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Abstract—Intelligent autonomous vehicles navigating in a
smart city environment need to find a parking spot, and often
resort to multi-storey parking facilities. The task of efficiently
using parking resources is at odds with the competitive nature
of autonomous vehicles operating in a selfish way. In this paper,
we model the problem through game theory and we evaluate the
efficiency of a distributed decision mechanism. At the same time,
we also gain insight on the complexity of identifying efficient
solutions and hint that the overall problem is difficult to solve
without compromising the inherent selfish objective of each
individual vehicle. We also propose some distributed simulation
scenarios to capture some aspects of the competition, thereby
suggesting possible further analytical studies.

I. INTRODUCTION

Smart cities are expected to face many issues related to
vehicular traffic and its efficient handling [1]. One pressing
problem is represented by car parking in downtown areas
where commuters converge. Notably, even in the case that the
entire downtown area relies on public transportation and/or
consists of pedestrian zones, the problem is just deferred to
the management of multi-storey parking facilities in the close
proximity of the city centre [2].

The number of public park spaces in Europe alone is
around 300 millions. Multi-storey parking lots are estimated
to be in the order of tens of thousands [3]. These numbers
make the problem of an efficient management of such struc-
tures particularly relevant. At the same time, it is estimated
that in many metropolitan areas of Europe, North America,
or Japan, the average driver spends almost one day every year
looking for a parking spot. For example, [4] and references
therein report that the average time spent per year in a parking
facility is 17 hours in the United States of America, with
peaks of more than 100 hours, for example, in New York
City. This immense amount of slow driving is done while the
engine is running, which to leads not only inconvenience for
the drivers but also lots of unnecessary CO2 emissions. Thus,
approaches to this problem would also insert in the context of
finding energy-efficient and environmental-friendly solutions
for smart cities [5].

However, the development of good searching strategies
for a parking spot contrasts with the nature of the prob-
lem itself. While coordinated solutions could be conceived,
impatient drivers are hard to organize and not cooperative,

since they pursue selfish goals, i.e., they tend to compete
for the limited resources available rather than collaborate.
Additionally, drivers moving in a parking facility operate
with limited information about decisions of other drivers and
can reasonably assume them to be self-centered. In other
words, this setting fulfils most criteria that are typical of game
theory, which is a cross-disciplinary approach that is gaining
momentum also in relationship to networks and smart city
scenarios [6], [7].

Despite these properties of the problem at hand, and
the increasing interest of the scientific community towards
solutions for smart and interconnected vehicles, we found
that the literature is surprisingly scarce of game theoretic
investigations in this context. While there are indeed some
papers on applications of game theory to the problem of
parking cars [8]–[10], none of them considers the scenario
of a multi-storey parking facility. Such an assumption further
complicates the approach, since it is expanded from a single
domain of competition to a multi-layer competition. Also,
the general conclusion from the literature is simply that the
problem is essentially hard because, due to the symmetric
character of all the vehicles from a theoretical standpoint,
there is no solution of the one-fits-all kind.

Based on this existing background, we take a different
direction in that we explicitly model a scenario for a multi-
storey parking facility. We start from a theoretic analysis of
the possible strategies to be used in such a context, where,
akin to the existing literature, we show that the problem has
a clearly inefficient Nash equilibrium and also prohibitive
computational complexity. However, based on the established
game theoretical framework, we are able to analyze some
intuitive scenarios, which we believe to be promising to
generate future approaches to the problem. For complexity
reasons, this analysis is carried out by means of simulations.
Still, we are able to highlight some possible heuristic choices
that can lead to more efficient descriptions of the problem for
future developments.

The rest of this paper is organized as follows. Section
II reviews related work about smart car parking and game
theory, and discusses some original traits of the scenario at
hand. In Section III, we present a model of the problem as a
tragedy of commons, where we find that the best strategy for
the players is a simple scan of the available levels. Section
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IV describes some possible variations of the scenario, where
we account for further elements available to the players
and/or we investigate possible characteristics of the drivers
in a simulation context. Section V discusses some numerical
results and finally Section VI concludes the paper.

II. RELATED WORK

The general idea that smart car parking is one of the promi-
nent IoT-assisted application in future smart cities is quite
commonly encountered in the literature [11], [12]. However,
the main focus of the vast majority of the papers is the archi-
tectural implementation of the information exchange across
individual heterogeneous devices as the enabler for smart
solutions of car parking, allowing for notification exchange
about the availability of a parking spot [4], the controlled
access and recognition of vehicles [13], and notification and
possibly fining of violations [14].

We take a different approach, where we give such a plat-
form for granted and we challenge the essence of the problem
as a strategic interaction of multiple intelligent agents. These
can be the drivers themselves, or even automata controlling
the vehicles, which is certainly a not so distant reality [15].
As a side note, automating the entire process through an AI-
assisted parking procedure would have the additional benefit
of relieving human drivers from navigating through a multi-
storey parking facilities, which is investigated in the literature
as being sometimes perceived as claustrophobic or unsafe
[16], and where the pollution of exhaust emissions in a closed
space causes a poor quality of the air [17].

Overall, our idea is to explore solutions from a mathemati-
cal standpoint, for the parking facility considered as a shared
pool of a discrete resource (the parking spots), which results
in a multi-person multi-agent optimization. The instrument
of choice for this analysis is game theory [7], which is
exactly designed to investigate such problems. Yet, despite
transportation problems in smart cities being quite an ideal
scenario for the applications of game theory [6], we found
out that the investigations about the problem of parking cars
in shared stationing areas are scant, and even more so when
specific constraints about the structure of the resources are
given, as is the case for a multi-storey parking lot.

One notable reference is [8], where the problem of assign-
ing parking spots is addressed from a general perspective as a
complete or incomplete information game. The main finding
is that the problem is inherently difficult, with unbounded
Price of Anarchy (PoA), and high computational complexity.
For this reason, a heuristic gravitational approach is proposed.
The authors of [9] expand from this result by considering the
possible structures of a Nash equilibrium for D competing
drivers, and basically deduce an admission control procedure
that limits the value of D to a suitable level. This is achieved
through some priority heuristic modeling accounting for in-
dividual traits of the drivers. In [10], the problem is modeled
as a Stackelberg game with the additional intervention of a
primary player representing an authority body, which is a
standard way out from the unbounded PoA.

However, none of these contributions explicitly addresses
the key aspect that we consider here, which is, the resource
shared in a multi-storey parking is not a homogeneous good.
Navigating through different levels can be time-consuming
and stressful for the drivers and needs to be captured in the
utility functions that are guiding the agents in their choice
[18]. Naturally, this exacerbates the inherent inefficiency of
the competition, already present when the shared resource
is homogeneous. Individual characters of the agents can be
certainly included to further differentiate among them and
break symmetries, which is generally beneficial to prevent
the PoA from exploding [19].

Finally, given that the inherent complexity of the problem
is backed by theoretical findings, we also consider a practical
approach through a multi-agent simulation. We believe that
such a direct framing of the problem, which is also meaning-
ful in the context of smart cities [20], can be convenient in
setting possible ideas for future viable policies to implement
in real devices.

III. MODEL OF THE COMPETITION AS A GAME

The game is described in its basic form by a set of indepen-
dent non communicating agents who share an environment,
which in our case consists of a multi-storey garage with some
pre-defined numbers of levels and parking spots per floor.
Agents enter the facility on the ground level (denoted as 1)
at some point of the game determined by chance. In game
theoretic jargon, this is said to be a decision made by a virtual
player called Nature.

While positioned at level `, 1 ≤ ` ≤ L, the agent has
the options to go up a level (except on level L), go down a
level (except on the ground level) and search the level. If one
player searches a level with a free spot, the player takes it.
If two or more players search a level with fewer free spots
than them at the same timestep, a collision resolution occurs,
which corresponds to a random allocation of spots among
them: in other words, if n players simultaneously search for
a spot in a level with just k < n spots available, k of them
get the spots, and this is determined by chance (once again,
another choice made by Nature).

A player that found a free place has no more decisions to
make in the game and has a final immutable utility. The utility
of each player is computed based on the amount of levels
searched and levels changed. In the numerical evaluations,
we consider a cost CM = 3 for each move upwards or
downwards of a level, and a cost CS = 7 of searching
for a free parking space on a given floor. This set of rules
constitutes the simplest basis of the problem. We remark that
the actual numerical choices of these costs do not impact
significantly the final results, as long as they correspond to an
increasing cost for more level transitions and/or unsuccessful
searches. Since the utilities mostly have an ordinal meaning
[7], there are actually many equivalent choices of increasing
cost functions that would fit the same intuition. For a more
detailed discussion about the heuristics and how to model the



utility of a car parking result, the reader can also refer to [18]
that offers a comprehensive review.

Albeit the formalization of the game is simple, its com-
putational complexity grows quite rapidly even for a small
parking garage and a couple of players. The decision tree
of the extensive form of such a game quickly increases in
width, reaching a space complexity of O(N3), where N
is the number of players, and becoming more spread out
at every in-game timestep. The game is also not finite for
some sets of choices, players can repeatedly go up and
down or search through full levels indefinitely. To be able to
compare strategies, we introduce reasonable restrictions, like
not allowing to go down right after going up and forcefully
stopping the game at a given timestep, punishing still active
players. Still, even these artifices make the computational
complexity prohibitive for an exact analysis: for example, a
full game with 4 players, 4 levels, 2 parking spots per level
and a time limit of 10 timesteps has 1363 final outcomes.

Another problem with the extensive form of the game, i.e.,
its representation through a decision tree, is that the vehicles
do not really enter the parking garage simultaneously. Their
order of entering determines whether they will find a spot.
However, we take the game theoretic stance of modeling
the players’ strategies as decisions made a priori and not as
behavioral choices. In other words, the strategy of a player
is defined as a list of commands to follow, which would
make much sense in the context of smart vehicles moving as
controlled by automated programming [15]. In this context,
the character of a player of being the first to enter, or last, or
anything in between, could be framed as a Bayesian type [19],
since it ultimately impacts the utility and determines whether
a strategy is efficient. However, it also makes sense that this
aspect of the gameplay, decided by Nature, is not disclosed to
the individual players and remains a random element of the
game. In actuality, by the time of choosing a strategy, each
player has no knowledge whether it is entering first, last, or
in between. Thus, an optimal strategy for a player should on
average outperform other strategies if played repeatedly with
different entering times.

In our scenario, we model this as an initial move of Nature,
before any player decision. When players enter the garage,
they do not know their time of entering (nor their position
in the overall order, even). However, to respect the game
theoretic conditions, they have uniform probability 1/N of
occupying each order position, where N is the number of
players. Also, we assume that N and the uniform distribution
of this Nature’s choice is common knowledge among the
players.

This unknown time of entering makes the setup fully sym-
metrical to all players, and this is also common knowledge.
All decisions can be seen as simultaneous, because players
do not gain any new knowledge during the game. For each
player, this means that, before entering the parking garage, a
fixed sequence of moves is chosen for the game, for example
’UUSUSDDS’ (Up, Up, Search, Up, Search, Down, Down,
Search). A player follows this strategy until the game ends,

either by finding a spot or because the game is forcibly
terminated when a maximum number of rounds is reached.
Given that this information is also fully available to perfectly
rational players, it follows that a Nash Equilibrium of the
game can be found by symmetrically playing the average-
best strategy for all players.

So, we ran the game many times and analyzed the out-
comes. In these runs, we considered all combinations of
strategies and entering sequences. We also considered differ-
ent values of N and different garage parameters, such as the
number of levels L and search or moving costs. In spite of the
results being purely enumerative, it is still possible to draw
some general conclusions, since the outcomes are very con-
sistent. Different garage sizes or costs of moving/searching
do not impact the ranking of best performing strategies. As
an example, Table I reports the top 10 best strategies and
their utilities for a game with 4 levels, 2 spaces per level
and 4 players. Once again, we remark that the utility values
are reported just for the sake of completeness, but the most
important aspect is the preference order, which would actually
be the same for a wide array of numerical choices.

TABLE I: Best strategies and their utility values for a static
symmetric competitive game

strategy utility value
SUSUSUS -5.2
SUSUUSDS -5.6
SUUSDSUUS -6.0
SUUSUSDDS -6.4
USDSUUSUS -6.4
USDSUUUSDS -6.8
USUSDDSUUUS -6.8
SUUUSDDSUS -7.2
SUUUSDSDS -7.2
USUSUSDDDS -7.2

This confirms that the best strategy for a player is to
search the ground level first, and if it is full, to continue
with the upper levels in increasing order. This is a pretty
intuitive behavior that people normally show in parking
facilities, where they know nothing about their occupation
or whenever they can assume a symmetrical behavior of the
other players. This also confirms the conclusions of [8], [9]
about the Price of Anarchy of such scenarios being very high
(potentially unbounded as the number of players increases).
Intuitively speaking, all players are expected to blindly follow
a sequential search, despite this being clearly non-optimal for
the last players to enter the parking garage. Such a conclusion
is also reached by these players themselves, however there is
no better deviation that they can apply, since they are not
aware of being in such unfortunate positions and may still
consider to be among the first entered instead.

Incidentally, this also justifies the need for better col-
laborative strategies where the individual vehicles exchange
information about their position and the occupancy they
found in the parking garage [7]. From a game theoretic



perspective, this can be framed as a further cheap talk game
about the “state of the world” (meant as an occupation report
of the parking garage made by vehicles ahead). However,
this interesting approach would also require some validation
mechanisms to prove that the report is not falsified [21].

IV. DYNAMIC SIMULATION TESTS

To expand on the obtained insight and analyze the de-
scribed framework of a multi-storey parking garage further,
with a realistic number of vehicles and a reasonable time
window, we took a simulation approach. We considered an
agent-based simulation scenario [20], whose underlying rules
are similar to the ones described before in Section III. Each
agent represents an individual vehicle, which can be assigned
player-like characteristic of individual selfish behavior as per
the game theoretic approach [6], [18].

For the sake of a simpler simulation, we modeled the
players as only moving in one direction throughout the
parking facility. Starting from the ground floor, they can
decide to search the floor for a parking spot, or not to
search and move a floor up. Once they reach the top floor,
their choice is limited to searching or going down until they
reach the ground floor again. We found out that this choice
simplifies the investigations without significantly changing
the conclusions that can be inferred; otherwise, we would
have an unnecessary criterion to decide whether to move up or
down every time, which would also lead to inefficient choices
such as up-down loops.

We still consider the players to be driven by numerical
utilities associated to the value CM for the cost of moving
up or down, and the searching cost CS . The simulation runs
for an artificial “day” that is subdivided into 1000 individual
time steps. At every step, the game (as the player “Nature”)
randomly decides if a new agent enters or an existing agent
leaves the parking garage, thereby emptying the occupied
spot. Also for simplicity, we do not consider multiple arrival
events, which is realistic since it is assumed that the entrance
of the garage allows for one vehicle at a time. The chance of
a new agent reaching the parking premises to enter at time t
is equal to 1− t/1000, i.e., it shifts gradually from 100% at
timestep 1 to 0% at timestep 1000.

To control this environment without changing its dynamics,
two additional restrictions are implemented. No more than
Nc vehicles can enter the multi-storey parking facility at
the same time and no more than Nt vehicles in total can
enter the game in the entire simulation. Using these rules, the
resulting environment matches a reasonable entry/exit process
of a parking facility in a downtown area over one day, being
mostly full during the daytime, while vehicles leave again in
the evening so that the parking garage is empty by the end of
the day. An example of how the occupation of the different
floors of the parking facility looks over the course of one day
can be seen in Fig. 1.

In contrast to the analytical model, here each player
controlling an agent (vehicle) has access to a variety of
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Fig. 1: A Parking Facility over the course of one day.

information on the current state of the game: for example,
even though a player does not know the precise occupancy
state of each floor, it makes sense to assume that it knows its
time of entrance. Also, the current availability of free parking
spots in the present floor may be known, e.g., being displayed
at the entrance of each floor.1 Thus, we can adapt the planned
strategies to this side information that is common knowledge
among the players, similar to that they also know the trend
of arrival and every other general aspect of the game. The
idea is to define different strategies using these information
and compare the utility of vehicles playing the game.

We consider two particular tests to perform on this sce-
nario. For both tests, we resort to a simulation of many
game instances with different random generations. Averaging
over multiple instances, we are able to gain evidence of how
different strategies rank against each other under different
conditions. The first investigation, called Mobility test, aims
at analyzing the general impact of the readiness of each
agent to change floor. Each player j is assigned with a
random mobility value denoted as µj ranging from 0 to 1, that
influences the decision of changing floor, resulting in an agent
having higher chance to keep searching in the current floor
when the value is lower and preferring to be more mobile
when the value is higher.

The formal specifications are as follows. Denoting by L
the number of levels, fi and gi the free and total parking
spaces on level i for 1 ≤ i ≤ L, respectively, we assume that
each player j located at level i follows this decision rule:

search if
fi
gi
> r+

µj − 0.5

5
move (up or down) else

where r is a uniformly distributed pseudorandom number in
[0, 1). The cost incurred by each player is also accordingly
increased by CS or CM , respectively. If a parking spot
is found, the agent terminates its run and pays the final

1The presence of available free spots at a given level does not necessarily
prompt a player to search for that level immediately since it may also expect
that other players will do so and this may result in a wasted effort.
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cost (negative utility). For the sake of uniform numerical
evaluations, in the following section we will choose the same
value of µj for all the players.

The second investigation is instead based on the remark
that, by looking at Fig. 1, one might assume that a player
who frequents the parking facility is aware of the trend
and purposely tries to play against it. To explore this, we
developed the Time of Entrance Test, where we assume
that players entering the parking facility at the beginning
of the simulation are aware that the parking premises are
likely empty and therefore search for a spot right away. As
the day goes by, players prefer to move up a few floors
before searching. In the evening, the tendency gradually shifts
towards searching on lower floors again.

Thus, the selection rule of players when they are at floor
i changes according to time t as follows. If t < 200:

search if
1

20000
· t · (90− 20i) < r

move (up or down) else

For 200 ≤ t ≤ 600:

search if
1

10
· (9− 2i) < r

move (up or down) else

and for t > 600:

search if
1000− t
40000

· (90− 20i) < r

move (up or down) else

where again r is a uniformly distributed pseudorandom num-
ber in [0, 1).

V. NUMERICAL RESULTS

We perform the previously devised tests by simulating a
parking facility consisting of 4 floors with 25 parking spaces
each, therefore Nc = 100 and we also consider that no more
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than Nt = 400 vehicles enter for one day. The cost values
are chosen as per Section III, i.e., CM = 3, CS = 7.

As a possible way to understand the challenge of achieving
an overall efficient allocation, we consider the following
evaluation in the Mobility Test. We change the Mobility
value of the players, reflecting the predisposition of players
to change a floor over fighting for a spot in the present
one. The result is displayed in a heatmap in Fig. 2. Since
this plot shows the total utility of the players, the value is
clearly increasing in the number of players. Yet, there is a
utility increase whenever on average some of the players are
willing to switch floors instead of lazily search for a space
in the present one (which possibly ends up in searching a
full floor). Still, having all the players moving around is
not a good solution either, so there is clearly a trade-off
involved, and only a fraction of the agents should change
floor. On the one hand, this shows the need for a strategy
that breaks the symmetry of the game. However, from a game
theoretic perspective, this also highlights how the strategy of
a sequential search is strictly dominant and thereby preferable
if all the other players are willing to move to a different floor.

Fig. 3 directly compares the two approaches in the two
tests. The results match the intuition that exploiting additional
information such as the time of entrance and the general
pattern of arrivals in the facilities dramatically improves the
cost. Fig. 4 shows a comparison of different strategies. It is
confirmed that the sequential searching strategy is generally
better and this reflects its status as a strictly dominant strategy.
In general, players with the strategy of alternating between
searching and moving do perform very well.

VI. CONCLUSIONS

Systematic solutions for vehicles management are key in
smart mobility environments. In this paper, we investigated
some scenarios related to the problem of efficient competitive
search for a parking spot in a multi-storey garage. From
several findings, it is confirmed that a sequential search
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starting from the ground floor is the best strategy, but this
also leads to a very inefficient game theoretic equilibrium.
While this strategy appears to be the most favorable for selfish
goals, it causes no desire for unilateral deviation towards more
altruistic solutions. Indeed, it is not recommended to attempt
to counter the strategy chosen by the majority of players.
The performance of the individual agent gets significantly
worse when players act as outliers compared to mimicking
the strategy of the others.

However, this result opens the door to several challenges
in the effort of finding more efficient distributed allocations.
First of all, we identified that the exploitation of side infor-
mation (and specifically the time of entrance in accordance
to the typical occupancy pattern over a day) can be extremely
beneficial for devising a better solution, even from a global
perspective. Yet, even this finding does not solve the problem
of the same strategy being indifferently promoted to all the
users, therefore obtaining an inefficient Nash equilibrium. At
the same time, randomizing the strategy or adopting inter-
vehicle communication does not guarantee high efficiency
either, and also poses the additional challenge of trusting other
users. The search for an efficient solution still appears as an
open problem, which is undoubtedly interesting.

REFERENCES

[1] N. Z. Bawany and J. A. Shamsi, “Smart city architecture: Vision and
challenges,” Int. J. Adv. Comp. Sc. App., vol. 6, no. 11, 2015.

[2] M. Y. I. Idris, Y. Y. Leng, E. M. Tamil, N. M. Noor, and Z. Razak. “Car
park system: A review of smart parking system and its technology,”
Inf. Techn. J., vol. 8, no. 2, pp. 101-113, 2009.

[3] Catella Market tracker – Press release September 2016, available at:
https://mb.cision.com/Public/6412/2070244/98a14d35d45acd78.pdf

[4] S. Das, “A novel parking management system, for smart cities, to save
fuel, time, and money,” Proc. IEEE CCWC, pp. 950-954, 2019.
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