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Abstract—LoRa is a low-power wide-area network solution
that is recently gaining popularity in the context of the Internet
of Things due to its ability to handle massive number of devices.
One of the main challenges faced by LoRa implementations is the
allocation of Spreading Factors to the devices. While the assign-
ment of these parameters is virtually simple to execute, scalability
and complexity issues hint at its implementation through a game
theoretic approach. This would offer the advantage of being
readily implementable in vast networks of devices with limited
hardware capabilities. Hence, we formulate the SF allocation
problem as a Bayesian game, of which we compute the Bayesian
Nash equilibria. We also implement the procedure in the ns-
3 network simulator and evaluate the resulting performance,
showing that our approach is scalable and robust, and also offers
room for improvement with respect to existing approaches.

Index Terms—Game theory, LoRa, Internet of Things, Wireless
sensor networks, power aware computing.

I. INTRODUCTION

In recent years, the Internet of Things (IoT) paradigm has
been gaining momentum, while at the same time showing
that traditional connectivity technologies such as WiFi and
Bluetooth are not always adequate for massive deployments
of multiple devices with low power and reduced computa-
tional capabilities. For this reason, research lately turned to
Low Power Wide Area Networks (LPWANs), among which
LoRa figures as one of the most prominent [1]. In LoRa
networks, devices use a proprietary LoRaTM physical layer
(PHY) modulation, based on a Chirp Spread Spectrum (CSS)
modulation, where packets are differentiated according to their
Spreading Factor (SF) [2]. Even though the exact details of the
proprietary modulation are not released, the most important
aspect that we keep into account in the present paper is known,
that is, each device must adopt a SF, taking values in the range
{7, 8, . . . , 12}, which describes its connection to the closest
gateway in the area. A higher SF guarantees more reliable
reception of the packets, while lower SFs lead to a higher
data rate. Moreover, SFs are quasi-orthogonal, i.e., two packets
using different numerical values have a very low probability of
interfering with each other, so that, for the sake of simplicity,
their transmission can be considered to be collision-free.

As a result, the distribution of the SFs in the network
ought to be as close as possible to uniform so as to minimize
the interference between transmitted packets. However, the
procedure to achieve it should be simple and distributed,

to enforce scalability and enable the implementation on IoT
devices with limited computational power [3]. We believe that
the solution to these design needs can be found by adopting
a game theoretical standpoint [4]. In particular, we aim to
solve a static SF allocation problem on a LoRa network, i.e.,
a distributed assignment by individual devices acting at the
same time based on rational and selfishness principles. This
can be seen as an algorithmic implementation of which we
offer both a theoretical analysis and also the implementation
in the well known ns-3 network simulator [5]. Thus, we are
able to evaluate the resulting performance in realistic contexts,
and compare it with a reference approach described in [2].

Our study represents a first step in implementing game
theory to this kind of problems. For the sake of simplicity,
we consider the LoRa network scenario to be static and so
are the game theory formulation and the resulting allocation.
In a dynamic context, one can think of simply replaying the
game periodically; or, more refined results can be obtained
with an enhanced analysis that also considers a dynamic game
formulation to better keep into account overall changes in
the network. We focus on a scenario where every device
acts in a distributed fashion and only guided by principles of
selfishness (i.e., local optimality of its resulting allocation) and
rationality, involving the ability to predict direct consequences
of its own actions and also assuming that other devices do
the same. However, the required computational complexity
is fairly limited as every decision-making process revolves
around if-then-else choices and lookup tables.

In our contribution, we consider that each device regards
itself as a player having the rest of the entire network as
its opponent in the game. To characterize different network
situations, we resort to Bayesian games. In particular, we are
able to restrict the relevant part of the competitive interactions
among nodes in the network as only those involving adjacent
values of the SF. In light of this, each node plays a game
against the remaining opponents modeled as a single Bayesian
player, whose type follows the SF distribution obtained by
using a standard approach [2]. Thanks to this artifice, we are
able to compute the Bayesian Nash equilibria of the game and
also implement the relative strategies in an algorithmic fashion.
This is directly plugged into the discrete-event simulator ns-
3 [5], studying the evolution of the probability of correct
reception of packets, and the probability of interference as the



number of nodes in the network increases. We then compare
the results that we obtained with the performance of the
standard approach [2]. The results show that our proposed
technique is implementable and even obtains superior perfor-
mance in some scenarios, although it requires some finetuning
in order to properly guide the users to the correct SF allocation
beyond a simple selfish choice.

The rest of this paper is organized as follows: Section II
reviews the approaches to SF allocation and the use of game
theory in LoRa networks in the literature. In Section III,
we discuss the game theoretic ingredients for our analysis,
including the basic assumptions and a model of one-to-one
player interaction that is expanded in Section IV to build our
Bayesian game. Section V presents the results including the
algorithmic formulation of a possible allocation approach and
its evaluation through ns-3. Finally, Section VI concludes the
paper.

II. RELATED WORK

The literature about LoRa specifications is relatively limited,
since the details about specific LPWAN proprietary technical
aspects are not released to the research community. In [6],
several LPWAN technologies are reviewed, and a technical
analysis of LoRa modulation is provided. In particular, a co-
channel rejection matrix is developed showing the signal-to-
noise ratio and signal-to-interference-plus-noise ratio values
required for SF allocation and survival of LoRa signals in the
presence of an interferer with a different SF. The authors of [7]
performed various experiments to characterize packet losses
in the LoRa systems. In their analysis, the model of [6] is
basically confirmed, which allows for our analysis that roughly
translates in an orthogonality assumption among different SFs.

The lack of implementation details about LoRa PHY layer
might explain why the problem of SF allocation, although
relatively simple to grasp, has not received many technical
proposals. Indeed, [2] described a practical solution in this
sense, but based on a deterministic approach. In our opinion,
the problem shows all the requirements pointing towards a
game theoretic solution, namely, a simple analytical charac-
terization and the need for a distributed and scalable solution.
Indeed, game theory has been successfully applied with such
a motivation to many other problems of wireless communi-
cations in the literature. For example, cognitive networks are
often considered a field of election for game theory, and game
theoretic protocol design is reviewed in [4]. Also, spectrum
sharing among cellular operators or secure communications
are other fields where game theory is often invoked [8]–[12].

However, the literature is not abundant wuth game theo-
retic investigations applied to the specific scenario of LoRa
Networks. The only proposal in this sense is [13], which is
however concerned about access technology and the generic
context of public safety. The challenge tackled in that contribu-
tion revolves around the choice between traditional networks
and low power long-range communications. Thus, the problem
faced in the present paper, i.e., the SF allocation, has not yet
been modeled as a game, which makes our analysis original.

III. GAME THEORETICAL MODEL

A. Assumptions

Throughout our analysis, we relied on the following as-
sumptions to obtain a simple, yet meaningful, framework.

• There is only one central gateway, and the end devices
(EDs) are uniformly distributed around it.

• The SINR of a sent packet depends only on the distance
from the gateway (path loss) and on the interference
with other packets using the same SF; more refined
channel models, also including fading components, can
be included by simply altering the nodes positions.

• Each node knows the (aggregate) distribution of the SFs
used by the other nodes of the network.

B. Utilities

We consider the pure strategies of the EDs as (s1, . . . , s12),
where adopting the strategy si means using SF = i. We
assume the utility ui(si, sj) of an ED i as a function of its
strategy si and its opponent’s strategy sj , as

ui(si, sj) = (13− i) 1{si ̸=sj} (1)

where the numerical choice, which is relevant only in its
ordinal meaning, is justified by that a node would prefer to
use an SF as low as possible; however, the indicator function
1{si ̸=sj}, models the fact that the payoff of a node is set to 0
if it is not able to transmit.

C. Interaction between two nodes

Now, we consider the following building block of our
model, i.e., a game theoretic interaction between two nodes.
This is modeled as a static game of complete information [8],
which is the situation in which only two nodes are present
in the entire network and they need to send a packet knowing
each other’s distance from the gateway. We will use this atomic
scenario to infer a more general behavior of the nodes within
our Bayesian game in the next section.

For the sake of simplicity, assume that when two packets
use the same SF, interference arises and they are automatically
lost, and both transmitters are aware of that. So, there are two
possible interactions among the nodes, depending on whether:
(i) one node is significantly more distant than the other, so
that their choice of SF is inherently different, or (ii) the nodes
are approximately at the same distance.

Case (i) can be seen by considering the following game in
normal form, in which one player can use any SF ≥ j, while
the second one, which is farther away, cannot use SF = j,
but can use any SF ≥ j + 1. For the sake of exposition,
we consider only the strategies {sj , sj+1, sj+2} since it is
immediate to show that all the others are strictly dominated
strategies and thus can be neglected.

P2
sj sj+1 sj+2

P1
sj 0, 0 13−j, 12−j 13−j, 11−j

sj+1 12−j, 0 0, 0 12−j, 11−j
sj+2 11−j, 0 11−j, 12−j 0, 0



The only Bayesian Nash equilibrium in this game is (sj , sj+1),
which is coherent with intuition: each player chooses its
preferred SF as the lowest possible that avoids interference
with its opponent. In case (ii) instead, the two nodes are almost
at the same distance, and both can use any SF ≥ j. Thus, the
normal form of the game is

P2
sj sj+1

P1 sj 0, 0 13− j, 12− j
sj+1 12− j, 13− j 0, 0

This static game has two pure strategies Bayesian Nash equi-
libria (sj , sj+1) and (sj+1, sj); this means that the equilibria
are found whenever the players make different choices, which
is known in game theory as an anti-coordination game [8].

IV. SELECTION OF THE SF AS A BAYESIAN GAME

A consequence follows from the previous one-to-one sce-
narios: if a node has j as its preferred SF, only strategies sj and
sj+1 are playable by a rational player, i.e., they are the only
rationalizable strategies [8]. Based on this, we can extend our
model with a Bayesian game to study the behavior of a single
player against a Bayesian opponent that represents the entire
network. Throughout our analysis we will use the following
notations. We will denote with (p7, p8, p9, p10, p11, p12) the
initial distribution obtained with the standard approach, i.e.,
every node selects the lowest SF that allows correct reception
in the absence of interference, according to its distance from
the gateway. Also, if the minimum SF of a player is j, then
we say the player is of type j.

Note that the choice of the SF of a node of type j is affected
only by nodes of the same type, of type j − 1, or of type
j + 1. This observation follows directly from the fact that
each player has only two rationalizable actions. Thus, in our
Bayesian game, player 1 is facing a player 2 comprising all
the other nodes in the network whose types are off by 1 at
most. Thus, depending on the type j of player 1, we encounter
different situations.

If player 1’s type is j = 7, it considers its adversaries (player
2) to be of type 7 or 8 with probabilities according to:

P[Player 2 of type 7] =
p7

p7 + p8
= r

P[Player 2 of type 8] =
p8

p7 + p8
= 1− r

Therefore, Nature chooses among two possible types of Player
2, type 7 with probability r, which yields the following normal
form representation

P2
s7 s8

P1 s7 0, 0 6, 5
s8 5, 6 0, 0

and type 8 with probability 1− r, which gives
P2

s8 s9

P1 s7 6, 5 6, 4
s8 0, 0 5, 4

The normal form representation of this Bayesian game in-
cludes 4 type-dependent pure strategies for Player 2 (s7 s8,
s7 s9, s8 s8, s8 s9). The type-agent representation below shows
that if r < 1

6 then the only pure-strategy Bayesian Nash
equilibrium is (s7, s8 s7). If instead r is above that threshold,
the game has two pure-strategy Bayesian Nash equilibrium,
which are (s8, s7 s9) and (s7, s8 s8).

P2
s7s8 s7s9 s8s8 s8s9

P1 s7
6(1−r) ,
5(1−r)

6(1−r) ,
4(1−r)

6 ,

5

6 ,

5r + 4(1−r)

s8
6r ,

5r

5 ,

4+2r

0 ,

0

5(1−r) ,
4(1−r)

In such a case the game can be reduced in order to study
the mixed-strategy Bayesian Nash equilibrium

P2
s8s8 s7s9

P1 s7 6, 5 6(1− r), 5(1− r)
s8 0, 0 5, 4 + 2r

If q denotes the probability that player 1 chooses SF 7, the
mixed-strategy Nash Equilibrium is q = (4 + 2r)/(6r + 5).

If player 1’s type is instead j with 7 < j < 11, Player 1 is
playing against Player 2 that can be of three different types
according to the following probabilities:

P[Player 2 of type j − 1] =
pj−1

pj−1 + pj + pj+1
= a

P[Player 2 of type j] =
pj

pj−1 + pj + pj+1
= b

P[Player 2 of type j + 1] =
pj+1

pj−1 + pj + pj+1
= c

In this case, Nature chooses among three different types of
Player 2. With probability a Player 2 is of type j− 1, and the
normal form representation of the game is

P2
sj−1 sj

P1 sj 13− j, 14− j 0, 0
sj+1 12− j, 14− j 12− j, 13− j

With probability b Player 2 is of type j, and the normal
form representation of the game is

P2
sj sj+1

P1 sj 0, 0 13− j, 12− j
sj+1 12− j, 13− j 0, 0

Finally, with probability c Player 2 is of type j+1, and the
normal form representation of the game is

P2
sj+1 sj+2

P1 sj 13− j, 12− j 13− j, 11− j
sj+1 0, 0 11− j, 12− j



In the normal form representation of the Bayesian
game, Player 2 has 8 type-dependent pure strategies, 6
of which are never a best response, and therefore will
not be played by a rational player. The consequently
reduced normal form of the game is the following matrix

P2
sj−1 sj sj+2 sj−1 sj+1 sj+1

P1 sj
a(13−j) + c(13−j) ,
a(14−j) + c(11−j)

13−j ,
2a+12−j

sj+1
a(12−j) + b(12−j) + c(11−j) ,
a(14−j) + b(13−j) + c(12−j)

a(12−j) ,
a(14−j)

If b < (c+ 1)/(11− j) or equivalently b < (2− a)/(10− j)
the only pure-strategy Bayesian Nash equilibrium is (sj ,
sj−1sj+1sj+1). Instead, if b is above such threshold, the
game has two pure-strategy Bayesian Nash equilibria (sj ,
sj−1sj+1sj+1) and (sj+1, sj−1 sjsj+2). In such a case, if
we denote q the probability that Player 1 plays sj , we have
an additional Bayesian Nash equilibrium in mixed strategies
when

q =
b(13− j) + c(12− j)

(25− 2j)b+ (13− j)c

If player 1’s type is j = 11, Player 1 is playing against
Player 2 which can be of three different types according to
the following probabilities:

P[Player 2 of type 10] =
p10

p10 + p11 + p12
= a

P[Player 2 of type 11] =
p11

p10 + p11 + p12
= b

P[Player 2 of type 12] =
p12

p10 + p11 + p12
= c

However, in contrast with the previous case, Player 2 has
only 4 type-dependent pure strategies. If Player 2 is of type 12
it has only one possible action. The normal form representation
of the resulting game is

s10 s11 s12 s10 s12 s12 s11 s11 s12 s11s12s12

s11
2a+ 2c ,

3a+ c

2 ,

3a+ b+ c

2c ,

c

2b+ 2c ,

b+ c

s12
a+ b ,

3a+ 2b

a ,

3a

a+ b ,

2a+ 2b

a ,

2a

If b < (2− a)/3 the only pure-strategy Bayesian Nash
equilibrium is (s11, s10s12s12), otherwise the game has two
pure-strategy Bayesian Nash equilibria which are represented
by (s11, s10s12s12) and (s12, s10s11s12). In such case, by
denoting with q the probability of Player 1 playing 11, we
have an additional mixed strategy equilibrium for q = 2

3 .
P2

s10 s11 s12 s10 s12 sj+1

P1 s11 2a+ 2c, 3a+ c 2, 3a+ b+ c
s12 a+ b, 3a+ 2b a, 3a

As a final remark, the case of a type-12 node is trivially not
requiring any lengthy analysis, because it is deterministically
played. Indeed, if player 1 is such a node, then it is so far
from the gateway that it can only use SF 12 for its packet
to be successfully received. Thus, this is the only choice of
player 1. The relevant cases of player 2 involve it being of type
11, which happens with probability r = p11/(p11 + p12), or
of type 12 too, whose probability is 1− r. In the former case,
player 2 anticipates the move of player 1 and the game ends
with payoffs equal to 1 and 2 for player 1 and 2, respectively.
Otherwise, the payoff is 0 for both. Thus, the expected payoffs
are immediately determined as r and 2r, respectively.

Data: j =type of the node, the distribution (p7, . . . , p12)
of the SFs

Result: q∗
if j = 7 then

r ← p7/(p7 + p8);
if r < 1/16 then

q∗ ← 1;
else

q∗ ← (4 + 2r)/(6r + 5);
end

else if 7 < j < 11 then
σ ← pj−1 + pj + pj+1;
a← pj−1/σ , b← pj/σ , c← pj+1/σ;
if b < (c+ 1)/(11− j) then

q∗ ← 1;
else

q∗←(b(13−j)+c(12−j))/((25−2j)b+(13−j)c);
end

else if j = 11 then
σ ← p10 + p11 + p12;
a← p10/σ , b← p11/σ , c← p12/σ;
if b < (c+ 1)/(11− j) then

q∗ ← 1;
else

q∗ ← 2/3;
end

else // case j = 1;
q∗ ← 1;

end
Algorithm 1: Algorithm resulting from the Bayesian game

V. PERFORMANCE EVALUATION

The resulting implementation of the Bayesian Nash equilib-
ria found in the game can be outlined according to Algorithm
1. This determines q∗ for each node of the network in such
a way that there is no incentive for any node to deviate,
which offers a robust and scalable implementation of our game
theoretic rationale.

To further prove our point and perform evaluations in a
realistic context, also including PHY layer details that are left
out from the simplifying assumptions of the game theoretic
setup, we implemented this game-theory inspired SF allocation



strategy in the well known simulator ns-3 [5]. Note that our
evaluation just refers to a static game, with the point of
showing the superiority of a game-theory approach over a
static allocation. A dynamic setup, with the aim of obtaining
an even larger diversity of SFs, is a possible extension of these
results. Still, the implementation in this simulator (code is
available on request) allows us to prove two points. First, the
proposed game theoretic procedure is available for practical
use at no additional cost than, e.g., the one used as benchmark
[2], which is one of the few SF allocation procedures proposed
in the literature. In our approach, the LoRa devices set the SF
independent of each other by following Algorithm 1, which
has extremely limited computational complexity. Second, we
are able to evaluate the performance of the resulting game
theoretic allocation both qualitatively and quantitatively. For
the former, we will be considering whether our procedure
leads to a generally good allocation of SF values, and possibly
outperform existing approaches, just looking at the character
of the SF distribution across the network. For the latter, given
that ns3 implements, thanks to the module implemented in [2],
a LoRa protocol stack for its simulation and evaluation in a
typical urban scenario, we are ultimately able to assess the per-
formance of the resulting SF allocation also including realistic
propagation phenomena and interference among terminals.

We considered N nodes deployed with uniform spatial
distribution around a single gateway. The parameters of the
simulation are N and the radius R of the area covered by the
nodes, which allows to consider dense or sparse environments.
Our benchmark for comparison is one of the few existing
strategies for a static allocation, the one reported in [2],
which is referred to as the “Standard approach,” and compared
with our “Game theory (GT) approach.” Differently from our
proposal, the Standard allocation requires the imposition to
a deterministic SF to all the nodes, which somehow limits
its scalability, whereas our GT approach only requires an
individual choice of each node and is fully scalable.

In Fig. 1 we show a specific instance of SF allocation
for N=4000 users placed in a radius of R = 2500 meters.
This represents an area densely populated with EDs clustered
around a gateway so that they are all in relatively good channel
conditions, i.e., theoretically able to use the lowest value of
the SF. The standard allocation procedure of [2] exactly ends
up in this situation, where all nodes use the same SF equal to
7. This outcome is not ideal since, in spite of good channel
conditions, there are losses due to collisions since nodes use
the same SF. Our game theoretic approach, instead, leads to a
more diverse allocation, where some EDs select an SF equal to
8. This is solely determined by the belief about the opponent’s
strategy, computed by updating the values of p7 and p8. So, in
a real evolving scenario, the users selecting a higher SF equal
to 8 will not be stuck to it forever, but rather periodically
switch between the values of 7 and 8 when they realize that
using SF equal to 7 leads to an increased chance of collision.

The proposed game theoretic approach results in a better
allocation, at no additional cost, since the choice is ultimately
left to the users and their desire to maximize their utility
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Figure 1: Allocation over a small area scenario (low R):
comparison between the standard approach (left) and game
theoretic allocation (right).
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Figure 2: Allocation over a small area scenario (low R): packet
error rate vs. number of users.

function in a distributed and selfish way. To better show
the superior performance of the approach inspired by game
theory in smaller network deployment, we show in Fig. 2 the
packet error rate resulting from interference between colliding
packets. Since the objective of the EDs in the game theoretic
setup is to primarily avoid interference from other LoRa
devices, the GT approach shows a superior performance. In
general, this is due to the fact that some nodes independently
increase their SF to reduce interference, as opposed to the
standard setup where all devices use a low SF.

However, we show that our proposal still requires some
finetuning regarding network scenarios where users are spread
over a large area. If we increase the value of R to 7500 meters
(three times the previous value), now the EDs are not all
able to use the same SF. In particular, the standard allocation
already gives a reasonably diverse distribution of SF values,
which avoids many collisions. Thus, in this case the reference
technique is harder to beat, and actually our proposed GT
approach performs slightly worse than it. As visible from Fig.
3 where both approaches are compared for N = 4000, in
the GT approach some users tend to increase the SF again to
avoid collisions, and this leads to a worse overall allocation.
Especially, many EDs even use SF 12, which offers worse
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Figure 3: Allocation over a large area scenario (high R):
comparison between the standard approach (left) and game
theoretic allocation (right).
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Figure 4: Allocation over a large area scenario (high R): packet
error rate vs. number of users.

performance, even though it was possible to avoid using it
entirely. They do so to avoid collisions, but since there are
other EDs choosing it, they still interfere with each other.

The poorer performance of this allocation is confirmed
from a quantitative standpoint by considering Fig. 4 where
we evaluate the packet error rate versus the number of users.
Despite the individual effort of the users to avoid collisions, the
SF allocation that results from the GT approach actually leads
to an increased interference among the users. Differently from
the previous scenario, where increasing the SF was always
beneficial, in this case it just changes the EDs that are involved
in the collision because of their identical SF values. Clearly, a
more reactive game theoretic design is required in this sense.
Yet, it is worth noticing that the situation in which nodes are
placed in a smaller area (as in Figs. 1 and 2) is a relevant
case for many applications since it is expected that most LoRa
nodes operate around gateways placed in strategic positions.

In any event, since this paper aims at giving an initial
contribution in the field of game theory applied to LoRa
operations, it is proven that the proposed technique is practical
and effective, and the improvement of its performance in
larger area networks can be considered as an open point for
improvement of the game theoretic approach.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a game theoretical model to
tackle the problem of assignment of Spreading Factors in
a LoRa network. We designed a distributed algorithm for
static allocation, which was proven to be effective and imple-
mentable. Our proposed approach turned out to be successful,
and even better than existing allocation policies, when the
nodes are clustered around a central gateway. On the other
hand, it obtained worse performance for networks spread over
a larger area. It is imperative to explore further ways to avoid
myopic deviations triggered by selfish behaviors but leading
to unchanged, or even worse, packet error rates.

This is a criticality of the approach that we adopted. Indeed,
a static allocation – which is the result of a static game –
certainly suffers from this kind of deviation that are made once
and for all by the users. A dynamic game theoretic setup would
probably avoid these problems, but also requires a carefully
planned analysis to determine stability conditions and a correct
dimensioning of the required complexity to plan the entire
strategy ahead of time. Thus, its development is clearly out of
the scope of the present contribution, but it is certainly worth
considering as an extension for future work.

Also, other extensions can be envisioned in a more practical
perspective, such as enabling game theoretic deviations only
in smaller scale scenarios (e.g., allowing for them only be-
tween the lower SF values), where they are offering superior
performance at no cost.
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