (e.g., CP1, located at the centro-parietal
area of the scalp) or a different segment duration (2 s)
are considered for the computation of the CMC (Fig. 4).
Therefore, the considerations made for the case C3-BR
with 4 s can be further extended to other signals of the
same dataset and eventually to other datasets where EEG
and EMG signals are included.

Fig. 5 reports the relationship between the classification
accuracy and the CR. A trade-off between the accuracy
and the CR can be observed. However, there are specific
values for which both accuracy and CR are better in case
of CMC-based classification.

For example, when segments have 4 s duration (500
time samples with 12 bits resolution are acquired per
second), as shown in Fig. 3a, the CMC-based classification
reaches an accuracy of 0.9241 with 6 bits and 8 features
(one from each frequency band), while for the classifica-
tion with the same number of bits using all EEG and EMG
samples there are 513 frequency samples in the range (3-
80 Hz) and the accuracy approaches 1. In the case of
joint compression CR = 48kbit/48bit = 1000 (30 dB) is
obtained; instead, in the case of independent compression
of EEG and EMG CR = 48kbit/3.078kbit = 15.59 (about
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Fig. 3: Accuracy versus number of quantization levels in case of (a) classification of light/heavy trials and (b)
sandpaper/silk trials. For the computation of the CMC we used C3-BR in a period of 4 s). The label EEMG stands for
the case where all EEG and EMG samples are used for the classification.
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Fig. 4: Accuracy versus number of quantization levels for different CMC computations: (a) using a different EMG
signal (FD), (b) using a different EEG signal (CP1), (c) using a segments with a different duration (2 s). The label
EEMG stands for the case where all EEG and EMG samples are used for the classification.
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Fig. 5: Compression ratio versus accuracy in case of (a) classification of light/heavy trials and (b) sandpaper/silk trials.
The label EEMG stands for the case where all EEG and EMG samples are used for the classification.

12 dB) is achieved. Therefore, a relevant gain in the CR
is provided by the proposed compression algorithm at the
expenses of a slight accuracy degradation.

V. DISCUSSION AND CONCLUSIONS

This work presents a newly developed algorithm for
jointly compressing EEG and EMG signals, simultane-
ously acquired during different kinds of movement. This
method acts as a lossy compression in that it considers a
few samples of the CMC, i.e., the mean values of CMC
at each frequency band of interest, and transmits them,
only. A trade-off between accuracy and CR is observed, as
expected, with quite high accuracy values for CR values
in the range 10 dB to 30 dB (see Fig. 5). From Fig. 5
it can be observed that higher compression ratios can be
obtained by jointly compressing EEG and EMG signals,
achieving accuracy values that are comparable to those
of independent compression of EEG and EMG at lower
CRs. This is, for example, the case of compression of
weight-related signals (Fig. 5(a)) where joint compression
at CRs values of 28 to 30 dB allows to obtain accuracy
values above 0.9, while independent compression with
CR = 19 dB performs worse (accuracy below 0.9).

The joint compression of EEG and EMG signals can
be widely employed in those WBASN and IoT-health
applications where, i.e., monitoring of daily activities
thorugh wearables and lightweight sensors is planned as
at-home rehabilitative program for patients suffering from
different kinds of neuro-motor pathologies, such as stroke
or Parkinson’s disease. Indeed, this scenario explains the
necessity to have simultaneously recorded EEG and EMG
signals from different brain locations and muscles from
both limbs.

As far as the authors know, there is only another paper
discussing the possibility to jointly compress EEG and

EMG [14]. In [14], Said and colleagues used a deep
multimodal autoencoders structure to extract discriminant
features for classifying different kinds of emotions. They
found CRs from 10% up to 90% depending on the com-
plexity of the hidden layers of the multimodal autoencoder
(used to integrate EEG and EMG data together). To
compare these results with our own, we need to have both
results expressed in percentages. Therefore, we compute
the new CR values as in [14]: CR = (1 −m/n) × 100,
where m is the number of compressed samples and n is
the number of samples in the raw signal. Then, we obtain:
CR1 = (1− 8/(2× 4× fs))× 100 = 99.80% (for CMC-
based lossy compression) and CR2 = (1− 513/(2× 4×
fs))× 100 = 87.18% (for EEG and EMG-based lossless
compression). Said et al. achieved a maximum accuracy
value of 78.1%, instead (provided that they tested their
algorithm on a different dataset). We can then conclude
that we found better classification accuracies together with
comparable CRs, by means of a simpler and less time-
consuming compression algorithm.

However, some limitations still affect the present work:
first of all, we considered a limited dataset from a single
subject performing few specific motor tasks; however,
the same algorithm could be further generalized to larger
datasets, e.g., with multiple EMG and EEG signals, and
to different kinds of signals, e.g., any pair of signals
where a common trend or component is present, i.e.
the temperature and the relative humidity in an outdoor
environment [25] or the heart and the respiratory activ-
ities [26]. Second, we considered an uniform quantizer
with levels distributed over the entire range of possible
values of CMC, i.e., [0, 1]. However, a different quantizer,
e.g., non-uniform, might be implemented to exploit the
granularity of the quantization levels to better match the
distribution of the CMC data; similarly, a different kind



of classifier could be employed in order to test if better
accuracy can be achieved. Finally, a suitable source coding
scheme (Huffman, entropy or arithmetic) could be used to
code the samples at the output of the quantizer to further
optimize the bitrate of the transmitted data.

Nevertheless, in a real-case scenario the joint com-
pression of EEG and EMG signals could be charac-
terized by several challenges: sensors faults, e.g., EEG
artefacts, could seriously impact on the CMC computation;
therefore, smart and computationally light algorithms for
sensors fault real-time detection have to be implemented.
Moreover, the energy consumption due to our algorithm
needs to be evaluated and compared with other compres-
sion algorithms. Here, the trade-off between centralized
and distributed computation has to be considered: indeed,
in this work we propose a joint compression solution that
implies a cooperation between WBASN (heterogeneous)
nodes, while in most other cases each single sensor is
responsible for digitalization, compression and transmis-
sion of biosignals. These two network scenarios have to
be properly analyzed in the future based on the specific
applications they are required to give solution.

Finally, different kinds of machine learning tech-
niques with particular reference to stacked autoencoders
(SAE) [27] and convolutional neural networks (CNN) [28]
can be implemented and compared with our CMC-based
compression algorithm in order to find the best solution
both for compression and classification of heterogeneous
biosignals applications.

REFERENCES

[1] G. Z. Yang, “Body Sensor Networks,” Springer Publishing Com-
pany, (II ed.) 2014.

[2] S. M. R. Islam et al., “The Internet of Things for Health Care: A
Comprehensive Survey,” IEEE Access, 2015.

[3] S. Sanei and J. A. Chambers, “EEG signal processing, ” John Wiley
& Sons, 2013.

[4] P. Konrad, “The ABC of EMG: A practical introduction to kinesio-
logical electromyography,” vol. 1, 2005.

[5] C. Gomez, J. Oller, and J. Paradells, “Overview and Evaluation of
Bluetooth Low Energy: An Emerging Low-Power Wireless Technol-
ogy,” vol. 12, no. 9, pp. 11734–11753, Sensors 2012.

[6] IEEE 802.15 WPAN task group 6 body area networks, 2012. Avail-
able at: http://standars.ieee.org/findstds/standard/802.15.6-2012.html

[7] L. Vangelista, A. Zanella, and M. Zorzi, “Long-Range IoT Tech-
nologies: The Dawn of LoRa,” Springer, 2015.

[8] Said and Pearlman, “A New, Fast, and Efficient Image Codec Based
on Set Partitioning in Hierarchical Trees,” IEEE Trans Circ Sys Video
Tech, vol. 6, no. 3, 1993.

[9] C. Christopoulos, A. Skodras and T. Ebrahimi, “The JPEG2000 still
image coding system: an overview,” IEEE Transactions on Consumer
Electronics, vol. 46, no. 4, 2000.

[10] K. Srinivasan, J. Dauwels, and M. R. Reddy, “A two-dimensional
approach for lossless EEG compression,” Biomedical Signal Pro-
cessing and Control, 2011.

[11] R. Hussein, A. Mohamed, and M. Alghoniemy, “Scalable real-time
energy-efficient EEG compression scheme for wireless body area
sensor network,” Biomedical Signal Processing and Control, 2015.

[12] A. Shukla and A. Majumdar, “Row-sparse blind compressed sens-
ing for reconstructing multi-channel eeg signals,” Biomedical Signal
Processing and Control, 2015.

[13] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman iterative
algorithms for L1-minimization with applications to compressed
sensing,” SIAM Journal on Imaging Sciences, 2008.

[14] Said et al. “Multimodal deep learning approach for joint EEG-EMG
data compression and classification,” IEEE WCNC, 2017.

[15] R. Matsuya, J. Ushiyama, and J. Ushiba, “Inhibitory interneuron
circuits at cortical and spinal levels are associated with individual
differences in corticomuscular coherence during isometric voluntary
contraction,” Sci. Rep., 2017.

[16] Baker, Olivier and Lemon, “Coherent oscillations in monkey motor
cortex and hand muscle EMG show task-dependent modulation,” J.
Physiol., 1997.

[17] Mima Steger Schlman Gerloff and Hallett, “EEG measurement of
motor cortex control of muscle activity in humans,” Clin. Neuro-
physiol., 2000.

[18] Kilner, Baker, Salenius, Hari and Lemon, “Human cortical muscle
coherence is directly related to specific motor parameters,” J Neu-
rosci., 2000.

[19] D. Halliday, B. Conway, S. Farmer, and J. Rosenberg, “Using
electroencephalography to study functional coupling between cor-
tical activity and electromyograms during voluntary contractions in
humans,” Neuroscience Letters, vol. 241, pp. 5–8, 1998.

[20] Ushiyama et al. “Muscle dependency of corticomuscular coherence
in upper and lower limb muscles and training-related alterations in
ballet dancers and weightlifters,” J Appl Physiol., vol. 109, pp. 1086-
1095, 2010.

[21] S. Sanei and J.A. Chambers, “EEG Signal Processing,” Wiley &
Sons Ltd, 2007.

[22] S.K. Mitra and Y. Kuo, “Digital Signal Processing: a computer-
based approach,” New York: McGraw-Hill, vol. 2, 2006.

[23] D. A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proc of the IRE, vol. 40, pp. 1098–1109, 1952.

[24] Luciw et al. “Multi-channel EEG recordings during 3,936 grasp and
lift trials with varying weight and friction,” Scientific Data, 2014.

[25] H.H. Liang and K.T. Huang, “Study on rooftop outdoor thermal
environment and slab insulation performance of grass planted roof,”
International Journal of the Physical Sciences, vol. 6, no. 1, pp.
65–73, January, 2011.

[26] D.J. Plews et al. “Comparison of Heart Rate Variability Recording
With Smart Phone Photoplethysmographic, Polar H7 Chest Strap
and Electrocardiogram Methods,” International Journal of Sports
Physiology and Performance, vol. 12, no. 10, pp. 1324–1328, 2017.

[27] G.E. Hinton and R.R. Salakhutdinov, “Reducing the Dimensionality
of Data with Neural Networks,” Science, vol. 313, pp. 504–507,
2006.

[28] A. Krizhevsky, I. Sutskever and G.E. Hinton, “ImageNet classi-
fication with deep convolutional neural networks,” Proc. Advances
in Neural Information Processing Systems, vol. 25, pp. 1090-1098,
2012.


