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Abstract—The cognitive radio network paradigm increases
spectrum usage efficiency by allowing secondary users to perform
shared access to licensed spectrum. This systematic improvement
may be obtained in a practical way by implementing a distributed
cooperative spectrum sensing mechanism. Although such decen-
tralized sensing offers many advantages, it also opens the door to
new security threats such as spectrum sensing data falsification
attacks. In this work, we design a new mechanism that exploits
sensing correlation through the concept of reputation to enhance
resilience against this type of threat. By both theoretical analysis
and simulations, we show that our proposal provides incentives
for cooperation among honest devices and reduces the spectrum
occupancy assessment error rate in the presence of malicious
users.

I. INTRODUCTION

Over the past 20 years, the number of devices connected
to the Internet has been soaring and it is predicted that the
full implementation of the Internet-of-things paradigm will
boost the connectivity demand [1]. Thus, a more efficient
resource allocation is required to provide connection to a
massive number of devices, especially in terms of spectrum
usage [2]. Since the current static allocation of spectrum
resources leads to low efficiency and utilization [3], [4], many
regulatory bodies introduced the idea of spectrum sharing
to mitigate this problem [5]. In this scenario, among the
approaches proposed to detect Primary User transmission, it
has been proven that the distributed sensing paradigm with
the joint participation of all opportunistic users can effectively
improve the system detection capability and solve sensing
problems found in centralized approaches [4], but a new
security threat, called Spectrum Sensing Data Falsification
(SSDF), may arise [2], [6]. In this paper, we propose and
analyze the performance of a novel approach to ensure the
security of a CRN against SSDF attack. Our proposal is
based on a reputation mechanism strengthened by channel
correlation among devices. We show that our technique is able
to enhance system security as long as the individual channel

measures of the secondary users are sufficiently correlated.
This claim is backed up by both a thorough analysis grounded
in a game theory framework, where we consider the subgame
perfect equilibrium of a dynamic game with infinitely many
stages of reputation, as well as extensive numerical evaluations
obtained via simulation.

II. RELATED WORK

The problems of a distributed sensing approach comprise
two levels. First, even purely collaborative users may have an
incentive for selfish behavior, i.e., an aggressive/exaggerate
demand of resources by some users may lead to an increased
reward for them, which is to be avoided by the network
acting as a whole. Moreover, MSUs may be present in the
network, and their identification is key to prevent SSDF
attacks. Some strategies have been proposed to counteract both
problems. In [7], it is shown how channel spatial correla-
tion can be exploited to identify MSUs through a low rank
matrix completion algorithm through an iterative procedure
that identifies and disqualifies malicious users, but a rank
estimation algorithm and an estimation strategy for the number
of corrupted channels are required. In [8] an estimator based
on beta distribution is proposed to generate a trust aware
decision mechanism, but the existence of a Primary User
Base Station (PUBS) in addition to the FC is supposed and
communications between PUBS and FC are possible and
indeed necessary. The authors of [9] analyze how the presence
of MSUs can interfere with the decision made by the FC
and propose a mechanism for MSU identification based on
sensing time sequences and decision results. The authors of
[4] stress instead how the concepts of trust and reputation are
fundamental for implementing a security mechanism against
SSDF attacks. By exploiting correlations on sensed data, they
suggest to increase or decrease the reputation of a SU in order
to assess the amount of resources assigned to a device for
incentivizing honest SUs cooperation.



III. MECHANISM DESCRIPTION AND FORMULATION

A. Scenario Assumption
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Fig. 1: Considered Scenario

In this paper, we consider the CRN system in Fig. 1
and described in the IEEE 802.22 specifications as well as
the general literature on wireless transmission [7]–[13]. This
scenario involves 3 entities: one primary or incumbent user,
a fusion center, and a set of secondary users that have CRN
capabilities. As visible from the figure, channels are directly
sensed by the secondary nodes, who report to the FC both
their perceived channel occupancy and a reputation about the
others. The FC, in turn, aggregates these reports and makes
relevant assignments. Such a model will be analyzed through
the tenets of game theory, which is common in this cognitive
setup.

We assume the presence of one Primary User (PU) that owns
the license to access the spectrum band B. We consider N
channels in the band B and a PU that can transmit through any
of them at any time. The PU shares band B with other users
but has a priority over other CR users in accessing spectrum
band B. We now make some assumption about PUs:
• Other entities in the CRN have no specific information

and details about PU transmission activities such as
PU type, its transmission equipment, its transmission
waveform, its location, and so on.

• The PU is transmitting from time to time, without any
predefined pattern and without signaling its transmission
episode to the CRN

The distributed sensing reported by the secondary users is
combined through a fusion rule at the FC so as to determine
the final evaluation on individual channel occupancy [9], [10],
[13]. The FC is also responsible for the CR users allocation
in the channels unused by PU. Further, as in [7], we assume
the FC capable of splitting all the SUs into subsets based
on their positions. A subset of SUs is also called a location.
FC periodically sends to individual SUs information about
which other secondary terminals are their neighbors. For each
location, FC requests periodically each SUs in the location
to provide data about spectrum occupancy and the SU’s

assessment of neighbors’ reputation. Then, FC fuses SU data
and makes a decision about occupancy according to a fusion
rule for each channel over a location. Finally, FC assigns the
available resources to SUs. We make the following assumption
on the FC:
• The FC does not have any role in channel sensing. The

sensing system does not rely on a central/privileged unit
to sense the spectrum.

Secondary users (SUs) are unlicensed CR users that exploit
the spectrum holes left by PU to access one or more of the
N channels of band B. There can be two types of them:
honest secondary users (HSU) and malicious secondary users
(MSU) [9], [10], [13]. It is possible to distinguish between
cases where all the MSUs are acting independently, or when
they collaborate towards a common malicious goal; the latter
would be the case where a single attacker has gained access to
a set of nodes that were initially honest and corrupted them.
In this paper, we consider this situation of coordinated attacks,
which is clearly a worst-case scenario; clearly, our proposal
works even in the case that attacks are not orchestrated by a
single entity. We also make some assumptions on the sensing
capabilities of cognitive terminals, namely, we assume that
both HSUs and MSUs are the same type of devices, and have
the same sensing capabilities. We assume that:
• A SU can identify the presence of PU and modify their

transceiver parameters to exploit spectrum holes left by
PU.

• For each subset of devices, the sensing measurements are
strongly correlated. This implies that devices belonging
to the same subset have a high probability to sense the
same spectrum condition [7].

• When a SU is transmitting its spectrum and reputation
data to the FC, all the devices in the same subset are
able to listen and correctly decode its transmission.

• Each SU can assign a reputation index as a numerical
value between 0 and 1 to all other SUs belonging to
the same location. In game-theoretic terms, this value
represents the belief that an HSU has about the other
player being honest; however, MSUs are aware of their
status of malicious nodes and therefore can falsify their
belief too.

We now define some notation that will be useful for the next
sections. In particular, we have:

gi,j ≡ Probability that SU j is honest according to SU i,

where SU i and j are in the same location.
(1)

Different SUs can have different indexes depending on many
factor such as what they sensed or if they are MSU or HSU.
We define gi,i = 0, since in our model the self-judgment of
users is not relevant. Suppose we have k SUs belonging to the
same location. For each user i, we define the following vector

gi = [gi,1, gi,2, . . . , gi,i−1, 0, gi,i+1, . . . , gi,k]. (2)

Thus, gi is a real vector of length K with each entry in [0, 1].
We now clarify the difference between HSUs and MSUs.



We suppose that both HSUs and MSUs use some energy
detection techniques to assess channel occupancy. However,
HSUs are ordinary devices that aim at maximizing their
individual spectrum-time access and report true information
to FC. Thus, we suppose HSUs do not alter spectrum reports,
but they can manipulate reputation indexes to obtain more
resources. This assumption is justified since an HSU aims
to increase its communication opportunities and thus has no
incentive for inducing a wrong decisions at the FC by altering
its spectrum reports. Conversely, MSUs also want to induce
wrong decision at the FC; thus, they can alter both spectrum
reports and reputation indexes to this end. Note that MSUs do
not care about the resource assignment made by FC.

B. FC Fusion Rule and System dynamics

Since each SU assigns a reputation index to every other SU,
due to different assessments a SU can have a wide range to
value assigned to it. For example, MSUs can assign 0 to a
given SU, while other HSUs give it 1. The FC needs to fuse
all reputation indexes reported by the SUs to get a unique
reputation value for each SU, as a single number between
0 and 1 describing how reliable that node is. One way to
compute it could simply be a mathematical average of all
reputation indexes a SU receives. However, such a fusion
rule would be rather easy to bias by an MSU, which is an
unwanted effect on our goals. Instead, we consider a weighted
aggregation rule, to obtain a quantity that we call the global
reputation index (GRI) of an SU. The GRI gives a global
measure of how much reliable a SU is generally believed to
be throughout the network, also taking into account all the
reputation indexes of the nodes providing this information.
We define the GRI Gi for SU i as:

Gi =

K∑̀
=1

g`,i
K∑
t=1

gt,`

∑
h6=i

K∑̀
=1

g`,h

(3)

In other words, (3) gives Gi as the weighted sum of the reputa-
tion indexes of SU i, weighted on the plain arithmetic average
of all reputation indexes of the node reporting that index. For

example, the weight for the term gj,i is 1
K−1

K∑̀
=1

g`,j . Notice

that, when weighing over all SUs to get the average, term
1

K−1 cancels out in (3), since it appears at both numerator and
denominator. By definition gi,i = 0, so column i is excluded
from the sum in the denominator, and is not taken into account
in the numerator either.

Now we describe how the FC uses GRIs to assess channel
occupancy and assign resource shares to SUs. For each SU
i in each location, FC receives the channel sensing reports
together with the reputation indexes gi. We define the sensing
report of user i on channel h as chi . In particular, we have that:

chi =

{
1 if the channel is sensed busy
0 if the channel is sensed idle

for each user i ∈ {1, 2, . . . ,K} and for each channel h ∈
{1, 2, . . . , N}. Hence, we can define the binary vector of all
sensing results for user i as ci = [c1i , c

2
i , . . . , c

N
i ]. With the

GRIs and the vectors ci of each SU i in the location, the FC
can infer about channels’ occupancy. To do so, it computes
the weighted average of spectrum information, using the GRIs
as weights. In this way, sensing reports provided by SUs that
have a higher probability of being malicious (i.e., a lower GRI)
with respect to the others have a reduced impact on the final
decision. We define the function

Φ(h) =

K∑̀
=1

ch,`G`

K∑̀
=1

G`

, h = 1, 2, . . . , N (4)

For each channel h, FC computes Φ(h) and compares the
results with a predetermined threshold τ . If Φ(h) ≤ τ
the channel is marked as free, otherwise it is labeled as
busy. Moreover, the FC calculates the percentage of resources
assigned to each SU. This assignment is also linked to the GRI
of a user for two reasons. First of all, although HSUs cooperate
during sensing, we aim to discourage selfish behavior by HSU.
Moreover, malicious MSUs should get low reputation indexes
from HSUs, and thus a lower amount of resources is assigned
to them. We hence consider the following formula to compute
the percentage of resources Ri assigned to user i:

Ri =
Gi∑̀
G`

(5)

We now describe the dynamics of the system. The sensing
cycle is divided into 5 different stages:

1) FC Request: FC broadcasts a request for spectrum
information to the location of interest.

2) Spectrum Sensing: For each of the N channels and
by using energy detection technique, the SUs in the
location sense the spectrum and decide whether the PU
is transmitting.

3) Reporting and Listening: sequentially, each SU reports
spectrum occupancy and reputation indexes about neigh-
bors to the FC. In this stage, when it is not transmitting,
a SU listens to its neighbors that broadcast their data.

4) Reputation Updating: After all SUs transmitted their
data, each SU updates its indexes by comparing the SU’s
information about spectrum and data broadcast by SUs.

5) Final Decision: FC makes its final decision about chan-
nel occupancy and calculates the percentage of resources
assigned to every SU. SUs receive from the FC the list
of channels and time that they are allowed to use for
transmitting data.

While steps 1, 2 and 5 do not depend on the SUs type, during
steps 3 and 4 the actions performed by each SUs strongly
depend on their type. For example, HSUs and MSUs may
report different channel statuses even if they sensed the same



channel condition. In particular, the updating rule is described
by the following formula:

gt+1
i,j = max{min{gti,j + α− βχi(c

t
i, c

t
j)− γψi(g

t
i , g

t
j), 1}, 0}

(6)
In (6) three quantities are taken into account during the
updating process of the index for user j from user i. The
first one is the past reputation indexes, gi,j , the second one is
the function χi, which depends on the distance between the
two spectrum data vector ci and cj , the third one is a function
ψi that depends on the two vectors of reputation indexes gi

and gj . Functions ξi and ψi depend on i since different users
follow a different update rule depending on their type.

In particular, for MSUs, we set the following update rule:

gti,j =

{
0 if SU j is not malicious
1 otherwise

, cti = ¬cttrue ∀t

(7)
where ¬cttrue is the opposite of what sensed, as considered in
[4]. We also assume that MSUs are performing a coordinated
attack, so they are fully aware of the type of the other nodes.

Given this falsification strategy, in the next section we first
analyze the requirements that an HSU strategy must have to
discourage selfish behavior among HSUs, and then we propose
a strategy that makes the system resilient to the presence
of noise and MSUs. Indeed, in a real scenario, the sensing
results of each SUs may be different, as a consequence of
sensing errors. To model noise, we consider two probabilities,
Pd and Pf , that are the probability of detecting the PU when
it is transmitting and the probability of false alarm, i.e. the
probability of detection when PU is not transmitting [14].
We consider that errors during sensing are independent and
identically distributed (iid) among devices and we assume that
the PU may be transmitting with probability Ptx = 0.5. These
two last statements are justified by the fact that devices are
divided into locations based on their physical positions and
hence experience the same error probabilities [14] and that
we have no information about PU activity.

IV. GAME THEORETIC ANALYSIS

A. Perfect Sensing Nash Equilibrium

The first question we address is how the HSUs should be-
have to guarantee that no one has a positive incentive to adopt
a selfish behavior. We start with the perfect sensing case and
the presence of HSUs only. We use a game theoretic approach
to demonstrate that a HSU has no unilateral incentive to alter
its reputation indexes in order to obtain more resources, which
implies that HSU reports contain fair sensing and reputation
data. We consider the process as a dynamic multistage game
[15]. At each stage the players, i.e., the SUs, choose their
actions as the reputation and spectrum reports, based on the
information they got in the previous stage and the sensed
spectrum condition. We model HSU payoff as the percentage
of resources they got, as described in 5. We use the concept of
Nash equilibrium to demonstrate that, under some assumptions
on HSUs, behaving in a selfish way to gain more resources is

not rational [15]. Since our game may last for an infinite time,
we rely on the overtaking criteria [16] to compare different
strategies. To sum up, our game is made by
• Players: K HSUs
• Payoff Function: according to (5)
• Complete Information: all users knows how the reputation

index are fused, that is, they know (3) and (5), and they
know the reputation indexes other SUs assigned to them
at the end of the previous stage

• Infinite game: the game is repeated infinitely many times
and players do not discount the future payoffs; this infor-
mation is also common knowledge among the players.

• Finally, players have the same reaction to belief updates
received by others. In particular, we assume that if a
HSU i in the previous stage of the game gave indexes
δi,1, δi,2, . . . , δi,k, then the other HSUs react giving it a
reputation index of min

j=1,...,k
δi,j in the current stage.

Notice that our last assumption follows from the rationality
of HSUs. Indeed, if an SU i gives an index gi,j = δ < 1 to
user j, the GRI of user j decrease. Hence, SU j will react by
giving a reputation of gj,i = δ to SU i. Other HSUs will do
the same since a lower reputation index for user j means a
lower weight of its assessments and thus a lower GRI for
them. Moreover, assigning user i a lower reputation index
gives them a higher GRI, without any immediate punishment
(even though, due to their rationality, they are able to anticipate
future punishments). From now on, we refer to Rt

i as one stage
reward or payoff for SUs i, Rt,2

i = Rt
i +Rt+1

i as the two stage
reward for user i, Rt,n as the n-stage reward and so on. The
following three lemmas are useful to state our main result. For
the sake of brevity, their proof is just sketched since a detailed
version would be just tedious and technical.

Lemma 1 (Two stage deviation). If K > 3, there is no δ < 1
s.t. Rt,2

i > 2
K if gt

i = gt+1
i = δi and gt

j = 1j ,g
t+1
j = δj

for all j 6= i, where δi is an all-δ vector (except for the ith
element, that is irrelevant anyways), and 1j is an all-1 vector.

This lemma shows that the reward cannot be improved by a
two stage deviation in which one player changes its reputation
of the other players to gain a better reward. The proof implies
to show, first, that one such deviation should be identically
applied by player i to all other players j 6= i, since this
dominates deviations where only some j 6= i, but not all
of them, are affected. Second, it is also possible to show
that even a deviation where all other players’ reputation is
identically decreased cannot beneficial; this happens because
in the second stage of the deviation, these players will retaliate
on the deviating player with the same deviation, and player i
can anticipate this kind of behavior. A rigorous proof can be
just obtained through enumeration of all possible alternatives
following this sketch. Using this lemma, one can demonstrate
another one as a corollary.

Lemma 2 (Multi stage deviation). There is no sequence
of δt, δt+1 . . . , δt+n 6= 1, 1, . . . , 1 s.t. gt

i = δt,gt+1
i =

δt+1, . . . ,gt+n
i = δt+n, Rt,n

i > n+1
K .



This is just a generalization of Lemma 1, which can be
shown similarly. It is worth noting that this kind of extension is
analogous to what has been proven for multistage games about
the deviation principle [15], which is actually a consequence
of the Bellman-Ford optimality applied to the extensive form
of the dynamic game seen as a tree. Simply put, any supposed
improvement over a subgame should necessarily include a
shortcut that is also an improvement, because the overall
reward is just the sum of the partial rewards. Thus, if a strategy
is not improvable over a given number of stages, it cannot
be improved over a higher number of stages either. The last
lemma we need is the following.

Lemma 3 (Infinite stage deviation). For any sequence gt
i >

gt+1
i > gt+2

i . . . ∃T s.t. Rt+`
i < 1

K ∀` ≥ T .

This lemma is less trivial instead, as it implies a deviation
also on infinitely many stages. However, it is just sufficient
to prove that any deviation (also including infinite ones) with
decreasing reputations becomes disadvantageous after a certain
stage T , with finite T , onwards. All of these results combined
with the overtaking critierion can lead to the following theo-
rem, which is the key theoretical result of our contribution in
this paper.

Theorem 1. Suppose we have:

• Perfect channel correlation among neighbors, that is,
Pd = 1, Pf = 0

• No MSU in the system
• At least 4 SUs, i.e., K ≥ 4
• Rational behavior of HSUs, as defined before

Then reporting reputation 1 among HSUs is a Nash Equilib-
rium.

Proof. Since HSUs play the game indefinitely many times,
they decide their strategy caring about not only the resources
they get in the present stage but also those that FC will assign
to them in the next rounds. Thus, in order to prove the theorem,
we show that any unilateral deviation from the strategy gi,j =
1 does not lead to any advantage. To compare rewards for
infinite strategy, we adopt the overtaking criterion [16], defined
as follows. Consider two strategies, {δ} = δ1, δ2, . . . and
{δ′} = δ′1, δ′2, . . . . We will say that strategy {δ} is preferred
to {δ′} if

0 < lim inf
T→∞

T∑
t=1

(Rt(δ′t)−Rt(δt)) (8)

where Rt(δt) is the reward at time t when playing strategy
δ for a generic user For the sake of a simpler notation, we
omit the user subscript and we will also omit Rt in the further
usage of the above formula (8) when comparing strategy with
overtaking criterion, so we will just write “δ′t − δt” inside
the limit or whenever comparing strategies. Now, consider
the strategy {e} = e1, e2, . . . where et = 1 ∀t. It is
straightforward to see that Rt(e) = 1

K for every t and every
HSU. Moreover, consider any other strategy {δ} = δ1, δ2, . . .

s.t. ∃t : δt 6= et. Thus, at some point δ deviates from the
strategy {e}. We have three cases:

• δ is a deviation that stays forever at a value δ∗ less then
one; that is, if ∆∗ is a reputation report where a user
assigns value δ∗ to others, δ = . . . ,1,1,∆∗,∆∗, . . . ,
and then we have

lim inf
T→∞

T∑
t=1

(et − δt) = +∞ (9)

since after the first step, we the difference is always
greater than 0, due to what found in Lemma 1.

• δ deviates from e only for a finite number of steps.
Then there must be a set of indexes t1, t2, . . . , th s.t. the
reputations played are δt1 < 1, δt2 < 1, . . . , δth < 1 and
afterwards δth+1 = 1. As proven in Lemma 2, in this
case Rt,(h+1)(δ)−Rt,h(δ) is less than h+1

K , thus

lim inf
T→∞

T∑
t=1

(et − δt) > 0 (10)

• δ has an infinite deviation of the type 1 > δt1 > δt2 . . . .
We demonstrate that there is no sequence of δt that can
lead to a reward greater that 1

K for an arbitrarily long
time, so we have:

lim inf
T→∞

T∑
t=1

(et − δt) = +∞ (11)

since there exists L s.t. Rt(δ) is less than 1
K , ∀t > L.

Notice that due to Lemmas 1, 2 and 3, any other type of
strategy is dominated by one of the three described before.
Thus, we demonstrated that no unilateral deviation, finite or
infinite, leads to an advantage for a given HSU when the
overtaking criterion is used. This proves that e is a Nash
equilibrium [15].

We also remark that the proof shown above does not imply
that other Nash equilibria may exist. However, it is also
possible to show along the same lines that stronger results
hold. Also this part is omitted for the sake of simplicity.
However, the Nash equilibrium identified above can be shown
to be sequentially rational and therefore subgame perfect.
This is to say, because feedback report e is not only a
Nash equilibrium but is non-improvable over multiple stage
deviations, it is the only possible rational outcome.

B. MSU impact and HSU noise resilient strategy strategy

After identifying a strategy for HSUs that leads to a de-
sirable equilibrium in case of no MSUs and perfect sensing
conditions, we now analyze how the impact of MSUs and
noise during sensing can affect the system. The first question
to address is how to choose the threshold τ for the channel
occupancy.



1) Channel occupancy threshold: Consider the case where
` users out of K report wrong information due to either sensing
errors or malicious behavior. If the channel is busy, i.e., the
PU is transmitting, according to equation 4 we have that the
FC makes the correct decision if and only if:

(K − `) · 1 + 0 · `
k

≥ τ (12)

A similar equation can be formulated for the case of idle
channel:

(k − `) · 0 + 1 · `
k

< τ (13)

By combining (12) and (13), we see that the optimal threshold
is τ = 0.5. By selecting this threshold in case of perfect
sensing, our system can tolerate up to dK2 e − 1 MSUs in the
system. Notice that this is the maximum amount of malicious
users that any distributed system that does not rely on a
central/privileged unit can tolerate.

2) Probability distribution of the Hamming distance be-
tween two reports: We now introduce the possibility of errors
in the channel sensing process. Given the detection probability
Pd, the false alarm probability Pf and the primary user
transmission probability Ptx the sensing error probability on
one channel can be expressed as:

Pe = (1− Pd)Ptx + (1− Ptx)Pf . (14)

that is, Pe is the probability that a device misdetect the state
of one of the N channels. Consider now two devices i and j
and their spectrum reports on one channel, denoted as Si and
Sj , respectively. The probability that there is a mismatch on
channel sensing is given by:

Pm = P (Si = 1, Sj = 0) + P (Si = 0, Sj = 1) (15)

That can be rewritten as:

Pm = 2(1− Ptx)(1− Pf )Pf + 2Ptx(1− Pd)Pd (16)

Now consider the case of N channels and suppose that the
probability of mismatch among the two reports is iid for each
of them. We have that each channel error can be modeled
as a Bernoulli distributed random variable, with probability of
success Pm. Thus we have that the Hamming distance between
two reports, which is denoted asmisi,j = ||Si − Sj ||, is a
random variable with binomial distribution with parameters
Pm and N .

3) Noise resilient HSU strategy: Although HSUs do not
intentionally lie on spectrum reports, there can be differences
among their reports due to sensing errors. If a naı̈ve strategy
that does not take into account sensing errors is used by HSU,
the reputations among users easily decrease and reach 0. This
happens because as soon there is an error in sensing, the
reputation is lowered down. In this scenario, MSUs can easily
strongly influence the FC decision, as shown in Fig. 2Thus,
there is the need to design a strategy resilient to sensing errors.
We seek a strategy that allows SUs to tolerate sensing mistakes
up to a certain amount if their behavior follows the rationality
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Fig. 2: FC error rate when HSUs uses a strategy that does not
consider noise

condition of (1). Hence, we propose an improved update rule
as a novel contribution, described in the following equation.

gti,j =

{
min{α+ gt−1i,j , 1} if gt−1j = g∗t−1j , |ci − cj | < ξ

max{gt−1i,j −max
h

(gi,h − gj,h)− |Ci−Cj |
N , 0} if not

(17)
where here g∗ are the reputation indexes that user j should
give according to the common updating rule. Essentially, if
a user is coherently seen to update its reputation reports
according to a collaborative updating rule, other users also
slightly increase its reputation. This happens only if this user
does not make any mistake in its sensing report, though. If
this happens because the user is an MSU, it is correct not
to increase its reputation. If instead this happens because of
sensing errors, it will compensate in the long run, unless the
user is an HSU that is particularly bad or unlucky at sensing
the channel, but in this case it shows no macroscopic difference
with a malicious user. The increase in reputation is a tunable
parameter α that in the following evaluations is set to 0.1.
The choice of α implies a trade off between the need for fast
recovery of the reputation among devices and the protection
against MSUs behavior. Another parameter is ξ which is the
number of channels over which we allow the sensing report to
disagree. The choice of ξ is based on a statistical analysis of
the error distribution. On one hand, a possible choice would
be to set ξ = N + 1, implying that the sensing reports are
not considered and only the mutual reputation matters. This
leads to a simple majority rule to determine the reputation,
which we will take as a benchmark for our evaluations. On
the other hand, ξ should not be set to an extremely low
value, since this leads to a fast decreasing reputation in the
presence of disagreements on the channel state, which would,
in turn, destroy collaboration and trust among HSUs. Thus, in
order to select the most appropriate value for ξ, we analyze
the distribution of the rv misi,j . We would like to choose a
value for ξ s.t. Pr(misi,j > ξ) ≈ 0 to support the correct
reporting from the HSUs, but we want to distinguish between
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HSU and MSU reports by setting a sufficiently high ξ. Under
the assumption that MSU simply reports a false (logical-not)
sensing result on every one of the N channels, the distance
between their report and the ground truth would be equal to N
minus the numbers of their sensing mismatches, that happen to
be correct instead. Since we want to minimize the probability
that a MU goes undetected, we can write the condition as
Pr(misi,j > N − ξ) ≈ 0. Hence, we will select ξ as the
solution of the following problem:

ξ = arg min
x=1,2,...,N

(Pr(misi,j > N − x) + Pr(misi,j > x)) (18)

Fig. 3 depicts the value of Pr(misi,j > N−x)+Pr(misi,j >
x) for x = 1, 2, . . . , 10 and for various values of Pm. It
is possible to see how in our specific system ξ = 5 is the
minimum of the function for all values of Pm and hence it is
the best choice when N = 10, as set during our simulation.

V. NUMERICAL RESULTS

In this section, we present the results obtained from the
numerical simulation of the system. We consider N = 10
channels, K = 12 users and we let Pd and Pm vary from
1 to 0.85 and from 0 to 0.15, respectively. The transmission
probability Ptx is 0.5 and the threshold ξ is empirically set to
5. HSUs adopt the updating strategy described in (17), while
MSUs adopt the strategy described in (7). In this setting, we
focus on the FC error rate and how it depends on the amount of
MSUs in the system. We vary the number of MSUs from 0 to
5. For each setting, we run 100 Monte Carlo trials, each of 100
sensing rounds. As a benchmark, we also run simulations in
the same amount where the FC implements a simple majority
rule.

In panel a of figure 4 the performances of the two systems
without MSUs are reported. Although the system has good per-
formances also with majority rule, the performances decrease
dramatically as soon as sensing error probability increases.
However, while a simple majority report is very prone to
this error amplification, our proposed fusion mechanism is
based on avoiding this phenomenon and keep making correct

decisions most of the time even when sensing errors are within
acceptable limits. When 3 MSUs are introduced in the system,
which is shown in panel b of fig. 4, the overall performance
becomes worse for both our proposal and the benchmark of
the majority-based fusion rule. However, the degradation in
our proposed mechanism is graceful as the exploitation of
correlated channel sensing and the forgiving update rule in
the reputation of truthfully reporting users allow the system
to robustly handle the presence of some malicious users. This
is still true when 5 MSUs, which is a considerable share of
the total number of K = 12, are introduced. The results are
shown in panel c of fig 4. Indeed, the larger is the number
of MSUs in the system, the larger is the gap between our
mechanism and the majority rule. In this case, even with a
considerably high presence of MSUs, our mechanism exhibits
an error rate in the fusion decision that is always more than 5
times lower than the benchmark. Further, the shapes of the two
curves are substantially different. While the one obtained by
a majority rule fusion mechanism increases constantly with
Pm, our mechanism exhibits a low error rate that increases
slowly when the values of Pm are low but rises up very
fast after Pm exceed a certain amount. Notice also that the
concavity of the majority rule curve changes, which implies
that even a moderate false alarm or undetected PU probabilities
cause the fusion rule to be inaccurate. On the other hand, our
proposed fusion strategy remains accurate, and the FC error
rate explodes only when sensing errors are frequent. Thus,
even though the performance of our proposed mechanism is
naturally affected by system noise, it is shown to perform
efficiently and considerably mitigate the impact of MSUs.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a reputation-based mechanism to perform
efficient distributed channel sensing in a CRN that employs
such a paradigm to detect PU transmission, while at the same
time mitigating the impact of malicious users. First, we gave
a thorough analysis of the rationality of truthful reporting
via game theory; indeed, our system exploits the channel
correlation among devices and the concept of reputation to
reduce the effects of malicious users giving false reports. By
using a game theoretic approach, we demonstrated that the
introduction of reputation reports incentivizes honest users
to cooperate at the sensing process without introducing new
security threats. We also analyzed the effect of noise and
malicious users presence on the system and provide details
on how to design a noise resilient strategy able to reduce the
damage from malicious users.

Finally, we numerically showed the effectiveness of the
proposed solution via simulation. Combining truthful reporting
from the HSUs with the appropriate strategy for data fusion
can considerably reduce the FC error rate with respect to a
simple majority fusion rule. We showed that our mechanism
is effective even when malicious users and sensing errors are
simultaneously found in the system. However, our simulations
also show that the channel sensing correlation assumption
cannot be arbitrarily relaxed. This is coherent with our design
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Fig. 4: FC decision error rate with 0,3 and 5 MSUs. In top line the majority rule was used, the bottom implemented our
reputation mechanism.

rationale: we created the mechanism so that spatial correlation
can be used to oust malicious users from the network and
hence a certain amount of correlation must be present to let
the mechanism work properly. Future works should focus on
the optimal strategy for MSU in order to find which equilib-
rium can be reached and how it depends on malicious users
percentage and noise level. In this spirit, a possible extension
of the present contribution would be to introduce dynamically
tunable reporting and fusion mechanisms so as to adapt them
to a variable number of malicious users and/or time-varying
channel conditions that induce variable sensing error rates.
This can lead to a more sophisticated dynamic policy that
can also be studied through game theory. Another extension
would be to consider other malicious behaviors rather than just
falsely reporting the opposite of reality, e.g., based on random
reporting and/or MSUs that are only intentionally lying over a
small fraction of reports. This can be done via Bayesian game
theory and paves the way for interesting extensions based on
automated reasoning to identify and counteract more complex
network attacks, to guarantee improved security.
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