
Comparison of Nash Bargaining
and Myopic Equilibrium for Resources

Allocation in Cloud Computing
Giovanni Perin, Gianluca Fighera, and Leonardo Badia

Department of Information Engineering, University of Padova
Via Gradenigo, 6/b, 35131 Padova, Italy

Email: {giovanni.perin.2,gianluca.fighera}@studenti.unipd.it, badia@dei.unipd.it

Abstract—Distributed (cloud, cluster, grid) computing systems
are becoming popular due to the huge amount of data available
nowadays and the complexity of the computations required to
handle them. An efficient allocation of computational resource is
key to guarantee service quality in terms of execution time and
cost. However, the inherent distributed character of these scenar-
ios prevents them from adopting centralized allocation strategies
and suggests that approaches inspired or related to game theory
can be used instead. However, most solutions available in the
literature propose simple techniques based on static allocation
scenarios subsequently finding their outcome as a plain Nash
equilibrium, which seems to leave some room for improvement.
In this paper, we address this issue by considering instead a Nash
bargaining solution obtaining a Pareto optimal solution of the
allocation problem. We compare the results of this approach with
those of a “myopic” strategy that pursues a Nash equilibrium,
and we determine that, while both allocation strategies fully
utilize the entire system capacity, a Nash bargaining achieves
significantly better performance in terms of time spent by the
users in the system. This gives evidence for a high Price of
Anarchy of the myopic allocation and points out the need for a
better allocation policy that makes a more efficient use of the
available resources.

Index Terms—Cloud computing, Game theory, Nash bargain-
ing, Pareto efficiency, Integer Programming

I. INTRODUCTION

Cloud computing makes computing resources, especially
computational power and storage capability, available online
on demand. Internet users are able to exploit this paradigm
without the need for their direct management [1]. The physical
devices providing such a service often form networks spread
around the world. A cloud computing system is related to
but also different from cluster computing, where instead
computers are connected in a Local Area Network (LAN), and
grid computing, which is a decentralized network of resources
owned by multiple parties.

In any event, cloud computing and all similar distributed
computing systems require provisioning of services of more
and more advanced importance and also the underlying in-
frastructures are becoming increasingly complex. It would be
nonsensical to resort to a centralized approach to manage a
distributed computation system, and for this reason the idea
of using a game-theoretic approach is well justified [2], [3].

Game theory is a branch of applied mathematics that was
originally developed in the past century to economic scenarios
but around the 2000s has become more and more popular for
wireless and communication networks as well as distributed
computing systems [4], [5]. It is particularly suitable for
describing system interactions where individual players are
guided by rationality and selfishness criteria; thus, it is even
more suitable to be used by computing platforms whose
capability of making correct decisions in the field of abstract
reasoning is becoming really powerful.

For this reason, in the scientific literature we can find
many examples of resources allocation algorithms for cloud
computing that use a game-theoretic approach [2], [6]–[8].
However, a common trend of the majority of these papers is
that they simply resort to the immediate analysis of game
theory, i.e., to find an allocation strategy reaching a Nash
equilibrium. On the one hand, this is indeed a correct choice,
since a Nash equilibrium corresponds to a situation in which
no user has any incentive to deviate from its strategy, and this
then qualifies as a self-sustainable allocation in a distributed
environment. Nevertheless, Nash equilibria are often sub-
optimal in a global welfare sense. Game theory in reality
proposes many advanced directions to solve this issue. It
seems that, being its application of distributed computing
platform in its infancy, it just scratched the surface without
obtaining ultimately efficient proposals.

In this paper, we address the issue to quantify if game
theory approaches exhibit room for improvement in resource
allocation problems for cloud computing, and if so, how
large. To this end, similar to many aforementioned references,
we consider a game theoretic formulation where multiple
tasks to be executed over a cloud computing platform are
players in a game, so that they act in a fully uncoordinated
and distributed fashion. Their strategies in the game are the
choice of where, among the available computing servers, these
tasks can be executed. We extend the scenario of [2] by
adding the possibility of subtasks migrations between servers
if the system will benefit from them. Instead of resorting to
traditional Nash equlibrium solutions, we use a bargaining
approach [9]. In particular, we discuss Nash barganing, which,

despite being also proposed by John Nash, is actually an
axiomatic approach and does not involve the Nash equilibrium
as the solution concept, but rather can be seen as a physically
achievable Pareto efficient allocation.

Our contribution gives the following advancements over the
existing literature. First, we give a general characterization
of the player’s payoff (actually their cost function) in the
case of tasks that can be divided in parallel subtasks, which
allows a representation transcending the static allocation and
considering also scenarios where servers are able to communi-
cate. Then, we solve the allocation problem through the Nash
bargaining solution and compare the allocation found with a
solution resulting from a trivial and myopic Nash Equilibrium.
Such a comparison determines a lower bound on the Price
of Anarchy of the system, that is, the loss in efficiency due
to players being just driven by selfish objective. We perform
our evaluation also simulating the quality of service of the
resulting allocation in a distributed computing scenario with
typical parameters of a working environment.

From our simple comparison, it turns out that, even though
the myopic allocation strategy achieves full resource uti-
lization (which is relatively obvious, since unused resources
would immediately attract distributed usage by some players),
its adequacy is rather questionable as the overall efficiency is
around 50% of the Nash bargaining solution. This highlights
that game theoretic proposals for resource allocation in cloud
computing are still in need of some strategical advancements
to improve their performance.

The rest of the paper is organized as follows: in Section II
we present in more depth the game theoretic approaches used
by the already cited works, as well as other solutions found in
other recent works. In Section III we describe in mathematical
terms how we set the cost function of the system and in
Section IV we give a game-theoretic interpretation of the two
solutions that we present in the paper. In Section V we define
the settings of our simulation and show the results obtained,
with a special consideration to the Price of Anarchy. Finally,
in Section VI we resume the important findings of our paper
and suggest possible future expansions.

II. RELATED WORK

Various solutions have been proposed in the literature to
tackle the relevant problem of resource allocation in cloud
computing services. Here, we just focus on those inspired by
game theory, which is motivated by the desire for a rigorously
founded and scalable distributed allocation approach.

In particular, one inspirational paper for the present analysis
is [2], which focuses on a scenario similar to ours, where
tasks can be divided over multiple subtasks and allocated
to different servers. The problem is subsequently framed as
a game and, following the concepts of (i) single and (ii)
global participant efficiency loss of a reallocation, three dif-
ferent allocation algorithms are proposed. They all guarantee
convergence towards a Nash Equilibrium of the allocation,
but this is only used to justify the implementability of the

proposal and the local optimality, without considering whether
the allocation is also globally efficient.

In [6], instead, a minimax game approach with utility
maximization is proposed to build an adaptive virtual machine
allocation system. Another approach, employed by [7], [10]
and [11], is the use of auctions, respectively in a cloud
computing and grid computing scenario. In particular, the
latter solves the task from the point of view of the service
providers, with some constraints to meet user satisfaction, as
we also do in this work. Likewise, the exploitation of the
uncertainty principle of game theory has been proposed in
[8], reaching a solution that leads to coalition-formation of
the physical machines of the cloud. A number of optimal and
suboptimal policies based on heuristics are proposed by [1],
[12] and by [13], where four scheduling policies for virtual
clusters with queuing systems and estimation of the resources
required are presented.

In [14], a novel approach for resource allocation to make
a reasonable application for task migration is developed: they
build an imperfect information Stackelberg game using Hid-
den Markov Models (HMM) to predict the service provider’s
current bid, using historical data. Their model is shown to
simultaneously increase the profits of both service providers
and infrastructure suppliers.

In this work, we approach the problem of resource allo-
cation through Nash bargaining. Such a solution concept has
been employed in many other scenarios of allocation problems
with good results, see [15] for more details. It falls within the
number of axiomatic solution approaches to the allocation of
constrained resources, as proposed by Nash in his seminal
paper [16] (notably, there are other similar approaches most
importantly the one by Kalai and Smorodinsky in 1975 [17]).
Indeed, other papers have studied Nash bargaining solutions
to cloud allocations, for example the allocation of multimedia
cloud tasks subject to some constraints is proposed in [9].
A similar approach is also used for example in [18] to
allocate power resources in a wireless powered relay system.
Instead, we apply Nash bargaining to the assignment of virtual
machines to physical machines, based on realistic constraints
that can be considered typical of cloud computing.

Our objective is also to prove whether allocations based on
a myopic strategy (which is basically the common element
of all previously discussed papers) can be really considered
efficient or not. As we will see, although Nash equilibrium
solutions always utilize the entire cloud resources, they are not
Pareto efficient and therefore pay what in game theory jargon
is called the “Price of Anarchy.” Certainly, the reduced system
occupation time by our proposed Nash bargaining solution
shows that there is room for improvement and possibly
setting up more efficient allocation policies, still based on
a distributed rationale, but exploiting more advanced game
theoretic instruments.

III. MODEL

This section is dedicated to the mathematical modeling
of the cost function of the system. We consider two factors

that affect the QoS of our cloud computing physical system:
execution time and cost. Let S = (S1, . . . , SN) be the set
of the N active tasks in the system, each one identifying a
Virtual Machine and R = (R1, . . . , RM) be the set of the
M physical resources available. As done in [2], we assume
that each task can be divided in ki parallel subtasks, which
for the sake of simplicity have all the same computational
complexity. To account for a realistic parallel computation
over multiple resources, we do not allow multiple subtasks of
the same task to be allocated on the same resource. Therefore,
a binary allocation matrix AN×M can be defined, having a 1 in
position i, j if a subtask of task Si is assigned to the resource
Rj . The matrix A is therefore the optimization variable of our
problem, subject to the constraints

M∑
j=1

ai,j = ki ∀i ∈ [N] (1)

The two factors that affect the optimal decision for A can
be represented by the matrices T for the time and E for the
expense. The entries ti,j are the turnaround time it takes for
resource Rj to complete ai,j subtask of the task Si. Therefore,
since subtasks are executed in parallel, the total execution time
for task Si is:

Ti = max
ti,j∈ti

ti,j ∀i ∈ [N] (2)

The entries ei,j are instead the expenses Si pays for resource
Rj to complete ai,j subtask. So, the price of task Si is:

Ei =

M∑
j=1

ei,j ∀i ∈ [N] (3)

Slightly modifying what done in [2], we define a cost function
which is the weighted average of the cost due to the execution
time t and the cost due to the expense e of the resources.
Moreover, we allow migrations between physical machines,
and this affects the time cost by a certain amount mi(a, b)
where a, b represent the physical source and destination of
the migration. Thus, the total cost becomes:

Ji(t, e) = wi ·
(
max
ti,j∈ti

ti,j +mi(a, b)

)
+ (1− wi) ·

M∑
j=1

ei,j (4)

Both t and e depend on the optimization variable A. In our
setting, a dynamic game is performed: given some constraints
on the set of physical machines R, tasks arrive with a certain
rate at each time slot, having a bias towards time or price ef-
ficiency and some other characteristics. In particular, we need
a price vector c = [c1, . . . , cM]T , a transmission rate vector
r = [r1, . . . , rM]T and a power vector p = [p1, . . . , pM]T

with an entry for each physical resource. Moreover, we also
need a computation vector z = [z1, . . . zN]T and a data vector
d = [d1, . . . dN]T describing the amount of computation and
memory required for each task. Given these parameters, we

compute the matrix T̂N×M , whose entries t̂i,j represent the
amount of time that resource Rj would employ to resolve
subtask ai,j solely, as:

T̂ = z ·
(
p−1

)T
(5)

From this matrix and from the other parameters, we can
rewrite (4) in the form

Ji = wi ·

(
max

(
t̂i,j

N∑
i=1

ai,j

)
+mi(a, b)

)

+ (1− wi) ·
(
cj +

rj
Rm

) M∑
j=1

(ai,j t̂i,j) (6)

mi(a, b) =
∑

(Ra,Rb)∈R

(
di

min(ra, rb)
+ γ

di
pa

)
· δ(a, b) (7)

where ti,j and ei,j are translated according to [2], and Ji is
then related to the values of the ai,js.

The formulation of (6) is explained as follows. The exe-
cution time is actually affected by the parallel executions of
the other tasks at that time slot and the power of the CPUs
is assumed to be divided equally between all the running
tasks. The expense is proportional to both the price and
the rate (normalized to the unit of money) of the employed
resources and of course to the execution time. Since we add
the possibility to move a subtask from a resource to another
if it is convenient, we must take care of an additional term,
mi(a, b), as per (7). Here di is the amount of data that is
to be transmitted at a rate being the minimum of the two
communicating servers. The second term is again proportional
to the size of data and inversely proportional to the power of
the source. This is the time needed to save the data that were
modified by the executing program and γ is just a correction
term. Finally, δ(a, b) is the indicator function which has value
1 if between (a, b) the transmission is active, 0 otherwise.
When the optimal allocation at time slot t causes one or more
migrations, we update the matrix T̂ , adding to the execution
time left the fraction of time spent in the transmission and the
backup of data. Also, at each time slot, we update T̂ removing
the fraction of z that was completed during that period.

IV. GAME-THEORETIC APPROACHES

In our work, we compare two different game-theory-based
solutions to the problem of cloud computing resource allo-
cation. First, we introduce the game theory notation applied
to our problem. Given a set of players, in our case tasks,
S = (S1, . . . , SN), the set of their possible strategies is
A = (a1, . . . , aN), where ai denote the allocation chosen by
task Si, which is row i of the binary matrix A. The choice of
the allocation ai for the task Si will give to the task a payoff
computed through a utility function

ui : A 7−→ R (8)

which depends on the chosen allocation ai but also on the
strategies played by all other tasks, which, for brevity, are

usually denoted a−i. Therefore, the payoff for Si will be the
real number ui(ai, a−i).

A. Nash Bargaining Solution

The first approach we employ was developed by John
Nash in 1950, who proposed an axiomatic solution to the
bargaining problem. As such, there is no real game in the
Nash bargaining, and the solution is guaranteed to belong
to the frontier of Pareto efficient allocations under certain
assumptions described in the seminal paper [16]. Importantly,
despite the similar names, the Nash bargaining solution does
not represent a Nash Equilibrium of the game. In our scenario,
the Nash bargaining approach is relevant because the service
provider itself can force the system to guarantee the best
resource allocation scheme leveraging users’ preferences. This
prevents users from being egoistic, ending up in sub-optimal
solutions.

The Nash bargaining solution (NBS) for N players is
defined as the solution of the problem:

max

N∏
i=1

Gi(ai, a−i) (9)

Gi(ai, a−i) = |ui(ai, a−i)− ui(d) | (10)

where d is the disagreement point. If we define the utility
function ui(·) for each user as:

ui(ai, a−i) = ui(d) + exp (Ji(ai, a−i)
−1) (11)

with Ji(ai, a−i) being the cost function described in Sec-
tion III, the problem of (9) is reduced to:

max

N∏
i=1

Gi(ai, a−i) = max

N∏
i=1

exp (Ji(ai, a−i)
−1) (12)

= max exp

(
N∑
i=1

Ji(ai, a−i)
−1

)
(13)

= min

N∑
i=1

Ji(ai, a−i) (14)

Cost function Gi(ai, a−i) is chosen as the exponential func-
tion, which is common in the literature [9] for the sake
of simpler computation, even though in a QoS problem the
payoff has more probably a sigmoid shape, with some kind
of saturation. In the following numerical results, we will stick
to this commonly made choice. Any other choice would just
make the numerical derivation of the maxima more complex,
without much additional insight for the problem at hand, and
for our discussion here it will just lead to minor numerical
approximations with the exponential case.

It is also worth noting that, while the aforementioned
formulation starts from requiring in principle a centralized
arbitrator, the final derivation can still be efficiently approxi-
mated by distributed implementations since we end up in the
minimization of the sum of the cost of each user, which can
be seen as the total cost of the system.

B. Myopic Best Response Solution

We compare the solution described in Section IV-A with
the one in which each task entering the system is allowed
to choose its favourite allocation for itself. Therefore, each
player computes privately

BRi (ai, a−i) = argmax ui(ai, a−i) (15)

to find their best response to the strategies of the other players
and play accordingly. In our setting, there is no simultaneous
game: a task entering the system is supposed to have full
knowledge about the allocation of the tasks already allocated.
However, at the same time, no knowledge is given on the
future arriving tasks. The latter assumption is a strong one,
since it may be assumed that tasks at least know something
about the statistics of arrivals in the system. Since the setting
is unchanged, the best response can be computed as:

BRi (ai, a−i) = argmin Ji(ai, a−i) (16)

Due to the assumptions we made, this solution leads to a Nash
Equilibrium, because each player is playing his best response
to other players in the game and no prior is given about the
future. Therefore, players cannot have regrets if their strategy
is no more a best response after some other player played.
Because of this and also since players are not allowed to
change their play, we call this strategy Myopic Best Response.

In both the versions of Section IV-A and Section IV-B, the
solutions are Binary Integer Programming (BIP) optimization
problems. This is because the variable A is restricted to have
values in {0, 1}.

V. SIMULATION AND RESULTS

In this section, the parameters of the implemented model
are shown, together with the results of the simulation.

In our experiment, we considered a fixed number of re-
sources M = 5. The computational power of each resource is
expressed in MIPS (million instructions per second), while
the resources cost is expressed in a generic money unit.
This choice is due to the fact that, in our experiment, we
were not interested in the exact cost in terms of money,
but we just wanted to model that the more powerful is a
resource, the higher it costs. The parameters are listed in
Tab. I. The communication rate between each resource is
chosen as r = 0.1 GB/s and it is equal for all resources for
the sake of simplicity.

For what concerns the tasks, which are the players in our
system, their arrival is modelled as a Poisson process with
arrival rate fixed to λ = 0.075 min−1. Each player is also
characterized by a type wi that is a random variable with
uniform distribution in [0, 1] and it indicates the weight that
the player gives to the execution time over the expenses. A
player with wi = 1 will only seek to minimize the time spent
in the system, regardless the cost, whereas a player with wi =
0 will be only interested in minimizing the expense, no matter
how long it spends in the system. In general, we say that
the execution time ti and the expense ei paid by user i are
weighted as witi + (1− wi)ei, as per (4).

M (Nr. of Physical Machines) 5

∆t (Time slot) 10 [min]

N (Nr. of tasks in execution) P(λ) λ = 0.75 [10 min]−1

ki (Nr. of subtasks per task) p(1) = p(5) = 0.1

p(2) = p(4) = 0.25 p(3) = 0.3

wi (Weigth for time cost) U([0, 1])

zi (Nr. of ops per subtask) Z(3, 10) × 1015 [MIPS · s]

di (Size of data) Z(0.07, 10) [GB]

c (Cost of the resources) [10, 7, 3, 2, 1]T [money / 10 min]

p (Power of the CPUs) [15, 9, 6, 3, 2]T × 1012 [MIPS]

r (Transmission rate) [0.1, 0.1, 0.1, 0.1, 0.1]T [GB/s]

γ (Correction term for storage) 30 [GB]−1

TABLE I: Resume of the values chosen for the simulation

Each task in the system is composed of an integer number
of subtasks to be executed sampled from a truncated Gaus-
sian distribution in [1,5] with average µ = 3 and variance
σ2 = 10.6. Different subtasks of the same task have the same
size in terms of number of operations to be executed, randomly
picked from a truncated Gaussian distribution with µ = 3 and
σ2 = 10, denoted as Z(3, 10). The size is expressed in a
unit of measure corresponding to 1015 MIPS. Finally, subtasks
of the same task are characterized by a specific size of data
to be exchanged by resources in case of reallocations, again
sampled from a truncated Gaussian distribution with µ = 0.07
and σ2 = 10 and expressed in GB. In our experiments,
the arrivals occur during a 24h interval and then the system
keeps executing subtasks until all tasks are terminated. This
simulation is run 1000 times and results are averaged.

We perform a comparison between the NBS and the myopic
strategy of just playing a best response (BR). Four evaluation

Fig. 1: Time-evolution of the system load.

metrics are considered: the number of tasks in the system, the
number of active resources, the average cost of the system, and
the average total time spent in the system by the tasks. Fig.
1 shows the number of tasks in the system as a function of
time. Both NBS and BR approaches show a rapid increase
in the initial part, where the system is loaded with tasks,
and reach their steady-state values after about 10 hours. In
this situation, the number of users in the system is more
or less stable since the arrival rate equals the exiting rate.
After the last time interval of the day, there are no more
arrivals and the system empties with a rate that is almost
equal for the two solutions considered. After 2− 3 hours the
system has completed all subtasks and is empty. The steady-
state value for the NBS approach is about 4 tasks, while
those for BR approach is 8 tasks. This means that a system
implementing the NBS policy in the management of incoming
users is able to half its load factor with respect to a system
implementing a BR approach, without losing anything both in
term of disposal time at the end of the 24 hours and in term of
time for system loading at the beginning. The vertical dashed
green line at x = 24 indicates the limit time for arrivals. In
Fig. 2 a comparison between the two approaches is shown,
the measures being normalized with respect to the maximum
one. The first considered measure is the average number of
active resources, i.e., resources that are processing at least one
subtask. The value for the NBS approach is slightly lower,
indicating the presence of some time intervals in which the
optimal allocation of subtasks allows some resources to be
shut down. The second measure is the average cost from the
system perspective, computed as the sum of the costs for the
resources to be active and to exchange data between them.
As it can be seen, there is neither waste nor gain of money
of the NBS approach with respect to the BR solution. The
third measurement is the average time spent in the system by
a task, computed using Little’s law. Indeed, since we know

Fig. 2: Comparison between Nash bargaining solution and
Best response approaches.

the average number of users in the system, denoted as X̄ , and
the arrival rate λ, the average time S̄ spent in the system is
computed through

X̄ = λ · S̄ (17)

As expected from the fact that the steady-state number of
users in the system in NBS is about half of BR, the time
spent in the system implementing NBS policy is also halved.
This difference in performance between the Pareto optimal
solution of the Nash bargaining and the Nash Equilibrium
of the myopic strategy can be seen as a lower bound to the
Price of Anarchy of the system. In other words, if players
are acting selfishly, i.e., only driven by their myopic best
interest, they obtain a less efficient allocation, not in that some
resources are underutilized (they are indeed fully exploited
anyways) but rather by an increased congestion, which results
in their permanence in the system for a time that is at least
doubled with respect to the best Pareto efficient allocation.
We remark that, while the specific numerical result of a
halved permanence time in the system through the NBS can of
course depend on the choice of parameters for the evaluation
(which have been selected with in mind a realistic platform,
anyways), the order of magnitude of this comparison confirms
that there is a significant improvement margin from myopic
best-response equilibria.

VI. CONCLUDING REMARKS

In this paper, a Nash Bargaining Solution has been proposed
for the optimal allocation of subtasks among resources in a
cloud computing system. The same system has been tested
also with a different allocation policy in which every player
entering the system played its best response. The two different
approaches were tested in terms of number of players in
the system, average resources utilization, average system cost
and average time spent by tasks in the system. The most
remarkable result is that our allocation policy is able to halve
the average number of tasks in the system without paying
anything in terms of cost and number of active resources,
making this algorithm suitable for this type of situations.

Future work can be done by considering different arrival
rates for tasks within 24 hours, since during the day it is
more likely for the system to receive tasks to execute than
during night. Moreover, we have decided to limit the number
of subtasks that can be executed on a single resource, hence
each task has a number of subtasks limited to 5. A queue can
be considered for each resource, allowing for the execution
only of an upper bounded number of subtasks by the same
physical machine. For what concerns the computational power
of the resources, we set to 2 × 1012 MIPS the power of the
less capable resource: this corresponds to the power of a good

laptop. Other choices can be done considering for example a
network of machines with different physical specifications. A
more precise analysis can be performed computing the price
paid and the time spent in the system by each task individually
to assess with how much accuracy the system meets specific
quality of service requirements.

REFERENCES

[1] M. A. Sharkh, A. Shami, and A. Ouda, “Optimal and suboptimal
resource allocation techniques in cloud computing data centers,” Journal
of Cloud Computing, vol. 6, no. 1, p. 6, 2017.

[2] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic
method of fair resource allocation for cloud computing services,” The
journal of supercomputing, vol. 54, no. 2, pp. 252–269, 2010.

[3] A. V. Guglielmi, M. Levorato, and L. Badia, “A Bayesian game theoretic
approach to task offloading in edge and cloud computing,” in Proc. IEEE
Globecom, 2018.

[4] Z. Han, D. Niyato, W. Saad, T. Ba?ar, and A. Hjø rungnes, Game
theory in wireless and communication networks: theory, models, and
applications. Cambridge university press, 2012.

[5] I. Abraham, L. Alvisi, and J. Y. Halpern, “Distributed computing meets
game theory: combining insights from two fields,” ACM Sigact News,
vol. 42, no. 2, pp. 69–76, 2011.

[6] K. Srinivasa, S. Srinidhi, K. S. Kumar, V. Shenvi, U. S. Kaushik, and
K. Mishra, “Game theoretic resource allocation in cloud computing,”
in Proc. Int. Conf. Appl. Dig. Information and Web Technologies
(ICADIWT), pp. 36–42, IEEE, 2014.

[7] A. Nezarat and G. Dastghaibifard, “Efficient Nash equilibrium resource
allocation based on game theory mechanism in cloud computing by
using auction,” PloS one, vol. 10, no. 10, p. e0138424, 2015.

[8] P. S. Pillai and S. Rao, “Resource allocation in cloud computing
using the uncertainty principle of game theory,” IEEE Systems Journal,
vol. 10, no. 2, pp. 637–648, 2016.

[9] M. M. Hassan and A. Alamri, “Virtual machine resource allocation for
multimedia cloud: a Nash bargaining approach,” Procedia Computer
Science, vol. 34(Supplement C), pp. 571–576, 2014.

[10] S. Sequeira and P. Karthikeyan, “A survey on auction based resource
allocation in cloud computing,” International Journal of Research in
Computer Applications and Robotics, vol. 1, no. 9, pp. 96–102, 2013.

[11] A. R. Gahrouei and M. Ghatee, “Auction-based approximate algorithm
for grid system scheduling under resource provider strategies,” arXiv
preprint arXiv:1803.04385, 2018.

[12] M. B. Gawali and S. K. Shinde, “Task scheduling and resource alloca-
tion in cloud computing using a heuristic approach,” Journal of Cloud
Computing, vol. 7, no. 1, p. 4, 2018.

[13] T. J. Hacker and K. Mahadik, “Flexible resource allocation for reliable
virtual cluster computing systems,” in Proc. Int. Conf. High Perf.
Comput., Networking, Storage and Anal., p. 48, ACM, 2011.

[14] W. Wei, X. Fan, H. Song, X. Fan, and J. Yang, “Imperfect infor-
mation dynamic stackelberg game based resource allocation using
hidden markov for cloud computing,” IEEE Transactions on Services
Computing, vol. 11, no. 1, pp. 78–89, 2018.

[15] H. Park and M. van der Schaar, “Bargaining strategies for networked
multimedia resource management,” IEEE Transactions on Signal Pro-
cessing, vol. 55, no. 7, pp. 3496–3511, 2007.

[16] J. F. Nash Jr, “The bargaining problem,” Econometrica, pp. 155–162,
1950.

[17] E. Kalai and M. Smorodinsky, “Other solutions to Nash’s bargaining
problem,” Econometrica, pp. 513–518, 1975.

[18] Z. Zheng, L. Song, D. Niyato, and Z. Han, “Resource allocation in
wireless powered relay networks: A bargaining game approach,” IEEE
Trans. Veh. Tech., vol. 66, no. 7, pp. 6310–6323, 2017.

